

DOMINION

January 5, 2026

Mr. Mason Meade
Kyrene Elementary School District No. 28
8700 S Kyrene Road
Tempe, AZ 85284

Re: Limited Indoor Air Quality Investigation
Kyrene de la Sierra Elementary School
1122 East Liberty Lane
Phoenix, AZ 85048

Dominion Project Number: AZ1418.64

Dear Mr. Meade,

Pursuant to your request, Dominion Environmental Consultants (Dominion) conducted an additional round of final air monitoring at Kyrene de la Sierra Elementary School on December 23, 2025.

BACKGROUND INFORMATION

According to the information provided, staff and parents had concerns regarding an unusual odor throughout the main building at Kyrene Sierra Elementary (Sierra) as a result of a Roofing project. As a result of the odor, Kyrene Elementary School District decided to relocate the students to classrooms at Kyrene de los Cerritos (Cerritos) and Kyrene Altadena Middle School (Altadena) until the roofing project was complete. Sierra had been actively ventilated to reduce to odor total volatile organic compounds (tVOC) since August 4, 2025. On August 7, 2025, The tVOC levels inside Sierra were reduced to be between 586 to 2,219 parts-per-billion (ppb) with significantly reduced odor. On August 15, 2025, the ventilation equipment was turned off and the HVAC system was turned on at Sierra. Dominion was requested to conduct real-time air monitoring for tVOC to ensure that the HVAC system did not have a negative impact on the air quality on August 18, 2025.

Upon completion of the new roof installation, Dominion was requested to conduct final air monitoring on December 5, 2025, for tVOCs, Stoddard Solvent (Hydrocarbons), 1,2,4-Trimethylbenzene, and 1,3,5-Trimethylbenzene to evaluate post-installation indoor air quality conditions. During the time and location of the inspection, the building was being cleaned and sanitized and little to no roofing material odor was detected. The laboratory results indicated levels of TVOCs range from normal to elevated within the tested areas. The laboratory data indicated that cleaning product chemicals are the major contributors to TVOCs.

Dominion was requested to conduct an additional round of final air monitoring on December 23, 2025.

The school cleaning and sanitizing had been completed. During the time and location of the inspection, the building was unoccupied. Minimum school staff members were observed working at Sierra.

TOTAL VOLATILE ORGANIC COMPOUND AIR MONITORING TECHNIQUES – Real-Time

Dominion conducted a screening of the building using a Photoionization detector (PID). A ppbRAE 3000 monitor equipped with a 10.6 eV UV lamp was used to screen for total Volatile Organic Compounds (tVOCs) in the building. As organic vapors pass by the lamp, they are photo-ionized, and the ejected electrons are detected as a current. This current is then converted into parts per billion (ppb) reading. PID sensor with a standard 10.6 eV lamp is capable of detecting a broad range of organic vapors. However, the PID only provides a level of total VOCs and cannot determine individual chemicals. Furthermore, the PID cannot be used to determine if individuals have been exposed above any published exposure limit or determine if adverse health effects will occur as a result of the exposure.

Ambient Air Sampling for Volatile Organic Compounds

Volatile Organic Compounds were sampled by introduction of air into IAQ Commercial Survey™ testing tube, provided by Enthalpy Analytical Technologies. Once the sampling train was completed, the flow rate was calibrated to approximately 0.2 liter per minute (LPM). The sampling was conducted for approximately Two (2) hours. After sampling is completed, the testing tube was sealed on both ends and transported to a certified laboratory (Enthalpy Analytical Technologies), under standard chain-of-custody, to be analyzed for EPA Method TO-17 and ISO 16000-6, using a high resolution gas chromatograph coupled to a mass spectrometer (GC/MS).

REAL-TIME TOTAL VOLATILE ORGANIC COMPOUND MONITORING – December 23, 2025

According to the U.S. Green Building Council, TVOC levels should ideally be below 500 parts per billion (ppb). Studies have indicated that health complaints in buildings typically begin when the VOC levels inside of the building exceed 3,000 ppb.

Based on these guidelines, the TVOC readings obtained from the average ambient indoor air ranged from 0 to 25 ppb and did not exceed the recommended levels. (see “Exhibit 1 –Photoionization Detector Data-December 23, 2025”).

Ambient Air Sampling for Toxic Organic Compounds

On December 23, 2025, Dominion placed one (1) ambient air sampling with IAQ Commercial Survey™ testing tube each in the following locations:

- Hallway A
- Hallway C
- Classroom 3

The analytical laboratory report indicated normal levels of TVOCs from Hallway A. The added targeted laboratory analysis indicated 110 ng/L of Total Hydrocarbon (C9-C12), 0.1 ppb of 1,3,5-Trimethylbenzene and 0.4 ppb of 1,2,4-Trimethylbenzene. (See Exhibit 2 – TVOCs Report-December 23, 2025)

The analytical laboratory report indicated normal levels of TVOCs from Hallway C. The added targeted laboratory analysis indicated 150 ng/L of Total Hydrocarbon (C9-C12), 0.2 ppb of 1,3,5-Trimethylbenzene and 0.5 ppb of 1,2,4-Trimethylbenzene. (See Exhibit 2 – TVOCs Report-December 23, 2025)

The analytical laboratory report indicated normal levels of TVOCs from Classroom 3. The added targeted laboratory analysis indicated 320 ng/L of Total Hydrocarbon (C9-C12), 0.5 ppb of 1,3,5-Trimethylbenzene and 1.4 ppb of 1,2,4-Trimethylbenzene. (See Exhibit 2 – TVOCs Report-December 23, 2025)

All levels of detected chemicals were significantly reduced or eliminated from the initial inspection on August 4, 2025. (See Exhibit 3 – TVOCs Report-August 4, 2025). Levels of TVOCs were identified to be moderate in Classroom 3 and elevated in Hallway A from the December 5, 2025 inspection. Levels of TVOCs were identified to be normal in Classroom 3 and Hallway A from the December 23, 2025 inspection.

CONCLUSIONS/RECOMMENDATIONS:

Based on these guidelines, the real-time TVOC readings obtained from the average ambient indoor air range did not exceed the USGBC recommended levels.

Based on the laboratory analytical data, levels of TVOCs were normal within the tested areas. No roofing products related chemicals were found from the December 23, 2025 laboratory report.

Based on the findings presented above, the indoor air quality conditions have largely improved since August 2025. The air quality within Sierra is acceptable for students and staff occupancy.

LIMITATIONS

The conclusions and results contained herein are based solely on the information presented in this report. Dominion did not oversee any work performed by a Contractor or provide detailed remediation protocols. The Contractor is responsible for his own work and compliance with all regulatory guidelines. The limited sampling, testing, and observations described in the report represent conditions only at specified times and locations. Additional information or contamination which was hidden, undiscovered, inaccessible, or is not a part of the finding presented herein, would result in the modification of the conclusions and recommendations made herein. The limited sampling methods, techniques, and scope of services were not comprehensive or to be considered all inclusive. Any remediation guidelines are minimum general guidelines, based solely on the findings presented herein. They are presented as a courtesy and are not to be considered a complete or detailed set of specifications. If the Contractor requires a detailed or specific guideline or specification, the Client should engage the Consultant to prepare the appropriate document. Dominion performed its investigation in a specific area, as directed by the client.

Dominion's scope of service for this report did not include the inspection for, or identification of, asbestos materials, lead paint, or any other hazardous or controlled substances not specifically identified herein.

Dominion is not responsible for the accuracy of information, or any services provided by others, or for conditions or consequences arising from relevant facts that were withheld, concealed, undiscovered, or not fully disclosed. Dominion is not a law firm and therefore makes no representations regarding any potential liability of any person or entity for site conditions. Further, Dominion is not qualified to present medical advice. If any present or future health issues are in question, it is recommended that the findings in this report be presented to a qualified medical professional for evaluation.

If you should have any questions, need further sampling, or would like to discuss the contents of this report, please do not hesitate to contact Dominion at any time.

Sincerely,

Dominion Environmental Consultants,

Shane Lou

**Xin (Shane) Lou., CIH, CSP, MPH
Industrial Hygiene Project Manager**

Enclosures:

Exhibit 1 – Photoionization Detector Data- December 23, 2025

Exhibit 2 – TVOCs Report-December 23, 2025

Exhibit 3 – TVOCs Report-August 4, 2025

EXHIBIT 1

=====

25/12/23 12:52

Summary

Unit Name ppbRAE 3000(PGM-7340)

Unit SN 594-906727

Unit Firmware Ver V2.20A

Running Mode Hygiene Mode

Datalog Mode Auto

Diagnostic Mode No

Stop Reason Power Down

Site ID RAE00000

User ID USER0000

Begin 12/23/2025 12:52:51

End 12/23/2025 14:27:09

Sample Period(s) 60

Number of Records 94

Sensor PID(ppb)

Sensor SN S023030124S6

Measure Type Min; Avg; Max; Real

Span 100000

Span 2 1000000

Low Alarm 10000

High Alarm 25000

Over Alarm 10000000

STEL Alarm 25000

TWA Alarm 10000

Measurement Gas Isobutylene

Calibration Time 10/21/2025 17:18

Peak 40

Min 0

Average 7

Datalog

Index	PID(ppb)	PID(ppb)	PID(ppb)	PID(ppb)
	Date/Time	(Min)	(Avg)	(Max)
001	12/23/2025 12:53:51	0	3	17
002	12/23/2025 12:54:51	0	0	11
003	12/23/2025 12:55:51	0	1	11
004	12/23/2025 12:56:51	0	2	15
005	12/23/2025 12:57:51	0	7	28
006	12/23/2025 12:58:51	0	8	46
007	12/23/2025 12:59:51	2	24	49
008	12/23/2025 13:00:51	0	19	53
009	12/23/2025 13:01:51	0	0	9
010	12/23/2025 13:02:51	0	0	4
011	12/23/2025 13:03:51	0	0	0
012	12/23/2025 13:04:51	0	0	0
013	12/23/2025 13:05:51	0	0	0
014	12/23/2025 13:06:51	0	0	0

015	12/23/2025	13:07:51	0	0	0	0
016	12/23/2025	13:08:51	0	0	0	0
017	12/23/2025	13:09:51	0	0	0	0
018	12/23/2025	13:10:51	0	0	0	0
019	12/23/2025	13:11:51	0	0	0	0
020	12/23/2025	13:12:51	0	0	0	0
021	12/23/2025	13:13:51	0	0	0	0
022	12/23/2025	13:14:51	0	0	0	0
023	12/23/2025	13:15:51	0	0	0	0
024	12/23/2025	13:16:51	0	0	0	0
025	12/23/2025	13:17:51	0	0	0	0
026	12/23/2025	13:18:51	0	0	0	0
027	12/23/2025	13:19:51	0	0	0	0
028	12/23/2025	13:20:51	0	0	0	0
029	12/23/2025	13:21:51	0	0	0	0
030	12/23/2025	13:22:51	0	0	0	0
031	12/23/2025	13:23:51	0	0	0	0
032	12/23/2025	13:24:51	0	0	0	0
033	12/23/2025	13:25:51	0	0	0	0
034	12/23/2025	13:26:51	0	0	0	0
035	12/23/2025	13:27:51	0	0	0	0
036	12/23/2025	13:28:51	0	0	0	0
037	12/23/2025	13:29:51	0	0	0	0
038	12/23/2025	13:30:51	0	0	0	0
039	12/23/2025	13:31:51	0	0	0	0
040	12/23/2025	13:32:51	0	0	0	0
041	12/23/2025	13:33:51	0	0	0	0
042	12/23/2025	13:34:51	0	0	0	0
043	12/23/2025	13:35:51	0	0	0	0
044	12/23/2025	13:36:51	0	0	2	0
045	12/23/2025	13:37:51	0	0	0	0
046	12/23/2025	13:38:51	0	0	0	0
047	12/23/2025	13:39:51	0	0	0	0
048	12/23/2025	13:40:51	0	0	0	0
049	12/23/2025	13:41:51	0	0	0	0
050	12/23/2025	13:42:51	0	0	3	1
051	12/23/2025	13:43:51	0	1	5	0
052	12/23/2025	13:44:51	0	0	1	0
053	12/23/2025	13:45:51	0	0	0	0
054	12/23/2025	13:46:51	0	0	1	0
055	12/23/2025	13:47:51	0	0	4	4
056	12/23/2025	13:48:51	0	1	9	0
057	12/23/2025	13:49:51	0	4	14	7
058	12/23/2025	13:50:51	0	5	17	8
059	12/23/2025	13:51:51	0	5	14	2
060	12/23/2025	13:52:51	0	5	14	2
061	12/23/2025	13:53:51	0	17	152	11
062	12/23/2025	13:54:51	0	10	31	1
063	12/23/2025	13:55:51	0	8	28	11
064	12/23/2025	13:56:51	1	9	25	15
065	12/23/2025	13:57:51	0	7	17	6
066	12/23/2025	13:58:51	1	8	18	7
067	12/23/2025	13:59:51	0	11	26	4
068	12/23/2025	14:00:51	0	10	27	12
069	12/23/2025	14:01:51	0	10	28	17
070	12/23/2025	14:02:51	0	11	26	11
071	12/23/2025	14:03:51	1	10	28	5

072	12/23/2025	14:04:51	3	12	31	19
073	12/23/2025	14:05:51	2	15	29	5
074	12/23/2025	14:06:51	0	12	33	19
075	12/23/2025	14:07:51	2	14	34	22
076	12/23/2025	14:08:51	1	12	27	1
077	12/23/2025	14:09:51	0	12	31	22
078	12/23/2025	14:10:51	4	16	40	40
079	12/23/2025	14:11:51	7	19	37	16
080	12/23/2025	14:12:51	5	17	36	20
081	12/23/2025	14:13:51	4	17	33	17
082	12/23/2025	14:14:51	5	16	39	20
083	12/23/2025	14:15:51	6	16	28	25
084	12/23/2025	14:16:51	6	15	30	12
085	12/23/2025	14:17:51	3	15	37	16
086	12/23/2025	14:18:51	3	16	33	23
087	12/23/2025	14:19:51	6	19	35	32
088	12/23/2025	14:20:51	6	17	33	16
089	12/23/2025	14:21:51	14	22	31	24
090	12/23/2025	14:22:51	11	20	30	30
091	12/23/2025	14:23:51	14	20	30	18
092	12/23/2025	14:24:51	9	23	31	27
093	12/23/2025	14:25:51	17	24	30	30
094	12/23/2025	14:26:51	21	25	31	23
Peak			21	25	152	40
Min			0	0	0	0
Average			2	6	16	7

TWA/STEL

Index	PID(ppb)	PID(ppb)	
	Date/Time (TWA)	(STEL)	
001	12/23/2025 12:53:51	0	---
002	12/23/2025 12:54:51	0	---
003	12/23/2025 12:55:51	0	---
004	12/23/2025 12:56:51	0	---
005	12/23/2025 12:57:51	0	---
006	12/23/2025 12:58:51	0	---
007	12/23/2025 12:59:51	0	---
008	12/23/2025 13:00:51	0	---
009	12/23/2025 13:01:51	0	---
010	12/23/2025 13:02:51	0	---
011	12/23/2025 13:03:51	0	---
012	12/23/2025 13:04:51	0	---
013	12/23/2025 13:05:51	0	---
014	12/23/2025 13:06:51	0	---
015	12/23/2025 13:07:51	0	5
016	12/23/2025 13:08:51	0	5
017	12/23/2025 13:09:51	0	5
018	12/23/2025 13:10:51	0	5
019	12/23/2025 13:11:51	0	5
020	12/23/2025 13:12:51	0	4
021	12/23/2025 13:13:51	0	4
022	12/23/2025 13:14:51	0	3
023	12/23/2025 13:15:51	0	1
024	12/23/2025 13:16:51	0	0
025	12/23/2025 13:17:51	0	0
026	12/23/2025 13:18:51	0	0

027	12/23/2025	13:19:51	0	0
028	12/23/2025	13:20:51	0	0
029	12/23/2025	13:21:51	0	0
030	12/23/2025	13:22:51	0	0
031	12/23/2025	13:23:51	0	0
032	12/23/2025	13:24:51	0	0
033	12/23/2025	13:25:51	0	0
034	12/23/2025	13:26:51	0	0
035	12/23/2025	13:27:51	0	0
036	12/23/2025	13:28:51	0	0
037	12/23/2025	13:29:51	0	0
038	12/23/2025	13:30:51	0	0
039	12/23/2025	13:31:51	0	0
040	12/23/2025	13:32:51	0	0
041	12/23/2025	13:33:51	0	0
042	12/23/2025	13:34:51	0	0
043	12/23/2025	13:35:51	0	0
044	12/23/2025	13:36:51	0	0
045	12/23/2025	13:37:51	0	0
046	12/23/2025	13:38:51	0	0
047	12/23/2025	13:39:51	0	0
048	12/23/2025	13:40:51	0	0
049	12/23/2025	13:41:51	0	0
050	12/23/2025	13:42:51	0	0
051	12/23/2025	13:43:51	0	0
052	12/23/2025	13:44:51	0	0
053	12/23/2025	13:45:51	0	0
054	12/23/2025	13:46:51	0	0
055	12/23/2025	13:47:51	0	0
056	12/23/2025	13:48:51	0	0
057	12/23/2025	13:49:51	0	1
058	12/23/2025	13:50:51	0	1
059	12/23/2025	13:51:51	0	1
060	12/23/2025	13:52:51	0	2
061	12/23/2025	13:53:51	0	2
062	12/23/2025	13:54:51	0	2
063	12/23/2025	13:55:51	0	3
064	12/23/2025	13:56:51	0	4
065	12/23/2025	13:57:51	0	5
066	12/23/2025	13:58:51	0	5
067	12/23/2025	13:59:51	0	5
068	12/23/2025	14:00:51	0	6
069	12/23/2025	14:01:51	0	7
070	12/23/2025	14:02:51	0	8
071	12/23/2025	14:03:51	0	8
072	12/23/2025	14:04:51	0	9
073	12/23/2025	14:05:51	0	9
074	12/23/2025	14:06:51	1	10
075	12/23/2025	14:07:51	1	11
076	12/23/2025	14:08:51	1	11
077	12/23/2025	14:09:51	1	12
078	12/23/2025	14:10:51	1	14
079	12/23/2025	14:11:51	1	15
080	12/23/2025	14:12:51	1	15
081	12/23/2025	14:13:51	1	16
082	12/23/2025	14:14:51	1	17
083	12/23/2025	14:15:51	1	18

084	12/23/2025	14:16:51	1	18
085	12/23/2025	14:17:51	1	18
086	12/23/2025	14:18:51	1	19
087	12/23/2025	14:19:51	1	21
088	12/23/2025	14:20:51	1	20
089	12/23/2025	14:21:51	1	22
090	12/23/2025	14:22:51	1	22
091	12/23/2025	14:23:51	1	22
092	12/23/2025	14:24:51	1	24
093	12/23/2025	14:25:51	1	24
094	12/23/2025	14:26:51	1	23

EXHIBIT 2

Client: Dominion Environmental Consultants
20045 Ninth Ave. Bldg. 7
Phoenix, AZ 85027
US

Sampled By: Xin Lou
Project: Kyrene Sierra AZ1418.64
Location: -
-

Client Sample ID: Hallway A
Sample Volume (L): 24.0
Date Sampled: 12/23/2025
Sample Type: TDT AE587
Sample Condition: Acceptable

Report Number: 121929

Thank you for using IAQ Commercial Survey!

If you have questions about your report,
please contact your service provider who
performed this test.

Receive Date: 12/26/2025
Approve Date: 12/26/2025
Scan Date: 12/26/2025
Report Date: 12/29/2025

IAQ Commercial Survey™ is one of the most advanced, trusted air testing products on the market today for identifying chemical sources and active mold growth. Many indoor air quality (IAQ) issues identified by IAQ Commercial Survey can be easily remediated or eliminated. This test is an invaluable tool for improving air quality because it provides important information on potential contamination issues that cannot be detected by a visual inspection alone. Acting upon the information in this report will enable you to dramatically improve the air quality, creating a healthier environment.

Your Indoor Air Quality Report Summary

Your Indoor Air Quality Report has several sections describing different aspects of your air quality. A summary of this data is provided below, additional information and descriptions are included in the full report.

Total Volatile Organic Compounds (TVOC) Level

TVOC is a general indicator of the IAQ (see page 2).

 Total VOCs < 200 ng/L

Total Mold Volatile Organic Compounds (TMVOC) Level

TMVOC is an assessment of the actively growing mold (see page 3).

 Total MVOCs < 3 ng/L

Contamination Index (CI) Level

The CI shows the types of air-contaminating products and materials that are present in the sampled area (see pages 5 and 6). These levels are estimates based on common products and activities.

Building Sources

See page 5 for more detail.

N	Coatings (Paints, Varnishes, etc.)
N	PVC Cement
N	Building Materials-Toluene Based
N	Gasoline
N	Fuel Oil, Diesel Fuel, Kerosene
N	Light Hydrocarbons
N	Light Solvents

Occupant Sources

See page 6 for more detail.

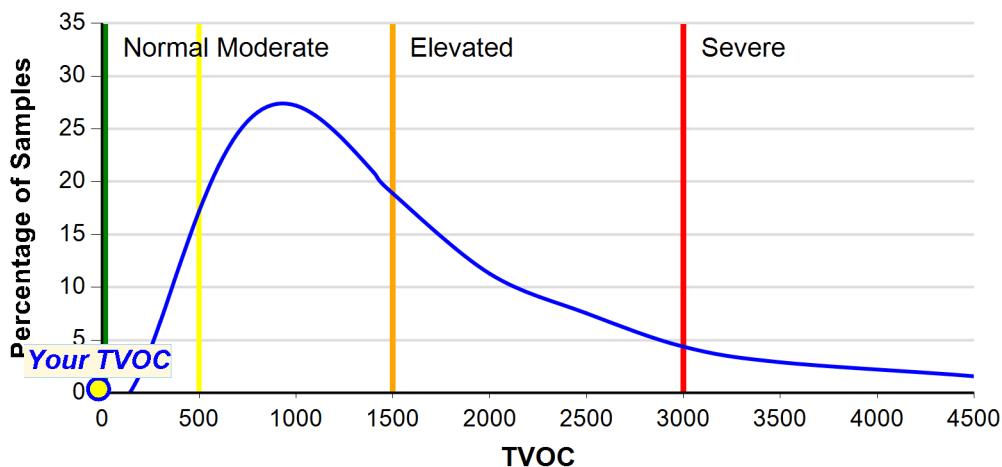
N	HFCs and CFCs (Freons™)
N	Personal Care and Cleaning Products
N	Odorants and Fragrances
N	Dry Cleaning Solvents

Note: Severity levels begin at Normal or Minimal and progress through Moderate, Elevated, High and/or Severe. The color progression from green to red indicates results that are increasingly atypical and suggest potentially higher risk.

All Severity classifications are based on empirical data and should not be taken as a pass/fail or conformance to a published specified limit.

Enthalpy Analytical, LLC (MTP), the creator of IAQ Home and Commercial Survey, has been performing air quality assessments to industry and environmental consultants since 1995. Enthalpy Analytical, LLC (MTP) (ID 166272) is accredited by the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC in the Industrial Hygiene accreditation program for GC-MS Field of Testing as documented by the Scope of Accreditation Certificate and associated Scope. This analysis references methods EPA TO-17 and ISO 16000-6, which fall within the Scope of Accreditation.

Total Volatile Organic Compound (TVOC) Summary


Your TVOC Level is: < 200 ng/L

IAQ is acceptable for most individuals; chemically sensitive persons may require lower levels.

Your Indoor Air Quality Level (Highlighted)

Normal	Moderate	Elevated	Severe
< 500 ng/L	500 - 1500 ng/L	1500 - 3000 ng/L	> 3000 ng/L

All IAQ Survey TVOC Air Quality Indicator

The average TVOC is 1900 ng/L

This chart represents the TVOC distribution of over 45,000 samples. Over 80% of these samples indicate improvements in IAQ are necessary to achieve the goal of TVOC less than 500 ng/L.

The chart above shows the TVOC levels for all locations tested using IAQ Survey. Results for this air sample are displayed on the chart as a yellow circle. The blue curved line represents the relationship between the percentage of locations (indicated on the vertical y-axis) and the TVOC level (indicated on the horizontal x-axis). The green, yellow, orange, and red vertical bars represent divisions between Normal, Moderate, Elevated, and Severe TVOC levels. As the TVOC value increases, individuals may experience aggravated health problems, and therefore, the need to address VOC issues becomes more critical. However, reductions in VOCs can be made at any level.

No government or organization has specified a TVOC limit for indoor air. However, the U.S. Green Building Council (USGBC) has set 500 ng/L as the recommended TVOC limit.

In general:

- < 500 ng/L IAQ is acceptable for most individuals; however, chemically sensitive persons may require lower levels.
- 500 - 1,500 ng/L some effects on the occupants is possible.
- > 1,500 ng/L IAQ should be improved.

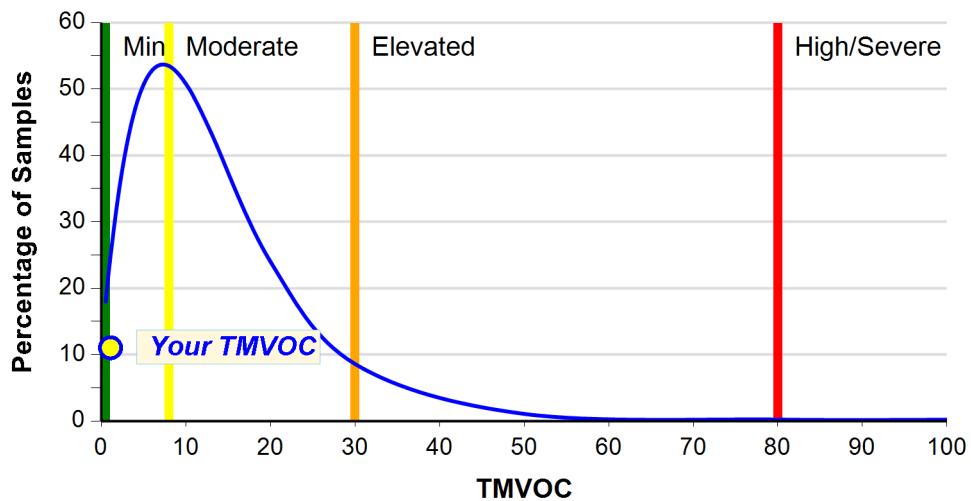
Note: These levels are based on observed health effects and have been determined from a combination of published data and the statistical distribution of TVOC concentrations from the IAQ Survey methodology.

The presence of chemicals in your indoor environment can cause a wide range of problems, from an unpleasant odor to physical symptoms (burning and irritation in the eyes, nose, and throat; headaches; nausea; nervous system effects; severe illness; etc.). Anyone with respiratory issues like asthma or allergies, as well as children, the elderly, and pregnant women are more susceptible to poor indoor air quality than healthy individuals.

Click [here](#) for more information about VOCs.

The Contamination Index (CI) in the next pages of this report will help guide you through determining what types of products or materials could be problematic for your IAQ, and will provide some recommendations to help reduce or eliminate them.

Total Mold Volatile Organic Compound (TMVOC) Summary


Your TMVOC Level is: < 3 ng/L

Actively growing molds may be present, but are at or below levels found in most homes and working environments.

Your Active Mold Level (Highlighted)

Minimal < 8 ng/L	Active- Moderate 8 - 30 ng/L	Active- Elevated 30-80 ng/L	Active- High 80 - 150 ng/L	Active- Severe > 150 ng/L
---------------------	------------------------------------	-----------------------------------	----------------------------------	---------------------------------

All IAQ Survey TMVOC Active Mold Growth Indicator

The average TMVOC is 10 ng/L

This chart represents the TMVOC distribution of over 45,000 samples. Approximately half the samples indicate that some active mold growth is occurring at the time of sample collection.

The chart above shows the TMVOC level for all locations tested using IAQ Survey. Results for this air sample are displayed on the chart as a yellow circle. The blue curved line represents the relationship between the percentage of locations (indicated on the vertical y-axis) and the TMVOC level (indicated on the horizontal x-axis). For example, a TMVOC of 20 ng/L is reported in ~20% of the samples. The green, yellow, orange, and red vertical bars represent divisions between Minimal, Moderate, Elevated, and High/Severe TMVOC levels.

Molds can be found anywhere in the indoor environment as long as there is a source of water or moisture. Molds produce spores, VOCs (during the metabolic or digestive processes of mold), and mycotoxins (typically when the mold is threatened).

This test detects only the VOCs produced by actively growing molds and does not represent spores or mycotoxins. The TMVOC value is the sum of a select set of VOCs emitted by most molds while growing (when mold is in an inactive or dormant state it does not produce many VOCs).

The presence of moisture is the primary factor in mold growth, controlling moisture and dampness is the only way to consistently control or limit mold growth.

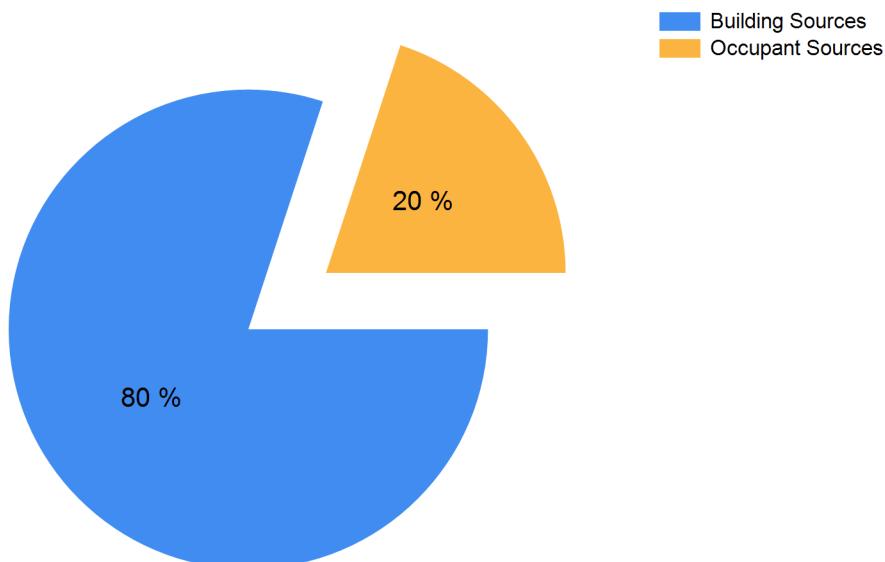
Click [here](#) for more information about molds and mold VOCs.

Contamination IndexTM

The Contamination IndexTM (CI) shows the types of air-contaminating products and materials that are present in the sampled area. Each CI category shows the approximate contribution of that category to the TVOC level, indicates how your location compares to thousands of other locations, and provides some suggestions about which products and materials might be the source for the VOCs. The CI is divided into two main source groups: Building Sources and Occupant Sources.

1. Building Sources are those that are typically part of the structure of the building and may be more difficult to reduce in the short term. Recent construction or renovation often increases the CI categories in this group to the Elevated, High, or Severe levels. VOCs from these activities often decrease substantially in the month following use or application of these products, especially if the area is flushed with air to dissipate the VOCs off gassed from the new products or materials.

2. Occupant Sources are those that the occupants of the building bring into the building and can usually be more readily identified and remediated. Recent construction or renovation can often contribute to other source categories in addition to Building Sources.


It is possible for a category listed in one source group to belong to another source group. For example, the 'Coatings' category is in the Building Sources group because the largest contribution is typically the paint on the walls, but cans of paint stored in a basement or storage area could be considered part of the Occupant Sources group. Always consider all possible sources for a particular CI category.

The CI categories comprise the most common sources but other products or activities may be present that are not included in the CI. The values assigned to each category are approximations based on typical office and commercial spaces. Locations with additional or atypical sources may require additional investigation to determine the source of certain chemicals that are not accurately represented by the CI.

Since there are potentially many sources of VOCs, buildings can often be re-contaminated even after sources have been removed because new products are constantly being brought into the building. Occupants should take note of this fact, and view IAQ as a continuous improvement process.

The chart below depicts the distribution of the Contamination Index source groups. These source groups are estimates and may not indicate all of the VOCs in your air sample.

Contamination Index Source Groups

Contamination Index™ Building Sources

Use the Contamination Index (CI) below to help you find products and materials in the sampled area that may be affecting your indoor air quality. Removing or reducing these products will improve your air quality. The concentrations reported here are approximate and may not add up to the TVOC value on page 2 of this report. These categories are typically part of the structure of the building and may be more difficult to reduce in the short term. Recent construction or renovation will often cause these categories to be elevated. Increased ventilation will help to reduce VOCs from construction or renovation sources. Levels indicated as Elevated, High, or Severe should be addressed immediately, and those listed as Moderate are areas that can be improved over time.

Building Sources	Contamination Index Category	Estimated VOC Level (ng/L)	Severity	Source Prediction & Suggestions for VOC Reduction
	Coatings (Paints, Varnishes, etc.)	78	Normal	Includes interior and exterior paints (including low- or no-VOC paints), varnishes, lacquers, some sealants, and other products that can be classified as a coating over a surface. Typically, VOCs from these products are in the 10 to 14 carbon size range and can linger for several months after application, sometimes longer. Ventilate as much as possible during and after application of any of these products. Dispose of opened but unused products and related supplies if possible or store in areas that will minimize off gassing. Additional sources include fuel oil or diesel fuel.
	PVC Cement	0	Normal	PVC cement is used to join pieces of PVC pipe together, usually for plumbing.
	Building Materials-Toluene Based	0	Normal	Adhesives and glues used in construction and maintenance, arts and crafts; adhesive removers; contact cement; sealants; coatings (paint, polyurethane, lacquer, thinner); automotive products, including parts cleaners. Additional sources include gasoline and other fuels.
	Gasoline	22	Normal	VOCs from gasoline are typically a result of off-gassing from gas containers, small spills, and gas-powered equipment used in facilities maintenance in nearby garage or storage areas. Most vehicles in good operating condition do not emit gasoline vapors due to the tightly sealed gas tank. This category does not include exhaust emissions. Gasoline VOCs can linger on clothing after refueling at a gas station. Gasoline includes chemical compounds that are also included in the Light Solvents category.
	Fuel Oil, Diesel Fuel, Kerosene	0	Normal	Typically found in garages and facilities maintenance areas. These fuels are not very volatile so they will not readily get into the air, but they can linger for a long time and produce a strong, unpleasant odor. This category does not include exhaust emissions. Additional sources include coatings such as paints, varnishes, sealants, waxes, etc.
	Light Hydrocarbons	3	Normal	Building materials; aerosol cans; liquefied petroleum gas (LPG); refrigerant; natural gas; propellant; blowing agent. Includes chemical compounds such as propane, butane, and isobutane.
	Light Solvents	17	Normal	Stoddard solvent; mineral spirits; some coatings (paints, varnish, enamels, etc.); wax remover; adhesives; automotive products; light oils. Typically, VOCs from these products are in the 6 to 9 carbon size range.

Contamination Index™ Occupant Sources

Use the Contamination Index (CI) below to help you find products and materials in the sampled area that may be affecting your indoor air quality. Removing or reducing these products will improve your air quality. The concentrations reported here are approximate and may not add up to the TVOC value on page 2 of this report. These categories are typically brought into the building by the occupants and can often be readily identified and removed or contained. Levels indicated as Elevated, High, or Severe should be addressed immediately, and those listed as Moderate are areas that can be improved over time.

Occupant Sources

Contamination Index Category	Estimated VOC Level (ng/L)	Severity	Source Prediction & Suggestions for VOC Reduction
HFCs and CFCs (Freons™)	2	Normal	Most often used as refrigerants for air conditioners and refrigerator/freezers and propellants for blown-in insulation, cushions, aerosol cans, etc. Many of these chemical compounds are being phased out because of the Montreal Protocol.
Personal Care and Cleaning Products	16	Normal	Personal care products such as soap, deodorant, lotions, perfumes, hair coloring supplies, nail care supplies, oral hygiene products, etc. Cleaning agents such as surface, window, and flooring products, also restroom and antibacterial products. These products contain many VOCs that will dissipate if use is discontinued or reduced.
Odorants and Fragrances	12	Normal	Air fresheners, scented cleaning products, and scented personal care products.
Dry Cleaning Solvents	0	Normal	Typical dry-cleaning methods employ the use of carcinogenic chemicals. Dry-cleaning should be allowed to vent outside, without plastics bags, before being placed inside.

Significant VOCs

Based upon your specific air analysis, the chemical compounds listed below are significant contributors to the TVOC level reported on page 2 of your IAQ Commercial Survey Report or are indicative of specific types of products or problems. Compounds from a variety of chemical classes are represented here, although only the most common or most notable are specifically listed. These chemical compounds may come from a variety of sources as shown in the Contamination Index section of this report.

Locating and removing the source of the chemical compound is the most effective way to reduce the concentration of that chemical compound. If removing the source is not possible, try to contain it in some way (e.g., placing the source in an air-tight container when not in use). In addition, the ventilation system in some locations may not be optimized so evaluate the ventilation system and make adjustments to increase the amount of fresh air. Filter or purify re-circulated inside air to help reduce the TVOC. Since VOCs may continue to off-gas even when the sources are stored, ventilation and air-purification methods will need to be employed continuously in order to keep the VOC levels low.

The Chemical Abstracts Service (CAS) registry number after the chemical compound name in the table below is a unique identifier for that chemical compound and is often the best means to search for additional information. The two VOC levels in the table below (ng/L and ppb) are different ways of describing the same concentration, in some cases exposure limits or other information may be described using one or both of these concentration units.

Compound	CAS	Estimated VOC Level (ng/L)	Estimated VOC Level (ppb)	Description
Diethylene glycol ethyl ether	111-90-0	12	2	DEGMEE; Carbitol/Automotive fluids; cleaners; personal care products, especially hair products; paints and coatings

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ppb)	Odor Range (ppb)	Odor Description
Diethylene glycol ethyl ether	111-90-0	2	200 - 1,090	ethereal, mild, pleasant

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Listed below are those HAPs that were detected with the IAQ Commercial Survey VOC test. This list does not include all HAPs. The '<' (less than) symbol in the 'Estimated VOC Level' columns indicates the compound is below the reporting limit for this air sample and therefore can be considered absent from the air sample. For more information about HAPs visit the EPA [Air Toxics website](#). The exposure limits listed below can also be found in the [NIOSH Guide to Chemical Hazards](#). The HAPs in the table below may also be listed as Significant VOCs if the concentration of that chemical compound is greater than the threshold level for a Significant VOC.

Compound	CAS	Estimated VOC Level (ng/L)	Estimated VOC Level (ppb)	NIOSH Exposure Limit	Description
Toluene	108-88-3	1	0.4	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
m,p-Xylene	108-38-3; 106-42-3	1	0.3	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges

*These results pertain only to this sample as it was collected and to the items reported.
These results have been reviewed and approved by the Laboratory Director or approved representative.*

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Enthalpy Analytical, LLC (MTP), nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

© Copyright 2025, Enthalpy Analytical, LLC (MTP), All rights reserved.

Analytical Report

Client: Dominion Environmental Consultants
20045 Ninth Ave. Bldg. 7
Phoenix, AZ 85027

COC: 121929
Laboratory ID: 121929-1

Sampled By: Xin Lou
Project: Kyrene Sierra AZ1418.64
Location: -
-

Received Date: 12/26/2025
Approved Date: 12/26/2025
Scanned Date: 12/26/2025
Report Date: 12/29/2025

Client Sample ID: Hallway A
Amount: 24 L
Date Sampled: 12/23/2025
Sample Type: TDT AE587

MSX TDT Air Scan (Add)

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for the target compounds listed below.

General Notes

The reported Total Hydrocarbons represents the concentration of the hydrocarbons in the C9 to C12 range.

Compound	Sample Concentration	Reporting Limit	Additional Information
	ng/L	ng/L	
Total Hydrocarbons	110	20	

Compound	CAS	Sample Concentration		Reporting Limit	Additional Information
		ng/L	ppb	ng/L	
1,3,5-Trimethylbenzene	108-67-8	0.7	0.1	0.2	
1,2,4-Trimethylbenzene	95-63-6	1.9	0.4	0.2	

These results pertain only to this sample as it was collected and to the items reported.
These results have been reviewed and approved by the Laboratory Director or authorized representative.

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP)
2625 Denison Dr.
Mt. Pleasant, MI 48858
989-772-5088

Enthalpy Analytical-MTP (ID 166272) is accredited by the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC in the Industrial Hygiene accreditation program for GC-MS Field of Testing as documented by the Scope of Accreditation [Certificate](#) and associated Scope.

Client: Dominion Environmental Consultants
20045 Ninth Ave. Bldg. 7
Phoenix, AZ 85027
US

Sampled By: Xin Lou
Project: Kyrene Sierra AZ1418.64
Location: -
-

Client Sample ID: Hallway C
Sample Volume (L): 24.0
Date Sampled: 12/23/2025
Sample Type: TDT AO323
Sample Condition: Acceptable

Report Number: 121929

**Thank you for using
IAQ Commercial Survey!**
If you have questions about your report,
please contact your service provider who
performed this test.

Receive Date: 12/26/2025
Approve Date: 12/26/2025
Scan Date: 12/26/2025
Report Date: 12/29/2025

IAQ Commercial Survey™ is one of the most advanced, trusted air testing products on the market today for identifying chemical sources and active mold growth. Many indoor air quality (IAQ) issues identified by IAQ Commercial Survey can be easily remediated or eliminated. This test is an invaluable tool for improving air quality because it provides important information on potential contamination issues that cannot be detected by a visual inspection alone. Acting upon the information in this report will enable you to dramatically improve the air quality, creating a healthier environment.

Your Indoor Air Quality Report Summary

Your Indoor Air Quality Report has several sections describing different aspects of your air quality. A summary of this data is provided below, additional information and descriptions are included in the full report.

Total Volatile Organic Compounds (TVOC) Level

TVOC is a general indicator of the IAQ (see page 2).

 Total VOCs **230 ng/L**

Total Mold Volatile Organic Compounds (TMVOC) Level

TMVOC is an assessment of the actively growing mold (see page 3).

 Total MVOCs **< 3 ng/L**

Contamination Index (CI) Level

The CI shows the types of air-contaminating products and materials that are present in the sampled area (see pages 5 and 6). These levels are estimates based on common products and activities.

Building Sources

See page 5 for more detail.

N	Coatings (Paints, Varnishes, etc.)
N	PVC Cement
N	Building Materials-Toluene Based
N	Gasoline
N	Fuel Oil, Diesel Fuel, Kerosene
N	Light Hydrocarbons
N	Light Solvents

Occupant Sources

See page 6 for more detail.

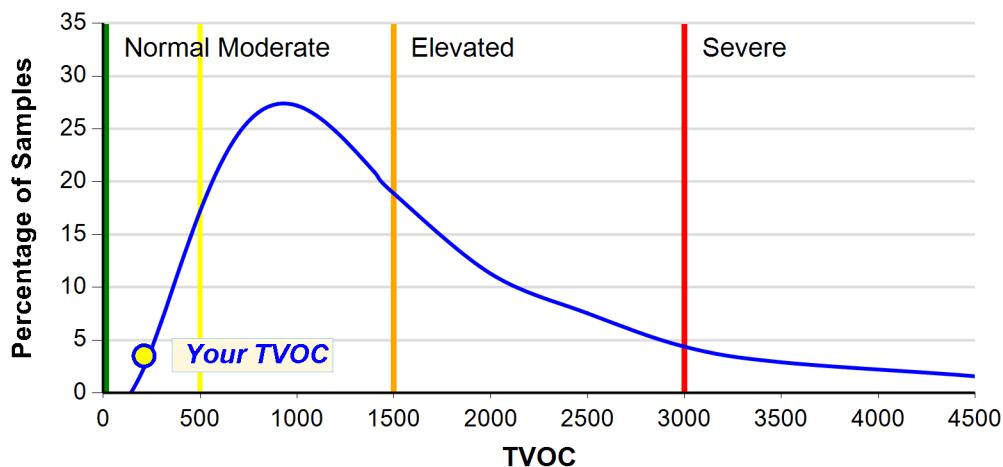
N	HFCs and CFCs (Freons™)
N	Personal Care and Cleaning Products
N	Odorants and Fragrances
N	Dry Cleaning Solvents

Note: Severity levels begin at Normal or Minimal and progress through Moderate, Elevated, High and/or Severe. The color progression from green to red indicates results that are increasingly atypical and suggest potentially higher risk.

All Severity classifications are based on empirical data and should not be taken as a pass/fail or conformance to a published specified limit.

Enthalpy Analytical, LLC (MTP), the creator of IAQ Home and Commercial Survey, has been performing air quality assessments to industry and environmental consultants since 1995. Enthalpy Analytical, LLC (MTP) (ID 166272) is accredited by the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC in the Industrial Hygiene accreditation program for GC-MS Field of Testing as documented by the Scope of Accreditation Certificate and associated Scope. This analysis references methods EPA TO-17 and ISO 16000-6, which fall within the Scope of Accreditation.

Total Volatile Organic Compound (TVOC) Summary


Your TVOC Level is: 230 ng/L

IAQ is acceptable for most individuals; chemically sensitive persons may require lower levels.

Your Indoor Air Quality Level (Highlighted)

Normal	Moderate	Elevated	Severe
< 500 ng/L	500 - 1500 ng/L	1500 - 3000 ng/L	> 3000 ng/L

All IAQ Survey TVOC Air Quality Indicator

The chart above shows the TVOC levels for all locations tested using IAQ Survey. Results for this air sample are displayed on the chart as a yellow circle. The blue curved line represents the relationship between the percentage of locations (indicated on the vertical y-axis) and the TVOC level (indicated on the horizontal x-axis). The green, yellow, orange, and red vertical bars represent divisions between Normal, Moderate, Elevated, and Severe TVOC levels. As the TVOC value increases, individuals may experience aggravated health problems, and therefore, the need to address VOC issues becomes more critical. However, reductions in VOCs can be made at any level.

No government or organization has specified a TVOC limit for indoor air. However, the U.S. Green Building Council (USGBC) has set 500 ng/L as the recommended TVOC limit.

In general:

- < 500 ng/L IAQ is acceptable for most individuals; however, chemically sensitive persons may require lower levels.
- 500 - 1,500 ng/L some effects on the occupants is possible.
- > 1,500 ng/L IAQ should be improved.

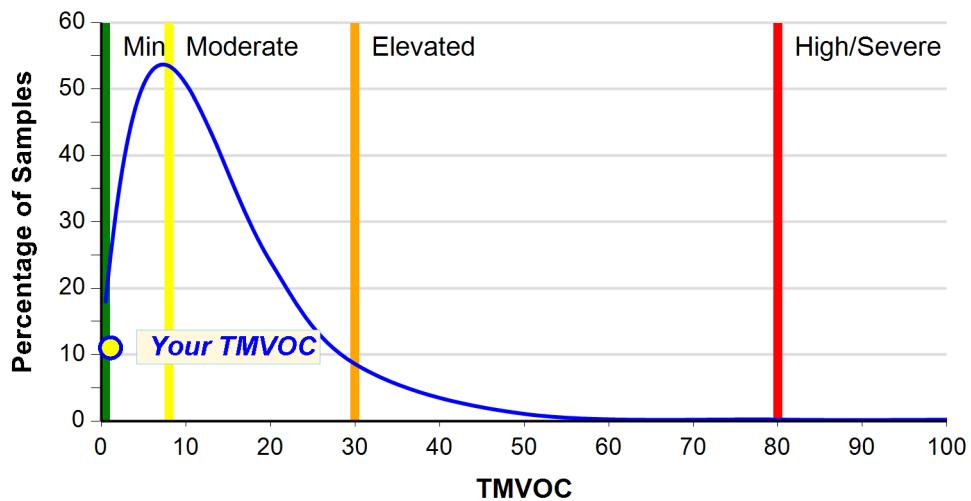
Note: These levels are based on observed health effects and have been determined from a combination of published data and the statistical distribution of TVOC concentrations from the IAQ Survey methodology.

The presence of chemicals in your indoor environment can cause a wide range of problems, from an unpleasant odor to physical symptoms (burning and irritation in the eyes, nose, and throat; headaches; nausea; nervous system effects; severe illness; etc.). Anyone with respiratory issues like asthma or allergies, as well as children, the elderly, and pregnant women are more susceptible to poor indoor air quality than healthy individuals.

Click [here](#) for more information about VOCs.

The Contamination Index (CI) in the next pages of this report will help guide you through determining what types of products or materials could be problematic for your IAQ, and will provide some recommendations to help reduce or eliminate them.

Total Mold Volatile Organic Compound (TMVOC) Summary


Your TMVOC Level is: < 3 ng/L

Actively growing molds may be present, but are at or below levels found in most homes and working environments.

Your Active Mold Level (Highlighted)

Minimal < 8 ng/L	Active- Moderate 8 - 30 ng/L	Active- Elevated 30-80 ng/L	Active- High 80 - 150 ng/L	Active- Severe > 150 ng/L
---------------------	------------------------------------	-----------------------------------	----------------------------------	---------------------------------

All IAQ Survey TMVOC Active Mold Growth Indicator

The average TMVOC is 10 ng/L

This chart represents the TMVOC distribution of over 45,000 samples. Approximately half the samples indicate that some active mold growth is occurring at the time of sample collection.

The chart above shows the TMVOC level for all locations tested using IAQ Survey. Results for this air sample are displayed on the chart as a yellow circle. The blue curved line represents the relationship between the percentage of locations (indicated on the vertical y-axis) and the TMVOC level (indicated on the horizontal x-axis). For example, a TMVOC of 20 ng/L is reported in ~20% of the samples. The green, yellow, orange, and red vertical bars represent divisions between Minimal, Moderate, Elevated, and High/Severe TMVOC levels.

Molds can be found anywhere in the indoor environment as long as there is a source of water or moisture. Molds produce spores, VOCs (during the metabolic or digestive processes of mold), and mycotoxins (typically when the mold is threatened).

This test detects only the VOCs produced by actively growing molds and does not represent spores or mycotoxins. The TMVOC value is the sum of a select set of VOCs emitted by most molds while growing (when mold is in an inactive or dormant state it does not produce many VOCs).

The presence of moisture is the primary factor in mold growth, controlling moisture and dampness is the only way to consistently control or limit mold growth.

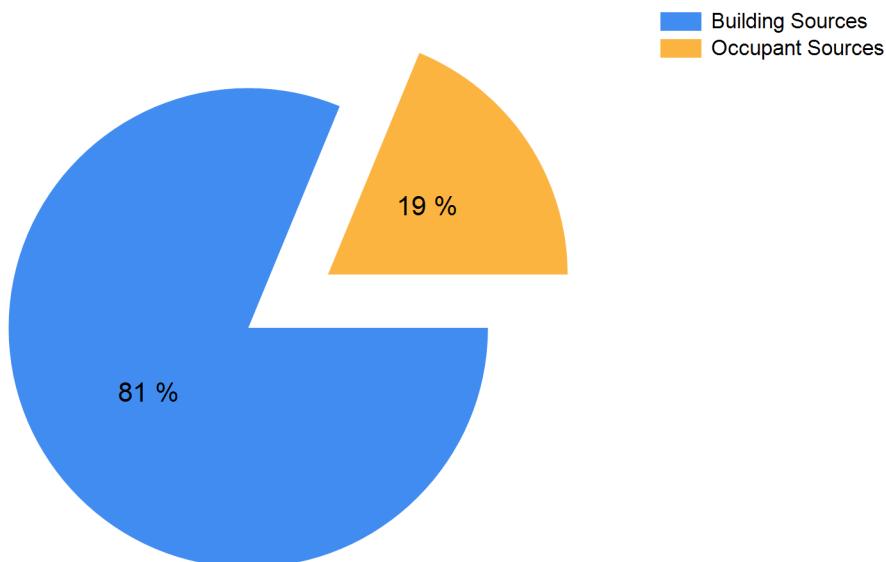
Click [here](#) for more information about molds and mold VOCs.

Contamination Index™

The Contamination Index™ (CI) shows the types of air-contaminating products and materials that are present in the sampled area. Each CI category shows the approximate contribution of that category to the TVOC level, indicates how your location compares to thousands of other locations, and provides some suggestions about which products and materials might be the source for the VOCs. The CI is divided into two main source groups: Building Sources and Occupant Sources.

1. Building Sources are those that are typically part of the structure of the building and may be more difficult to reduce in the short term. Recent construction or renovation often increases the CI categories in this group to the Elevated, High, or Severe levels. VOCs from these activities often decrease substantially in the month following use or application of these products, especially if the area is flushed with air to dissipate the VOCs off gassed from the new products or materials.

2. Occupant Sources are those that the occupants of the building bring into the building and can usually be more readily identified and remediated. Recent construction or renovation can often contribute to other source categories in addition to Building Sources.


It is possible for a category listed in one source group to belong to another source group. For example, the 'Coatings' category is in the Building Sources group because the largest contribution is typically the paint on the walls, but cans of paint stored in a basement or storage area could be considered part of the Occupant Sources group. Always consider all possible sources for a particular CI category.

The CI categories comprise the most common sources but other products or activities may be present that are not included in the CI. The values assigned to each category are approximations based on typical office and commercial spaces. Locations with additional or atypical sources may require additional investigation to determine the source of certain chemicals that are not accurately represented by the CI.

Since there are potentially many sources of VOCs, buildings can often be re-contaminated even after sources have been removed because new products are constantly being brought into the building. Occupants should take note of this fact, and view IAQ as a continuous improvement process.

The chart below depicts the distribution of the Contamination Index source groups. These source groups are estimates and may not indicate all of the VOCs in your air sample.

Contamination Index Source Groups

Contamination Index™ Building Sources

Use the Contamination Index (CI) below to help you find products and materials in the sampled area that may be affecting your indoor air quality. Removing or reducing these products will improve your air quality. The concentrations reported here are approximate and may not add up to the TVOC value on page 2 of this report. These categories are typically part of the structure of the building and may be more difficult to reduce in the short term. Recent construction or renovation will often cause these categories to be elevated. Increased ventilation will help to reduce VOCs from construction or renovation sources. Levels indicated as Elevated, High, or Severe should be addressed immediately, and those listed as Moderate are areas that can be improved over time.

Building Sources	Contamination Index Category	Estimated VOC Level (ng/L)	Severity	Source Prediction & Suggestions for VOC Reduction
	Coatings (Paints, Varnishes, etc.)	130	Normal	Includes interior and exterior paints (including low- or no-VOC paints), varnishes, lacquers, some sealants, and other products that can be classified as a coating over a surface. Typically, VOCs from these products are in the 10 to 14 carbon size range and can linger for several months after application, sometimes longer. Ventilate as much as possible during and after application of any of these products. Dispose of opened but unused products and related supplies if possible or store in areas that will minimize off gassing. Additional sources include fuel oil or diesel fuel.
	PVC Cement	0	Normal	PVC cement is used to join pieces of PVC pipe together, usually for plumbing.
	Building Materials-Toluene Based	0	Normal	Adhesives and glues used in construction and maintenance, arts and crafts; adhesive removers; contact cement; sealants; coatings (paint, polyurethane, lacquer, thinner); automotive products, including parts cleaners. Additional sources include gasoline and other fuels.
	Gasoline	21	Normal	VOCs from gasoline are typically a result of off-gassing from gas containers, small spills, and gas-powered equipment used in facilities maintenance in nearby garage or storage areas. Most vehicles in good operating condition do not emit gasoline vapors due to the tightly sealed gas tank. This category does not include exhaust emissions. Gasoline VOCs can linger on clothing after refueling at a gas station. Gasoline includes chemical compounds that are also included in the Light Solvents category.
	Fuel Oil, Diesel Fuel, Kerosene	0	Normal	Typically found in garages and facilities maintenance areas. These fuels are not very volatile so they will not readily get into the air, but they can linger for a long time and produce a strong, unpleasant odor. This category does not include exhaust emissions. Additional sources include coatings such as paints, varnishes, sealants, waxes, etc.
	Light Hydrocarbons	4	Normal	Building materials; aerosol cans; liquefied petroleum gas (LPG); refrigerant; natural gas; propellant; blowing agent. Includes chemical compounds such as propane, butane, and isobutane.
	Light Solvents	21	Normal	Stoddard solvent; mineral spirits; some coatings (paints, varnish, enamels, etc.); wax remover; adhesives; automotive products; light oils. Typically, VOCs from these products are in the 6 to 9 carbon size range.

Contamination Index™ Occupant Sources

Use the Contamination Index (CI) below to help you find products and materials in the sampled area that may be affecting your indoor air quality. Removing or reducing these products will improve your air quality. The concentrations reported here are approximate and may not add up to the TVOC value on page 2 of this report. These categories are typically brought into the building by the occupants and can often be readily identified and removed or contained. Levels indicated as Elevated, High, or Severe should be addressed immediately, and those listed as Moderate are areas that can be improved over time.

Occupant Sources

Contamination Index Category	Estimated VOC Level (ng/L)	Severity	Source Prediction & Suggestions for VOC Reduction
HFCs and CFCs (Freons™)	2	Normal	Most often used as refrigerants for air conditioners and refrigerator/freezers and propellants for blown-in insulation, cushions, aerosol cans, etc. Many of these chemical compounds are being phased out because of the Montreal Protocol.
Personal Care and Cleaning Products	25	Normal	Personal care products such as soap, deodorant, lotions, perfumes, hair coloring supplies, nail care supplies, oral hygiene products, etc. Cleaning agents such as surface, window, and flooring products, also restroom and antibacterial products. These products contain many VOCs that will dissipate if use is discontinued or reduced.
Odorants and Fragrances	13	Normal	Air fresheners, scented cleaning products, and scented personal care products.
Dry Cleaning Solvents	0	Normal	Typical dry-cleaning methods employ the use of carcinogenic chemicals. Dry-cleaning should be allowed to vent outside, without plastics bags, before being placed inside.

Significant VOCs

Based upon your specific air analysis, the chemical compounds listed below are significant contributors to the TVOC level reported on page 2 of your IAQ Commercial Survey Report or are indicative of specific types of products or problems. Compounds from a variety of chemical classes are represented here, although only the most common or most notable are specifically listed. These chemical compounds may come from a variety of sources as shown in the Contamination Index section of this report.

Locating and removing the source of the chemical compound is the most effective way to reduce the concentration of that chemical compound. If removing the source is not possible, try to contain it in some way (e.g., placing the source in an air-tight container when not in use). In addition, the ventilation system in some locations may not be optimized so evaluate the ventilation system and make adjustments to increase the amount of fresh air. Filter or purify re-circulated inside air to help reduce the TVOC. Since VOCs may continue to off-gas even when the sources are stored, ventilation and air-purification methods will need to be employed continuously in order to keep the VOC levels low.

The Chemical Abstracts Service (CAS) registry number after the chemical compound name in the table below is a unique identifier for that chemical compound and is often the best means to search for additional information. The two VOC levels in the table below (ng/L and ppb) are different ways of describing the same concentration, in some cases exposure limits or other information may be described using one or both of these concentration units.

Compound	CAS	Estimated VOC Level (ng/L)	Estimated VOC Level (ppb)	Description
Diethylene glycol ethyl ether	111-90-0	100	18	DEGMEE; Carbitol/Automotive fluids; cleaners; personal care products, especially hair products; paints and coatings

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ppb)	Odor Range (ppb)	Odor Description
Diethylene glycol ethyl ether	111-90-0	18	200 - 1,090	ethereal, mild, pleasant

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Listed below are those HAPs that were detected with the IAQ Commercial Survey VOC test. This list does not include all HAPs. The '<' (less than) symbol in the 'Estimated VOC Level' columns indicates the compound is below the reporting limit for this air sample and therefore can be considered absent from the air sample. For more information about HAPs visit the EPA [Air Toxics website](#). The exposure limits listed below can also be found in the [NIOSH Guide to Chemical Hazards](#). The HAPs in the table below may also be listed as Significant VOCs if the concentration of that chemical compound is greater than the threshold level for a Significant VOC.

Compound	CAS	Estimated VOC Level (ng/L)	Estimated VOC Level (ppb)	NIOSH Exposure Limit	Description
Toluene	108-88-3	2	0.5	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
m,p-Xylene	108-38-3; 106-42-3	1	0.2	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges

*These results pertain only to this sample as it was collected and to the items reported.
These results have been reviewed and approved by the Laboratory Director or approved representative.*

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Enthalpy Analytical, LLC (MTP), nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

© Copyright 2025, Enthalpy Analytical, LLC (MTP), All rights reserved.

Analytical Report

Client: Dominion Environmental Consultants
20045 Ninth Ave. Bldg. 7
Phoenix, AZ 85027

COC: 121929
Laboratory ID: 121929-2

Sampled By: Xin Lou
Project: Kyrene Sierra AZ1418.64
Location: -
-

Received Date: 12/26/2025
Approved Date: 12/26/2025
Scanned Date: 12/26/2025
Report Date: 12/29/2025

Client Sample ID: Hallway C
Amount: 24 L
Date Sampled: 12/23/2025
Sample Type: TDT AO323

MSX TDT Air Scan (Add)

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for the target compounds listed below.

General Notes

The reported Total Hydrocarbons represents the concentration of the hydrocarbons in the C9 to C12 range.

Compound	Sample Concentration	Reporting Limit	Additional Information
	ng/L	ng/L	
Total Hydrocarbons	150	20	

Quantitative Results

Compound	CAS	Sample Concentration		Reporting Limit	Additional Information
		ng/L	ppb	ng/L	
1,3,5-Trimethylbenzene	108-67-8	0.9	0.2	0.2	
1,2,4-Trimethylbenzene	95-63-6	2.6	0.5	0.2	

These results pertain only to this sample as it was collected and to the items reported.

These results have been reviewed and approved by the Laboratory Director or authorized representative.

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP)
2625 Denison Dr.
Mt. Pleasant, MI 48858
989-772-5088

Enthalpy Analytical-MTP (ID 166272) is accredited by the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC in the Industrial Hygiene accreditation program for GC-MS Field of Testing as documented by the Scope of Accreditation [Certificate](#) and associated Scope.

Client: Dominion Environmental Consultants
20045 Ninth Ave. Bldg. 7
Phoenix, AZ 85027
US

Sampled By: Xin Lou
Project: Kyrene Sierra AZ1418.64
Location: -
-

Client Sample ID: Classroom 3
Sample Volume (L): 24.0
Date Sampled: 12/23/2025
Sample Type: TDT AK581
Sample Condition: Acceptable

Report Number: 121929

**Thank you for using
IAQ Commercial Survey!**
If you have questions about your report,
please contact your service provider who
performed this test.

Receive Date: 12/26/2025
Approve Date: 12/26/2025
Scan Date: 12/26/2025
Report Date: 12/29/2025

IAQ Commercial Survey™ is one of the most advanced, trusted air testing products on the market today for identifying chemical sources and active mold growth. Many indoor air quality (IAQ) issues identified by IAQ Commercial Survey can be easily remediated or eliminated. This test is an invaluable tool for improving air quality because it provides important information on potential contamination issues that cannot be detected by a visual inspection alone. Acting upon the information in this report will enable you to dramatically improve the air quality, creating a healthier environment.

Your Indoor Air Quality Report Summary

Your Indoor Air Quality Report has several sections describing different aspects of your air quality. A summary of this data is provided below, additional information and descriptions are included in the full report.

Total Volatile Organic Compounds (TVOC) Level

TVOC is a general indicator of the IAQ (see page 2).

 Total VOCs **450 ng/L**

Total Mold Volatile Organic Compounds (TMVOC) Level

TMVOC is an assessment of the actively growing mold (see page 3).

 Total MVOCs **< 3 ng/L**

Contamination Index (CI) Level

The CI shows the types of air-contaminating products and materials that are present in the sampled area (see pages 5 and 6). These levels are estimates based on common products and activities.

Building Sources

See page 5 for more detail.

N	Coatings (Paints, Varnishes, etc.)
N	PVC Cement
N	Building Materials-Toluene Based
N	Gasoline
N	Fuel Oil, Diesel Fuel, Kerosene
N	Light Hydrocarbons
N	Light Solvents

Occupant Sources

See page 6 for more detail.

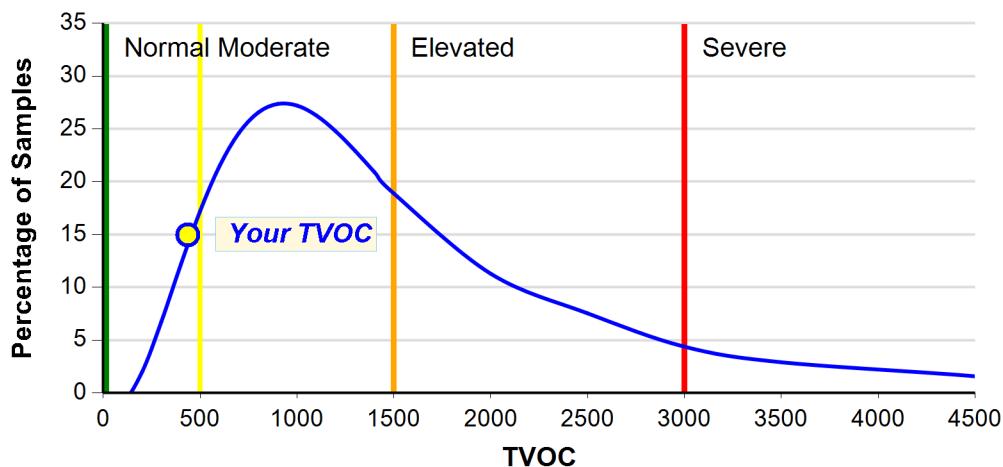
N	HFCs and CFCs (Freons™)
N	Personal Care and Cleaning Products
N	Odorants and Fragrances
N	Dry Cleaning Solvents

Note: Severity levels begin at Normal or Minimal and progress through Moderate, Elevated, High and/or Severe. The color progression from green to red indicates results that are increasingly atypical and suggest potentially higher risk.

All Severity classifications are based on empirical data and should not be taken as a pass/fail or conformance to a published specified limit.

Enthalpy Analytical, LLC (MTP), the creator of IAQ Home and Commercial Survey, has been performing air quality assessments to industry and environmental consultants since 1995. Enthalpy Analytical, LLC (MTP) (ID 166272) is accredited by the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC in the Industrial Hygiene accreditation program for GC-MS Field of Testing as documented by the Scope of Accreditation Certificate and associated Scope. This analysis references methods EPA TO-17 and ISO 16000-6, which fall within the Scope of Accreditation.

Total Volatile Organic Compound (TVOC) Summary


Your TVOC Level is: 450 ng/L

IAQ is acceptable for most individuals; chemically sensitive persons may require lower levels.

Your Indoor Air Quality Level (Highlighted)

Normal	Moderate	Elevated	Severe
< 500 ng/L	500 - 1500 ng/L	1500 - 3000 ng/L	> 3000 ng/L

All IAQ Survey TVOC Air Quality Indicator

The average TVOC is 1900 ng/L

This chart represents the TVOC distribution of over 45,000 samples. Over 80% of these samples indicate improvements in IAQ are necessary to achieve the goal of TVOC less than 500 ng/L.

The chart above shows the TVOC levels for all locations tested using IAQ Survey. Results for this air sample are displayed on the chart as a yellow circle. The blue curved line represents the relationship between the percentage of locations (indicated on the vertical y-axis) and the TVOC level (indicated on the horizontal x-axis). The green, yellow, orange, and red vertical bars represent divisions between Normal, Moderate, Elevated, and Severe TVOC levels. As the TVOC value increases, individuals may experience aggravated health problems, and therefore, the need to address VOC issues becomes more critical. However, reductions in VOCs can be made at any level.

No government or organization has specified a TVOC limit for indoor air. However, the U.S. Green Building Council (USGBC) has set 500 ng/L as the recommended TVOC limit.

In general:

- < 500 ng/L IAQ is acceptable for most individuals; however, chemically sensitive persons may require lower levels.
- 500 - 1,500 ng/L some effects on the occupants is possible.
- > 1,500 ng/L IAQ should be improved.

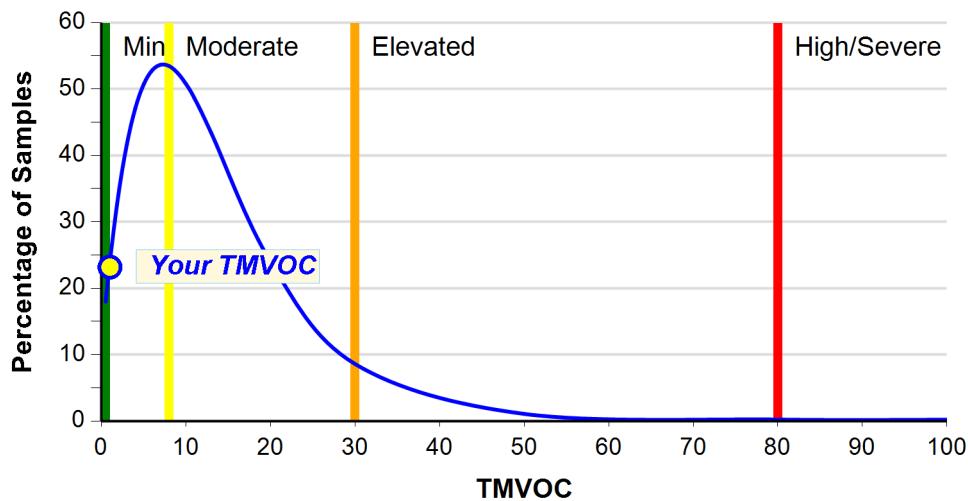
Note: These levels are based on observed health effects and have been determined from a combination of published data and the statistical distribution of TVOC concentrations from the IAQ Survey methodology.

The presence of chemicals in your indoor environment can cause a wide range of problems, from an unpleasant odor to physical symptoms (burning and irritation in the eyes, nose, and throat; headaches; nausea; nervous system effects; severe illness; etc.). Anyone with respiratory issues like asthma or allergies, as well as children, the elderly, and pregnant women are more susceptible to poor indoor air quality than healthy individuals.

Click [here](#) for more information about VOCs.

The Contamination Index (CI) in the next pages of this report will help guide you through determining what types of products or materials could be problematic for your IAQ, and will provide some recommendations to help reduce or eliminate them.

Total Mold Volatile Organic Compound (TMVOC) Summary


Your TMVOC Level is: < 3 ng/L

Actively growing molds may be present, but are at or below levels found in most homes and working environments.

Your Active Mold Level (Highlighted)

Minimal < 8 ng/L	Active- Moderate 8 - 30 ng/L	Active- Elevated 30-80 ng/L	Active- High 80 - 150 ng/L	Active- Severe > 150 ng/L
---------------------	------------------------------------	-----------------------------------	----------------------------------	---------------------------------

All IAQ Survey TMVOC Active Mold Growth Indicator

The average TMVOC is 10 ng/L

This chart represents the TMVOC distribution of over 45,000 samples. Approximately half the samples indicate that some active mold growth is occurring at the time of sample collection.

The chart above shows the TMVOC level for all locations tested using IAQ Survey. Results for this air sample are displayed on the chart as a yellow circle. The blue curved line represents the relationship between the percentage of locations (indicated on the vertical y-axis) and the TMVOC level (indicated on the horizontal x-axis). For example, a TMVOC of 20 ng/L is reported in ~20% of the samples. The green, yellow, orange, and red vertical bars represent divisions between Minimal, Moderate, Elevated, and High/Severe TMVOC levels.

Molds can be found anywhere in the indoor environment as long as there is a source of water or moisture. Molds produce spores, VOCs (during the metabolic or digestive processes of mold), and mycotoxins (typically when the mold is threatened).

This test detects only the VOCs produced by actively growing molds and does not represent spores or mycotoxins. The TMVOC value is the sum of a select set of VOCs emitted by most molds while growing (when mold is in an inactive or dormant state it does not produce many VOCs).

The presence of moisture is the primary factor in mold growth, controlling moisture and dampness is the only way to consistently control or limit mold growth.

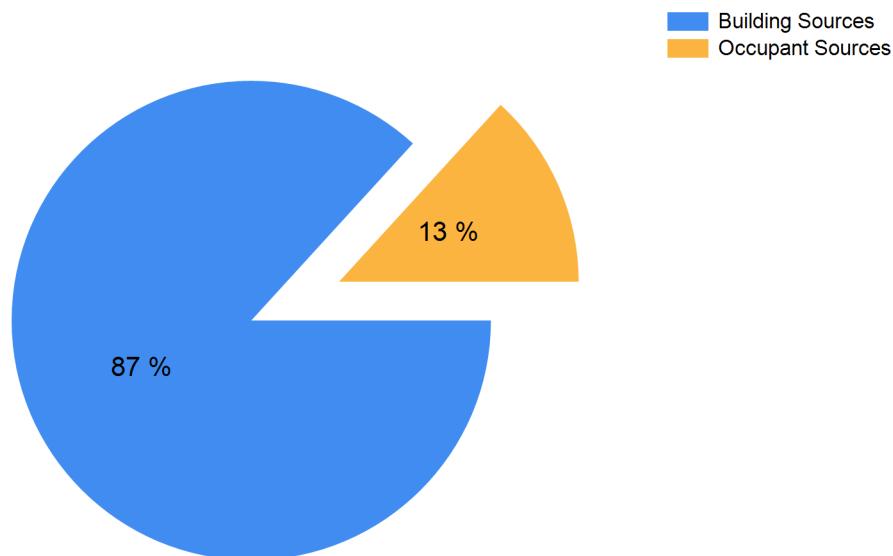
Click [here](#) for more information about molds and mold VOCs.

Contamination IndexTM

The Contamination IndexTM (CI) shows the types of air-contaminating products and materials that are present in the sampled area. Each CI category shows the approximate contribution of that category to the TVOC level, indicates how your location compares to thousands of other locations, and provides some suggestions about which products and materials might be the source for the VOCs. The CI is divided into two main source groups: Building Sources and Occupant Sources.

1. Building Sources are those that are typically part of the structure of the building and may be more difficult to reduce in the short term. Recent construction or renovation often increases the CI categories in this group to the Elevated, High, or Severe levels. VOCs from these activities often decrease substantially in the month following use or application of these products, especially if the area is flushed with air to dissipate the VOCs off gassed from the new products or materials.

2. Occupant Sources are those that the occupants of the building bring into the building and can usually be more readily identified and remediated. Recent construction or renovation can often contribute to other source categories in addition to Building Sources.


It is possible for a category listed in one source group to belong to another source group. For example, the 'Coatings' category is in the Building Sources group because the largest contribution is typically the paint on the walls, but cans of paint stored in a basement or storage area could be considered part of the Occupant Sources group. Always consider all possible sources for a particular CI category.

The CI categories comprise the most common sources but other products or activities may be present that are not included in the CI. The values assigned to each category are approximations based on typical office and commercial spaces. Locations with additional or atypical sources may require additional investigation to determine the source of certain chemicals that are not accurately represented by the CI.

Since there are potentially many sources of VOCs, buildings can often be re-contaminated even after sources have been removed because new products are constantly being brought into the building. Occupants should take note of this fact, and view IAQ as a continuous improvement process.

The chart below depicts the distribution of the Contamination Index source groups. These source groups are estimates and may not indicate all of the VOCs in your air sample.

Contamination Index Source Groups

Contamination Index™ Building Sources

Use the Contamination Index (CI) below to help you find products and materials in the sampled area that may be affecting your indoor air quality. Removing or reducing these products will improve your air quality. The concentrations reported here are approximate and may not add up to the TVOC value on page 2 of this report. These categories are typically part of the structure of the building and may be more difficult to reduce in the short term. Recent construction or renovation will often cause these categories to be elevated. Increased ventilation will help to reduce VOCs from construction or renovation sources. Levels indicated as Elevated, High, or Severe should be addressed immediately, and those listed as Moderate are areas that can be improved over time.

Building Sources	Contamination Index Category	Estimated VOC Level (ng/L)	Severity	Source Prediction & Suggestions for VOC Reduction
	Coatings (Paints, Varnishes, etc.)	230	Normal	Includes interior and exterior paints (including low- or no-VOC paints), varnishes, lacquers, some sealants, and other products that can be classified as a coating over a surface. Typically, VOCs from these products are in the 10 to 14 carbon size range and can linger for several months after application, sometimes longer. Ventilate as much as possible during and after application of any of these products. Dispose of opened but unused products and related supplies if possible or store in areas that will minimize off gassing. Additional sources include fuel oil or diesel fuel.
	PVC Cement	0	Normal	PVC cement is used to join pieces of PVC pipe together, usually for plumbing.
	Building Materials-Toluene Based	0	Normal	Adhesives and glues used in construction and maintenance, arts and crafts; adhesive removers; contact cement; sealants; coatings (paint, polyurethane, lacquer, thinner); automotive products, including parts cleaners. Additional sources include gasoline and other fuels.
	Gasoline	33	Normal	VOCs from gasoline are typically a result of off-gassing from gas containers, small spills, and gas-powered equipment used in facilities maintenance in nearby garage or storage areas. Most vehicles in good operating condition do not emit gasoline vapors due to the tightly sealed gas tank. This category does not include exhaust emissions. Gasoline VOCs can linger on clothing after refueling at a gas station. Gasoline includes chemical compounds that are also included in the Light Solvents category.
	Fuel Oil, Diesel Fuel, Kerosene	0	Normal	Typically found in garages and facilities maintenance areas. These fuels are not very volatile so they will not readily get into the air, but they can linger for a long time and produce a strong, unpleasant odor. This category does not include exhaust emissions. Additional sources include coatings such as paints, varnishes, sealants, waxes, etc.
	Light Hydrocarbons	5	Normal	Building materials; aerosol cans; liquefied petroleum gas (LPG); refrigerant; natural gas; propellant; blowing agent. Includes chemical compounds such as propane, butane, and isobutane.
	Light Solvents	41	Normal	Stoddard solvent; mineral spirits; some coatings (paints, varnish, enamels, etc.); wax remover; adhesives; automotive products; light oils. Typically, VOCs from these products are in the 6 to 9 carbon size range.

Contamination Index™ Occupant Sources

Use the Contamination Index (CI) below to help you find products and materials in the sampled area that may be affecting your indoor air quality. Removing or reducing these products will improve your air quality. The concentrations reported here are approximate and may not add up to the TVOC value on page 2 of this report. These categories are typically brought into the building by the occupants and can often be readily identified and removed or contained. Levels indicated as Elevated, High, or Severe should be addressed immediately, and those listed as Moderate are areas that can be improved over time.

Occupant Sources

Contamination Index Category	Estimated VOC Level (ng/L)	Severity	Source Prediction & Suggestions for VOC Reduction
HFCs and CFCs (Freons™)	2	Normal	Most often used as refrigerants for air conditioners and refrigerator/freezers and propellants for blown-in insulation, cushions, aerosol cans, etc. Many of these chemical compounds are being phased out because of the Montreal Protocol.
Personal Care and Cleaning Products	22	Normal	Personal care products such as soap, deodorant, lotions, perfumes, hair coloring supplies, nail care supplies, oral hygiene products, etc. Cleaning agents such as surface, window, and flooring products, also restroom and antibacterial products. These products contain many VOCs that will dissipate if use is discontinued or reduced.
Odorants and Fragrances	23	Normal	Air fresheners, scented cleaning products, and scented personal care products.
Dry Cleaning Solvents	0	Normal	Typical dry-cleaning methods employ the use of carcinogenic chemicals. Dry-cleaning should be allowed to vent outside, without plastics bags, before being placed inside.

Significant VOCs

Based upon your specific air analysis, the chemical compounds listed below are significant contributors to the TVOC level reported on page 2 of your IAQ Commercial Survey Report or are indicative of specific types of products or problems. Compounds from a variety of chemical classes are represented here, although only the most common or most notable are specifically listed. These chemical compounds may come from a variety of sources as shown in the Contamination Index section of this report.

Locating and removing the source of the chemical compound is the most effective way to reduce the concentration of that chemical compound. If removing the source is not possible, try to contain it in some way (e.g., placing the source in an air-tight container when not in use). In addition, the ventilation system in some locations may not be optimized so evaluate the ventilation system and make adjustments to increase the amount of fresh air. Filter or purify re-circulated inside air to help reduce the TVOC. Since VOCs may continue to off-gas even when the sources are stored, ventilation and air-purification methods will need to be employed continuously in order to keep the VOC levels low.

The Chemical Abstracts Service (CAS) registry number after the chemical compound name in the table below is a unique identifier for that chemical compound and is often the best means to search for additional information. The two VOC levels in the table below (ng/L and ppb) are different ways of describing the same concentration, in some cases exposure limits or other information may be described using one or both of these concentration units.

Compound	CAS	Estimated VOC Level (ng/L)	Estimated VOC Level (ppb)	Description
Diethylene glycol ethyl ether	111-90-0	62	11	DEGMEE; Carbitol/Automotive fluids; cleaners; personal care products, especially hair products; paints and coatings
Decane (C 10)	124-18-5	17	3	Gasoline; diesel, fuel oil, kerosene; solvent; paints and coatings

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ppb)	Odor Range (ppb)	Odor Description
Diethylene glycol ethyl ether	111-90-0	11	200 - 1,090	ethereal, mild, pleasant

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Listed below are those HAPs that were detected with the IAQ Commercial Survey VOC test. This list does not include all HAPs. The '<' (less than) symbol in the 'Estimated VOC Level' columns indicates the compound is below the reporting limit for this air sample and therefore can be considered absent from the air sample. For more information about HAPs visit the EPA [Air Toxics website](#). The exposure limits listed below can also be found in the [NIOSH Guide to Chemical Hazards](#). The HAPs in the table below may also be listed as Significant VOCs if the concentration of that chemical compound is greater than the threshold level for a Significant VOC.

Compound	CAS	Estimated VOC Level (ng/L)	Estimated VOC Level (ppb)	NIOSH Exposure Limit	Description
Toluene	108-88-3	2	0.6	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
m,p-Xylene	108-38-3; 106-42-3	2	0.4	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges

*These results pertain only to this sample as it was collected and to the items reported.
These results have been reviewed and approved by the Laboratory Director or approved representative.*

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Enthalpy Analytical, LLC (MTP), nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

© Copyright 2025, Enthalpy Analytical, LLC (MTP), All rights reserved.

Analytical Report

Client: Dominion Environmental Consultants
20045 Ninth Ave. Bldg. 7
Phoenix, AZ 85027

COC: 121929
Laboratory ID: 121929-3

Sampled By: Xin Lou
Project: Kyrene Sierra AZ1418.64
Location: -
-

Received Date: 12/26/2025
Approved Date: 12/26/2025
Scanned Date: 12/26/2025
Report Date: 12/29/2025

Client Sample ID: Classroom 3
Amount: 24 L
Date Sampled: 12/23/2025
Sample Type: TDT AK581

MSX TDT Air Scan (Add)

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for the target compounds listed below.

General Notes

The reported Total Hydrocarbons represents the concentration of the hydrocarbons in the C9 to C12 range.

Compound	Sample Concentration	Reporting Limit	Additional Information
	ng/L	ng/L	
Total Hydrocarbons	320	20	

Quantitative Results

Compound	CAS	Sample Concentration		Reporting Limit	Additional Information
		ng/L	ppb	ng/L	
1,3,5-Trimethylbenzene	108-67-8	2.4	0.5	0.2	
1,2,4-Trimethylbenzene	95-63-6	7.1	1.4	0.2	

These results pertain only to this sample as it was collected and to the items reported.

These results have been reviewed and approved by the Laboratory Director or authorized representative.

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP)
2625 Denison Dr.
Mt. Pleasant, MI 48858
989-772-5088

Enthalpy Analytical-MTP (ID 166272) is accredited by the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC in the Industrial Hygiene accreditation program for GC-MS Field of Testing as documented by the Scope of Accreditation [Certificate](#) and associated Scope.

2625 Denison Drive, Suite D, Mt. Pleasant, MI 48858
T: 616-292-2222

10-385-112-J066
Email: mtpinfo@enthalpy.com

www.enthalpy.com

IAQ Home Survey™ | **IAQ Commercial Survey™**

COC No. 121929

Enthalpy Use Only—Do Not Fill In

CONTACT INFORMATION	
Sampling Professional:	Xin Lan
Company:	Dominion EnviroNet
Billing Address:	
Phone:	602-810-8897
Email:	Xin.Lan@dominion-env.com

It is important to fill out all information so your results can be correctly calculated and returned to you.

Please kindly let me know if you have any requests or any other comments by checking the box at bottom of page.

*Required Field - Please Write Legibly

LOCATION TESTED	Project Name: <i>Kyrene Sierra</i>
Address:	Project No. <i>A2 148.64</i>

Sample Information							Analysis Requested*		Sample Name
Sample Number Use Only	Tube Number* Ex: AA123	Date Collected*	Pump Start Time*	Pump Stop Time*	Temperature	Humidity	Residential	Commercial	
1	NE587	12/23/25	0921	1121					A2-IAQHSB (IAQHS - Basic)
2	A0323	12/23/25	0922	1122					A2-IAQHSP (IAQHS - Predict)
3	AK581	12/23/25	0923	1123					A14-IAQHSF (Formaldehyde) *Max. 30 min. sample*
									A2-IAQCSB (IAQCS - Basic)
									A2-IAQCSF (Formaldehyde) *Max. 30 min. sample*
									A2-TSC (Tobacco Smoke)
									Trimethylbenzene A2-MSXADP Stoddard Solvent A2-MSXADP
									Note: Briefly describe the actual sample collection location. Ex. Kitchen
									Holloway A Holloway C Classroom 3

Location, notes, and comments about testing

Sample Condition: OK OK See Notes
OK See Notes

Sample Configuration: OK See Notes
Box Condition:
Carrier: ECE
12/26 per RSL, replication analysis ~~done~~ on DDC# 121699. Method = 1,2,4, and 1,3,5 Trimethylbenzene and TPH C9-C12 on 12/26/25

Turn Around Time (TAT):	
STD: Within 2 business days of receipt for Basic, Predict, Formaldehyde, Within 5 business days for TSC, STD is default.	
1 BD: 1 Business Day (2x \$)	
Requested Service: <input type="checkbox"/> Standard <input checked="" type="checkbox"/> 1 BD <small>Note: STD is default</small>	
Received By:	J. Miller (At lab)
Date:	12/23/2015
Time:	1406
Sent By:	L. S. 12P

[Item: IAQS-COC-20-124]

Retention of records is seven years. Records older than seven years will be destroyed without notification. Unless otherwise agreed in writing, these services are provided pursuant to the terms and conditions as set forth at [enthalpy.com/terms-and-conditions](#). Enthalpy's acceptance of this order is expressly limited to these terms and conditions.