| Name: |  |
|-------|--|
| Name. |  |

# **AP Chemistry Summer Assignment**

Welcome to AP Chemistry! To ensure the best start for everyone next fall, we have prepared a summer assignment that reviews basic chemistry concepts. To be successful in AP chemistry, you must remember many concepts from regents' chemistry. Unfortunately, we do not have time in the fall to review all the concepts, which is why this summer assignment is important to your success in this course. Please have the summer assignment completed for the first day of school. Index cards are a great way to help you memorize the intermolecular forces, polyatomic ions, and solubility rules.

## Memorize the following Intermolecular Forces

|                          | Force                  | Model        | Energy<br>(kJ/mol) | Example                             |
|--------------------------|------------------------|--------------|--------------------|-------------------------------------|
|                          | Ion-dipole             | ·····        | 40-600             | Na+····O                            |
| i.                       | H bond                 | -A-H·····:B- | 10-40              | :Ö—н;Ö—н                            |
| (1)<br>(2)<br>(3)<br>(4) | Dipole-dipole          | <b></b>      | 5-25               | I-CII-CI                            |
| oo<br>C                  | Ion-induced dipole     | <b></b>      | 3–15               | Fe <sup>2+</sup> ····O <sub>2</sub> |
|                          | Dipole-induced dipole  |              | 2-10               | H-CI····CI-CI                       |
|                          | Dispersion<br>(London) | <b></b>      | 0.05-40            | F-F···F-F                           |

# Memorize the polyatomic ions

| +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHARGE                                  |                                | -1 CHARGE            |                                              | -2 CHARGE          | -3 C                                    | HARGE                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|----------------------|----------------------------------------------|--------------------|-----------------------------------------|-----------------------------------------|
| ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | name                                    | ion                            | name                 | ion                                          | name               | ion                                     | name                                    |
| NH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ammonium                                | H <sub>2</sub> PO <sub>4</sub> | dihydrogen phosphate | HPO <sub>4</sub> <sup>2</sup>                | hydrogen phosphate | PO <sub>4</sub> <sup>3</sup>            | phosphate                               |
| $H_3O^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hydronium                               | HCO <sub>3</sub>               | hydrogen carbonate   | CO <sub>3</sub> <sup>2</sup> ·               | carbonate          | AsO <sub>4</sub> 3-                     | arsenate                                |
| $Hg_2^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mercury I                               | HSO <sub>3</sub>               | hydrogen sulfite     | SO <sub>3</sub> <sup>2-</sup>                | sulfite            |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | HSO <sub>4</sub>               | hydrogen sulfate     | SO <sub>4</sub> <sup>2-</sup>                | sulfate            |                                         | -                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** | $NO_2^-$                       | nitrite              | $S_2O_3^{-2}$                                | thiosulfate        | <u> </u>                                | *                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ************************************  | NO <sub>3</sub> *              | nitrate              | SiO <sub>3</sub> <sup>2</sup>                | silicate           |                                         |                                         |
| p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *************************************** | OH                             | hydroxide            | C2O42*                                       | oxalate            | <u> </u>                                | *************************************** |
| personal annual de la constantion de la constant |                                         | CH <sub>3</sub> COO            | acetate              | CrO <sub>4</sub> <sup>2-</sup>               | chromate           | <u> </u>                                |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** | CN <sup>*</sup>                | cyanide              | Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> | dichromate         |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | CNO.                           | cyanate              | MoO <sub>4</sub> <sup>2</sup>                | molybdate          | <u></u>                                 |                                         |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | CNS                            | thiocyanate          | $O_2^{2-}$                                   | peroxide           | <u> </u>                                | , ,                                     |
| 900000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | $O_2^*$                        | superoxide           |                                              |                    |                                         | · jan                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | MnO <sub>4</sub> "             | permanganate         |                                              |                    | *************************************** |                                         |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | C10°                           | hypochlorite         |                                              |                    |                                         | *                                       |
| 90 <b>93</b> 00000 (99909 NITHOUS AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | ClO <sub>2</sub> -             | chlorite             |                                              |                    | *************************************** |                                         |
| 2004-200-00-00-00-00-00-00-00-00-00-00-00-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ClO <sub>3</sub>               | chlorate             |                                              |                    |                                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ClO <sub>4</sub>               | perchlorate          | <u></u>                                      |                    | <u> </u>                                |                                         |
| ,0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | BrO <sub>3</sub>               | bromate              | ***************************************      |                    | ·                                       |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** | IO <sub>3</sub>                | iodate               |                                              |                    | <u></u>                                 | ·                                       |

# Memorize the solubility rules.

| Ions That Form<br>Soluble Compounds                        | Exceptions                                                                                                           | Ions That Form Insoluble Compounds*        | Exceptions                                                                                                 |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Group 1 ions<br>(Li*, Na*, etc.)                           |                                                                                                                      | carbonate (CO <sub>3</sub> <sup>2-</sup> ) | when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$                                            |
| ammonium $(\mathrm{NH_4}^+)$                               |                                                                                                                      | chromate (CrO <sub>4</sub> <sup>2</sup> -) | when combined with Group 1                                                                                 |
| nitrate (NO <sub>3</sub> -)                                |                                                                                                                      |                                            | ions, Ca <sup>2+</sup> , Mg <sup>2+</sup> , or<br>ammonium (NH <sub>4</sub> +)                             |
| acetate ( $\mathrm{C_2H_3O_2^-}$ or $\mathrm{CH_3COO^-}$ ) |                                                                                                                      | phosphate (PO <sub>4</sub> <sup>3-</sup> ) | when combined with Group 1 ions or ammonium (NH <sub>4</sub> +)                                            |
| hydrogen carbonate (HCO <sub>3</sub> <sup>-</sup> )        |                                                                                                                      | sulfide (S <sup>2-</sup> )                 | when combined with Group 1 ions or ammonium (NH <sub>4</sub> +)                                            |
| chlorate ( $ClO_3^-$ )                                     |                                                                                                                      | hydroxide (OH-)                            | when combined with Group 1                                                                                 |
| halides (Cl-, Br-, I-)                                     | when combined with Ag <sup>+</sup> , Pb <sup>2+</sup> , or Hg <sub>2</sub> <sup>2+</sup>                             |                                            | ions, Ca <sup>2+</sup> , Ba <sup>2+</sup> , Sr <sup>2+</sup> , or ammonium (NH <sub>4</sub> <sup>+</sup> ) |
| sulfates (SO <sub>4</sub> <sup>2-</sup> )                  | when combined with Ag <sup>+</sup> ,<br>Ca <sup>2+</sup> , Sr <sup>2+</sup> , Ba <sup>2+</sup> , or Pb <sup>2+</sup> | *compounds having very low                 | solubility in H <sub>2</sub> O                                                                             |

| Complete the following worksheets. If you are struggling, YouTube is a great resource. I recommend watching Jermery Krug's AP Chemistry Unit 0 videos. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Significant Digits                                                                                                                                     |
| Round the following numbers to three significant digits.                                                                                               |
| a) 0.04500 =                                                                                                                                           |
| b) 0.0288714 =                                                                                                                                         |
| c) 1.0 =                                                                                                                                               |
| d) 2,988,300 =                                                                                                                                         |
| e) 0.999 =                                                                                                                                             |
| f) 96,485 =                                                                                                                                            |
| Conversions with S.I Prefixes                                                                                                                          |
| Make the following conversions to the correct number of significant digits.                                                                            |
| a) 940 mL toL                                                                                                                                          |
| b) 0.0038 L to mL                                                                                                                                      |
| c) 25mL to L                                                                                                                                           |

d) 5.75 mL to \_\_\_\_\_ L

e) 0.48 L to \_\_\_\_\_ mL

f) 0.0034 m to \_\_\_\_\_\_nm

g) 728 nm to \_\_\_\_\_ m

h) 210 nm to \_\_\_\_\_ m

i) 0.000048 m to \_\_\_\_\_\_nm

Percent Error 
$$\% = \frac{\textit{Measured-Accepted}}{\textit{Accepted}} \times 100$$

Percent Yield 
$$\% = \frac{Actual}{Theoritical} \times 100$$

a) A student calculates the density of an aluminum block to be 2.64 g/cm³. The accepted value is 2.70 g/cm³. Perform a quantitative analysis. (Percent Error)

**b)** The density of mercury metal is 13.6 g/mL. The student experimentally measured the mass of a 5.40 mL piece of metal to have a mass of 76.5 grams. Using the density formula, determine the student's percent error for the mass of the meta.

c) The student determines the theoretical yield of salt produced from the decomposition of baking soda to be 3.20 grams. After running the experiment, the mass of salt produced was 3.10 grams. Calculate the student's percent yield.

### Gram Formula Mass and Mole Calculations

| Stattific | official rioss and riote Catcutations.                                              |
|-----------|-------------------------------------------------------------------------------------|
| Calculat  | te the following gram formula masses using the AP Periodic Table. Do not round off. |
| a) H      | H <sub>2</sub> O                                                                    |
| b) C      | CO <sub>2</sub>                                                                     |
| c) N      | laCl                                                                                |
| d) A      | N <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub>                                      |
| Jsing th  | e gfms from above, perform the following calculations.                              |
| a) H      | low many moles of water are in 100.0 grams of water.                                |
|           | •                                                                                   |
|           |                                                                                     |
| b) H      | low many grams are in 5.00 x 10³ moles of carbon dioxide.                           |
|           |                                                                                     |
|           |                                                                                     |
| c) H      | low many moles of sodium chloride are in 25.0 grams of sodium chloride?             |
|           |                                                                                     |
|           |                                                                                     |
|           |                                                                                     |

d) How many moles of aluminum atoms are in 500.0 grams of aluminum sulfate?

# Stoichiometry

Balance the following equation below. Once balanced, use the chemical equation to answer questions a)-d). Answer all questions to the correct number of significant digits.

$$\underline{\qquad}$$
 KClO<sub>3</sub>  $\rightarrow$   $\underline{\qquad}$  KCl +  $\underline{\qquad}$  O<sub>2</sub>

a) Determine the moles of oxygen gas produced if 0.250 mol of potassium chlorate undergoes complete decomposition.

b) Calculate the mass of potassium chlorate that would need to produce 0.500 mol of potassium chloride.

c) If 245.1 g of potassium chlorate decomposes completely, find the mass in grams of oxygen gas that would be produced.

d) How many grams of potassium chloride are produced when 450.0 grams of potassium chlorate are decomposed?

| e) | Calculate the moles of oxygen atoms found in 45.0 g of water.                                                                                                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f) | If 45.0 g of water are decomposed, how many moles of hydrogen gas are produced?                                                                                        |
| g) | Determine the number of moles of magnesium is found in 171.07 grams of magnesium phosphate?                                                                            |
|    | ce the following combustion reaction. Once balanced, use the chemical equation to answer ions h)-i). Answer all questions to the correct number of significant digits. |
| h) | C_6 $H_{12}$ +O_2 $\rightarrow$ $H_2O$ +CO_2<br>How many moles of oxygen gas are needed to make 5.00 kg of carbon dioxide?                                             |
| i) | How many g of $C_6H_{12}$ are needed to make 150.0 moles of water?                                                                                                     |

# Concentration

| Answer the following questions to the correct number of significant d | igits. |
|-----------------------------------------------------------------------|--------|
|-----------------------------------------------------------------------|--------|

| a)  | Calculate the molarity of a solution that is made by dissolving 14.61 g of sodium chloride in 150.0 mL of water.                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                        |
| b)  | Determine the concentration in mol/L of K $^+$ (aq) when 178.5 g of KBr(s) is dissolved in 500.0 mL of water.                                          |
|     |                                                                                                                                                        |
| c)  | Determine the molarity of lithium ions if 95.0 grams of lithium sulfide are dissolved in 500.0 mL of water.                                            |
|     |                                                                                                                                                        |
| -11 |                                                                                                                                                        |
| a)  | A sample of seawater contains 8.50 g of sodium chloride per liter of solution. How many grams of sodium chloride would be in 15.0 mL of this solution? |
|     |                                                                                                                                                        |

# Nomenclature

| Provid | le names for the following ionic compounds.                       |
|--------|-------------------------------------------------------------------|
| a)     | AlF <sub>3</sub>                                                  |
| b)     | Fe(OH) <sub>2</sub>                                               |
| c)     | Cu(NO <sub>3</sub> ) <sub>2</sub>                                 |
| d)     | Li <sub>3</sub> PO <sub>4</sub>                                   |
| e)     | $Cr_2O_3$                                                         |
| f)     | ZnSO <sub>4</sub>                                                 |
| g)     | Agl                                                               |
| Write  | the chemical formulas for the following ionic compounds.          |
| a)     | Ammonium chloride                                                 |
| b)     | Lead (IV) sulfide                                                 |
| c)     | Sodium peroxide                                                   |
| d)     | Iron (III) carbonate                                              |
| e)     | Silver chloride                                                   |
| f)     | Zinc oxide                                                        |
| g)     | Sodium perchlorate                                                |
| Write  | the name or chemical formula for each of the following molecules. |
| a)     | Hydrogen gas                                                      |
| b)     | Dinitrogen tetroxide                                              |
| c)     | Carbon monoxide                                                   |
| d)     | SF <sub>6</sub>                                                   |
| e)     | Oxygen gas                                                        |
| f)     | Ammonia                                                           |
| g)     | CO <sub>2</sub>                                                   |

# **Constructing Lewis Structures**

| Chemical Formula | Lewis Structure | Shape |
|------------------|-----------------|-------|
| F <sub>2</sub>   |                 |       |
| O <sub>2</sub>   |                 |       |
| N <sub>2</sub>   |                 |       |
| H₂O              |                 |       |
| NH₃              |                 |       |
| CH₄              |                 |       |
| CO <sub>2</sub>  |                 | ,     |

### AP® CHEMISTRY EQUATIONS AND CONSTANTS, EFFECTIVE 2025

| UNIT SYMBO             | LS    |
|------------------------|-------|
| gram,                  | g     |
| mole,                  | mol   |
| liter,                 | L     |
| meter,                 | m     |
| second,                | S     |
| hertz,                 | Hz    |
| atmosphere,            | atm   |
| millimeter of mercury, | mm Hg |
| degree Celsius,        | °C    |
| Kelvin,                | K     |
| joule,                 | J     |
| volt,                  | V     |
| coulomb,               | С     |
| ampere,                | A     |

| UNIT CONVERSIONS                                                |
|-----------------------------------------------------------------|
| 1 hertz = $1 \text{ s}^{-1}$                                    |
| 1 atm = 760 mm Hg = 760 torr                                    |
| $K = {}^{\circ}C + 273.15$                                      |
| $1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$    |
| $1 \text{ ampere} = \frac{1 \text{ coulomb}}{1 \text{ second}}$ |

| MET              | RIC PREF | TIXES  |
|------------------|----------|--------|
| Factor           | Prefix   | Symbol |
| 109              | giga     | G      |
| 10 <sup>6</sup>  | mega     | М      |
| 10 <sup>3</sup>  | kilo     | k      |
| 10 <sup>-2</sup> | centi    | С      |
| $10^{-3}$        | milli    | m      |
| 10 <sup>-6</sup> | micro    | μ      |
| 10 <sup>-9</sup> | nano     | n      |
| 10-12            | pico     | р      |

### ATOMIC STRUCTURE

$$E = hv$$

$$c = \lambda v$$

$$F_{coulombic} \propto \frac{q_1 q_2}{r^2}$$

E = energy

v = frequency

 $\lambda$  = wavelength

F = force

q = charge

r = separation

Planck's constant,  $h = 6.626 \times 10^{-34} \text{ J s}$ 

Speed of light,  $c = 2.998 \times 10^{8} \text{ m s}^{-1}$ 

Avogadro's number =  $6.022 \times 10^{23} \text{ mol}^{-1}$ 

### GASES, LIQUIDS, AND SOLUTIONS

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$PV = nRT$$

$$P_A = P_{\text{total}} \times X_A$$
, where  $X_A = \frac{\text{moles A}}{\text{total moles}}$ 

$$P_{\text{total}} = P_{\text{A}} + P_{\text{B}} + P_{\text{C}} + \dots$$

$$n = \frac{m}{M}$$

$$D = \frac{m}{V}$$

$$KE = \frac{1}{2}mv^2$$

$$M = \frac{n_{solute}}{L_{solution}}$$

$$A = \varepsilon bc$$

P = pressure

V = volume

T = temperature

n = number of moles

X = mole fraction

m = mass

M = molar mass

D = density

KE = kinetic energy

v = velocity

M = molarity

A = absorbance

 $\varepsilon$  = molar absorptivity

b = path length

c = concentration

Gas constant,  $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ 

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ 

STP = 273.15 K and 1.0 atm

Ideal gas at STP =  $22.4 \text{ L mol}^{-1}$ 

#### KINETICS

$$[A]_{t} - [A]_{0} = -kt$$

$$\ln[A]_{t} - \ln[A]_{0} = -kt$$

$$\frac{1}{[A]_{t}} - \frac{1}{[A]_{0}} = kt$$

$$t_{1/2} = \frac{0.693}{k}$$

$$k = \text{rate constant}$$

$$t = time$$

$$t_{1/2}$$
 = half-life

# **EQUILIBRIUM**

$$K_c = \frac{[\mathbf{C}]^c[\mathbf{D}]^d}{[\mathbf{A}]^a[\mathbf{B}]^b}$$
, where  $a \mathbf{A} + b \mathbf{B} \iff c \mathbf{C} + d \mathbf{D}$ 

$$K_p = \frac{(P_{\rm C})^c (P_{\rm D})^d}{(P_{\rm A})^a (P_{\rm B})^b}$$

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$
 at 25°C

$$pK_w = 14 = pH + pOH \text{ at } 25^{\circ}C$$

$$pH = -\log[H_3O^+],$$

$$pOH = -log[OH^{-}]$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}, \qquad K_b = \frac{[OH^-][HB^+]}{[B]}$$

$$K_h = \frac{[\mathrm{OH}^-][\mathrm{HB}^+]}{[\mathrm{B}]}$$

$$pK_a = -\log K_a$$

$$pK_h = -\log K_h$$

$$K_{10} = K_a \times K_b$$

$$pK_w = pK_a + pK_b$$

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

# Equilibrium Constants

K<sub>c</sub> (molar concentrations)

 $K_p$  (gas pressures)

 $K_{w}$  (water)

 $K_n$  (acid)

 $K_h$  (base)

# THERMODYNAMICS/ELECTROCHEMISTRY

$$q = mc\Delta T$$

$$\Delta H_{reaction}^{\circ} = \sum \Delta H_{f\ products}^{\circ} - \sum \Delta H_{f\ reactants}^{\circ}$$

$$\Delta S_{reaction}^{\circ} = \sum S_{products}^{\circ} - \sum S_{reactants}^{\circ}$$

$$\Delta G_{reaction}^{\circ} = \sum \Delta G_{f \ products}^{\circ} - \sum \Delta G_{f \ reactants}^{\circ}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$
$$= -RT \ln K$$

$$=-nFE^{\circ}$$

$$I = \frac{q}{t}$$

$$E_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} \ln Q$$

$$q = \text{heat}$$

$$m = mass$$

c = specific heat capacity

T = temperature

 $S^{\circ}$  = standard entropy

 $H^{\circ}$  = standard enthalpy

 $G^{\circ}$  = standard Gibbs free energy

R = gas constant

K = equilibrium constant

n = number of moles of electrons

 $E^{\circ}$  = standard potential

I = current (amperes)

q = charge (coulombs)

t = time (seconds)

Q = reaction quotient

Faraday's constant, F = 96,485 coulombs / 1 mol  $e^-$ 

| Hamiltonian      | Г     |     |       |      | Ι   | *************************************** |       | Т  |    |          | T  |    |       | T  |    | _      | Т  |       |        | T   |        |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-------|------|-----|-----------------------------------------|-------|----|----|----------|----|----|-------|----|----|--------|----|-------|--------|-----|--------|----|
| 2 3 4 8 8 9.01 1.2 3 4 4 8 8 9.01 3 3 4 4 5 6 7 8 7 8 8 9 10 11 12 13 14 15 16 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18    | · } | He    | 4.00 | 01  | Ne                                      | 20.18 | 81 | Ar | 39.95    | 36 | K  | 83.80 | 54 | Xe | 131.20 | 98 | Rn    |        | 118 | Og     | D  |
| 2 3 4 4 Be 9.01 12 4 Be 9.01 12 4 Be 9.01 12 4 Be 9.01 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |     | -     | / [  | 6   | <u> </u>                                | 19.00 | 17 | Ū  | 35.45    | 35 | Ŗ  | 06 62 | 53 | _  | 126.90 | 85 | At    |        | 117 | Ls     |    |
| 2 4 Be 9.01 12 Mg 24.00 8 44.00 8 44.80 7 85.00 7 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.0 |       |     | 17    | 01   | ∞   | 0                                       | 16.00 | 16 | V) | 32.06    | 34 | Se | 78.97 | 52 | Te | 127.60 | 84 | Po    |        | 116 | Lv     |    |
| 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |     | 4     | 2    | 7   | Z                                       | 14.01 | 15 | ۵  | 30.97    | 33 | As | 74.92 | 51 | Sb | 121.76 | 83 | Bi    | 208.98 | 115 | Mc     |    |
| 2 4 Be 9.01 12 Mg 24.30 3 4 40.08 44.96 72 60 Sr Y Sr Y Sr Sr 178.49 137.33 8 137.33 8 137.33 8 137.33 8 188 8 194 187 188 8 188 194 188 184 188 184 188 184 188 184 188 184 188 184 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SL    |     | 7     | 14   | 9   | ပ                                       | 12.01 | 14 | Si | 28.09    | 32 | Ge | 72.63 | 95 | Sn | 118.71 | 82 | Pb    | 207.2  | 114 | 互      |    |
| 2 4 Be 9.01 12 Mg 24.30 3 4 40.08 44.96 72 60 Sr Y Sr Y Sr Sr 178.49 137.33 8 137.33 8 137.33 8 137.33 8 188 8 194 187 188 8 188 194 188 184 188 184 188 184 188 184 188 184 188 184 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MEN   |     | 12    |      | 2   | 8                                       | 10.81 | 13 | Al | 26.98    | 31 | Ga | 69.72 | 49 | In | 114.82 | 81 | П     | 204.38 | 113 | ź      |    |
| 2 4 Be 9.01 12 Mg 24.30 3 4 40.08 44.96 72 60 Sr Y Sr Y Sr Sr 178.49 137.33 8 137.33 8 137.33 8 137.33 8 188 8 194 187 188 8 188 194 188 184 188 184 188 184 188 184 188 184 188 184 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ELE   |     |       |      |     |                                         |       |    |    | 12       | 30 | Zn | 65.38 | 48 | Cq | 112.41 | 80 | Hg    | 200.59 | 112 | Cu     |    |
| 2 4 Be 9.01 12 Mg 24.30 3 4 40.08 44.96 72 60 Sr Y Sr Y Sr Sr 178.49 137.33 8 137.33 8 137.33 8 137.33 8 188 8 194 187 188 8 188 194 188 184 188 184 188 184 188 184 188 184 188 184 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HE    |     |       |      |     |                                         |       |    |    |          | 29 | Ü  | 63.55 | 47 | Ag | 107.87 | 79 | Au    | 196.97 | 111 | Rg     | )  |
| 2 4 Be 9.01 12 Mg 24.30 3 4 40.08 44.96 72 60 Sr Y Sr Y Sr Sr 178.49 137.33 8 137.33 8 137.33 8 137.33 8 188 8 194 187 188 8 188 194 188 184 188 184 188 184 188 184 188 184 188 184 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OF T  |     |       |      |     |                                         |       |    |    | 10       | 28 | Z  | 58.69 | 46 | Pd | 106.42 | 78 | Pt    | 195.08 | 110 | Ds     |    |
| 2 4 Be 9.01 12 Mg 24.30 3 4 40.08 44.96 72 60 Sr Y Sr Y Sr Sr 178.49 137.33 8 137.33 8 137.33 8 137.33 8 188 8 194 187 188 8 188 194 188 184 188 184 188 184 188 184 188 184 188 184 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ILE ( |     |       |      |     |                                         |       |    |    | 6        | 27 | చి | 58.93 | 45 | Rh | 102.91 | 77 | Ľ     | 192.22 | 109 | Mt     |    |
| 2 4 Be 9.01 12 Mg 24.30 3 4 40.08 44.96 72 60 Sr Y Sr Y Sr Sr 178.49 137.33 8 137.33 8 137.33 8 137.33 8 188 8 194 187 188 8 188 194 188 184 188 184 188 184 188 184 188 184 188 184 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAB   |     |       |      |     |                                         |       |    |    | $\infty$ | 26 | Fe | 55.85 | 44 | Ru | 101.07 | 92 | ő     | 190.23 | 108 | Hs     |    |
| 2 4 Be 9.01 12 Mg 24.30 3 4 40.08 44.96 72 60 Sr Y Sr Y Sr Sr 178.49 137.33 8 137.33 8 137.33 8 137.33 8 188 8 194 187 188 8 188 194 188 184 188 184 188 184 188 184 188 184 188 184 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DIC   |     |       |      |     |                                         |       |    |    | 7        | 25 | Mn | 54.94 | 43 | Tc |        | 75 | Re    | 186.21 | 107 | Bh     |    |
| 2 4 Be 9.01 12 Mg 24.30 3 4 40.08 44.96 72 60 Sr Y Sr Y Sr Sr 178.49 137.33 8 137.33 8 137.33 8 137.33 8 188 8 194 187 188 8 188 194 188 184 188 184 188 184 188 184 188 184 188 184 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RIO   |     |       |      |     |                                         |       |    | V  | 9        | 24 | Ċ  | 52.00 | 42 | Mo | 95.95  | 74 | ×     | - 1    | 106 | Sg     |    |
| 2 4 Be 9.01 12 Mg 24.30 3 24.30 3 24.30 3 8 7 8 8 8 8 8 8 8 8 9 9 103 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PE    |     |       |      |     |                                         |       |    | ,  | 2        | 23 | >  | 50.94 | 41 | g  | 92.91  | 73 | La    | 180.95 | 105 | DP     |    |
| 2 Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |       |      |     |                                         |       |    | ,  | 4        | 22 |    | - 1   |    |    | 91.22  | 72 | H     | 178.49 | 104 | Rf     |    |
| 2 Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |       |      |     |                                         |       |    | (  | 2        | 21 | Sc | 44.96 | 39 | >  | 88.91  |    | 57-71 | *      |     | 89-103 | +- |
| 1 H 1.008 3 1 Li 6.94 11 Na 22.99 19 K 37.10 Rb 85.47 55 CS CS 132.91 87 Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·     |     | ~     | 1 =  | t į | Be                                      | 9.01  | 71 | Mg | 24.30    | 20 |    |       |    |    | 87.62  | 99 | Ba    | 137.33 | 800 | Ra     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | H   | 1 008 | 3    | ,   | 3                                       | 6.94  | =  | Na | 22.99    | 61 | ×  | 39.10 | 37 | Rb | 85.47  | 55 | ర     | 132.91 | 87  | F      |    |

|              | 57     | 58     |        | 09     | 19 | 62     | 63     | 49     | 9      | 99     | 1.9         | 89     | 69     | 70     | 7.1        |
|--------------|--------|--------|--------|--------|----|--------|--------|--------|--------|--------|-------------|--------|--------|--------|------------|
| *Lanthanoids | La     | Ce     | Pr     | Nd     | _  | Sm     | 四      | Çq     | Tp     | Dy     | Ho          | Er     | L      | Vb     | Ľ          |
|              | 138.91 | 140.12 | 140.91 | 144.24 |    | 150.36 | 151.97 | 157.25 | 158.93 | 162.50 | 164.93      | 167.26 | 168.93 | 173.05 | 174 97     |
|              | 68     | 06     |        | 92     | 93 | 94     | 95     | 96     | 76     | 86     | 66          | 100    | 101    | 102    | 103        |
| †Actinoids   | Ac     | T      | Pa     | 5      | Np | Pu     | Am     | Cm     | Bk     | Cf     | Es          | Fm     | Md     | No     | Ļ          |
|              |        | 232.04 | 231.04 | 238.03 | 1  |        |        |        |        |        | *********** |        |        |        | 0.14455055 |