

SUMMER PACKET AP CALCULUS BC

Notre Dame High School Lawrenceville, New Jersey

INALLIC

Block_&__

AP Calculus BC Summer Review Packet

I. Introduction:

- This is the AP Calculus BC Summer Review Packet. It has multiple parts, so please read this introduction thoroughly. By completing this work carefully and accurately, you will be academically prepared to begin AP Calculus BC.
- AP Calculus BC starts where Calculus AB left off, completing your understanding of the theory and applications of integral calculus, and further applying the concepts of calculus to parametric functions, polar functions, and series. To be successful in Calculus BC, the presumption is that you already have an exhaustive understanding of differential calculus and a fair introduction to integral calculus from AP Calculus AB. The objective of this course is to make you work daily toward gaining a deeper, more intuitive understanding of what calculus is and how it works. The course is rigorous and much is expected of you. There is a lot challenging material to learn in a short time and most of the material is new. You must be aware of this and plan to be committed to working to the best of your ability.
- Complete this work over the summer while the material is still familiar. Then, since you will not be taking Calculus BC until Second Semester, be sure to periodically look over the material throughout the first semester.

II. Suggestions:

Here are some things you need to bear in mind as you tackle this assignment:

- Do not wait too long before you start this work. There is a lot to be done, but if you pace yourself, it won't take too long.
- Please show any necessary work. Not all exercises may need work, but if you need to do work, hand it in. THIS POINT CANNOT BE EMPHISIZED ENOUGH!!!
- Feel free to get together to work on this, but everyone must hand in his/her own assignment with the appropriate work.
- You will be using a graphing calculator in this course, so be sure yours is in good working condition. You need to be an adept user of technology, minimally competent in the four required calculator uses on the AP exam:
- 1. Plot the graph of a function within an arbitrary viewing window;
- 2. Find the zeros of functions (solve equations numerically)
- 3. Numerically calculate the derivative of a function;
- 4. Numerically calculate the value of a definite integral.

You should also be comfortable using the calculator to store functions using the "Y=menu." For example, a typical free-response question about area or volume may require you to evaluate definite integrals using the calculator. By storing functions in the calculator as Y1(X) or Y2(X), you only need to enter the functions carefully one time. You do not need to reenter them each time that you have to use numerical integration on the calculator. This is particularly helpful when the integrand involves the sum or difference of two functions. This saves you time and decreases the chances of making entry mistakes (particularly with parentheses, exponents, or radicals) under the pressure of the exam.

III. Timeline for the First Couple Days of Class:

Day 1: Brief, general questions will be addressed in class;

Day 2: Summer Packet due.

IV. Problems: can be found at the end of this outline.

V. Graphs: be sure you are able to graph the following equations <u>without a calculator</u>:

y=x	y=[x]	$y = \frac{1}{r}$	$y = \sqrt{x}$	y=sinx	y=cscx
y= x	y=x ³	y=c	y=e ^x	y=cosx	y=secx
y=x ²	$y = \sqrt[3]{x}$	x=c	y=lnx	y=tanx	y=cotx

VI. AP Calculus AB Outline:

Besides completing the actual written work, you need to be familiar and comfortable with the information in the following outline. It is expected that you are familiar and comfortable with the terminology, notation, procedures, and graphs listed.

A.	Limits and Their Properties	D.	Integration
	1. Finding limits graphically and		1.Antiderivatives and Indefinite Integration
	numerically		2. Area
	2. Evaluating Limits analytically		3. Riemann Sums and Definite Integrals
	3. Continuity and One-Sided Limits		4. The Fundamental Theorem of Calculus (FTC)
	4. Infinite Limits		5. Integration by substitution
			6. Numerical Integration
В.	Differentiation		
	1. Relationship between Derivatives and the	Е.	Logarithmic, Exponential, and other
	l'angent line		Transcendental Functions
	2. Basic differentiation rules and rates of		a. Differentiation
	change		b. Integration
	3. Product and Quotient Rules		
	4. Higher order derivatives		1. The Natural Logarithmic Function
	6 Implicit Derivatives		
	o. Implicit Derivatives		2. Exponential Functions
C.	Applications of Differentiation		3 Bases Other than e
0.	1 Related Rates		5. Dases Other than e
	2. Extrema on an Interval		4 Inverse Trigonometric Functions
	3. Intervals of Increase and Decrease and		liniverse ingenenieure i uneuons
	the First Derivative Test	F.	Differential Equations
	4. Concavity and the Second Derivative		1.Slope Fields
	Test		2. Separation of Variables
	5. Rolle's Theorem		3. First-Order Linear Differential Equations
	6. Intermediate Value Theorem (IVT)		
	7. Mean Value Theorem (MVT)	G.	Applications of Integration
	8. Curve Sketching		1. Area of a Region between two curves
			2. Volume: The Disk Method

Geometry

You will use each of the following formulas in AP Calculus. Complete each of the following.

Basic Right Angle Trigonometry

If point *P* is on the terminal side of ϑ , find all 6 trigonometric functions of ϑ . (Answers need not be rationalized.)

Special Angles

Evaluate each of the following.

2.)
$$\left(\cos\frac{2\pi}{3} - \tan\frac{3\pi}{4}\right)^2$$
 3.) $\left(\sin\frac{11\pi}{6} - \tan\frac{5\pi}{6}\right) \left(\sin\frac{11\pi}{6} + \tan\frac{5\pi}{6}\right)$

Trigonometric Identities

Verify the following identities:

$$4.) \frac{1 - \sec x}{1 - \cos x} = -\sec x$$

Solving Trigonometric Equations

Solve the equation on the interval $[0, 2\pi)$. Do not use a calculator.

5.) $\sin^2 x = \sin x$

Graphical Solutions to Equations and Inequalities

You have a TI graphing calculator. So, when are we going to use it? So far, no mention has been made of it. Yet, a graphing calculator is a tool that is required on the AP Calculus exam. For about 25% of the exam, a calculator is permitted. So, it is vital you are comfortable using it.

There are several settings of the calculator you should make. First, so you don't get into rounding difficulties, it is suggested you show at least three decimal places (and preferably more). This is standard on the AP Calculus exam, so it's best we start getting used to it.

Also, be sure that your calculator's Angle Setting is in Radian mode throughout the year. To make these changes go to "mode" and select 'Radian" mode.

You must know how to graph functions on your TI-calculator.

How to find zeros (solutions or x-intercepts) of a function.

Step 1: Enter the left side of the equation that's already set equal to zero (for example, $2x^2 - 9x + 3 = 0$) into the y1(x) entry line.

Step 2: Select 2nd - Trace - Zero.

Step 3: Move the cursor to a position you feel is left of the zero you wish to find first and press Enter. Then move the cursor to the right of the desired zero you wish to find and press Enter. Click enter one more time. You will notice that the ordered pair for the zero will show up automatically once it falls within the range of your lower and upper bound.

You can find relative Maximum and Minimum values in a similar way.

How to find the intersection of two functions.

Step 1: Enter each side of the equation (for example, $x^3 = 2x - 3$ into the $y_1(x)$ and $y_2(x)$ entry lines.

Step 2: Select 2nd - Trace - Intersect

Step 3: Make cursor be close enough to a point of intersection, click enter, enter, enter.

This problem could also be solved by setting the above equation equal to zero, and by finding zeros instead.

We will learn much more about the functionality of this calculator in the first several days of class. While many of these problems on this page can be done with other graphing utilities (desmos, etc.), I highly recommend that you wait to do these problems when you have a TI graphing calculator.

Using the TI graphing calculator (Continued)

Use your graphing calculator to find the zeros of each of the following functions. Make sure each equation is set equal to zero first.

6.)
$$3x^3 - x - 5 = 0$$

7.) $2x^2 - 1 = 2^x$

8.) $2\ln(x+1) = 5\cos x$ on $[0, 2\pi)$

Limits and Continuity

(C – Calculator Active, NC – Non-Calculator part)

13NC	If $f(x) = 2x$, $g(x) = x^2$, and $h(x) = 2^x$, which of the following limits is equal to 0?			
	(A) $\lim_{x \to \infty} \frac{g(x)}{f(x)}$ (B) $\lim_{x \to \infty} \frac{g(x)}{h(x)}$ (C) $\lim_{x \to \infty} \frac{h(x)}{f(x)}$			
	(D) $\lim_{x \to \infty} \frac{h(x)}{g(x)}$ (E) $\lim_{x \to \infty} \frac{h(x)}{f(x)g(x)}$			
14NC	$\lim_{x \to 5} \frac{2x^2 - 50}{x^2 - 15x + 50} =$			
	(A) -4 (B) -1 (C) 0 (D) 1 (E) 2			
15NC	$\lim_{x \to 2} \frac{e^{2x} - e^4}{x - 2} =$			
	(A) e (B) $2e$ (C) $2e^2$ (D) e^4 (E) $2e^4$			

Derivatives

16NC	. If $f(x) = (x-1)(x^2+2)^3$, then $f'(x) =$
	(A) $6x(x^2+2)^2$
	(B) $6x(x-1)(x^2+2)^2$
	(C) $(x^2+2)^2(x^2+3x-1)$
	(D) $(x^2+2)^2(7x^2-6x+2)$
	(E) $-3(x-1)(x^2+2)^2$
17NC	8. If $f(x) = \cos(3x)$, then $f'(\frac{\pi}{9}) =$
	(A) $\frac{3\sqrt{3}}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) $-\frac{\sqrt{3}}{2}$ (D) $-\frac{3}{2}$ (E) $-\frac{3\sqrt{3}}{2}$
18NC	If $f(x) = e^{(2/x)}$, then $f'(x) =$
	(A) $2e^{(2/x)} \ln x$ (B) $e^{(2/x)}$ (C) $e^{\left(-2/x^2\right)}$ (D) $-\frac{2}{x^2}e^{(2/x)}$ (E) $-2x^2e^{(2/x)}$

19NC	If $\sin(xy) = x$, then $\frac{dy}{dx} =$
	(A) $\frac{1}{\cos(xy)}$
	(B) $\frac{1}{x\cos(xy)}$
	(C) $\frac{1 - \cos(xy)}{\cos(xy)}$
	(D) $\frac{1 - y\cos(xy)}{x^{2}}$
	$\frac{x\cos(xy)}{v(1-\cos(xy))}$
	(E) $\frac{x}{x}$
20NC	If $f(x) = x^2 + 2x$ then $\frac{d}{d}(f(\ln x)) =$
	$dx^{(j(m,x))} = \frac{1}{dx} + \frac{1}$
	(A) $\frac{2\ln x + 2}{x}$ (B) $2x\ln x + 2x$ (C) $2\ln x + 2$ (D) $2\ln x + \frac{2}{x}$ (E) $\frac{2x + 2}{x}$
21NC	What is the slope of the line tangent to the curve $y = \arctan(4x)$ at the point at which $x = \frac{1}{4}$?
	1 1 1 4
	(A) 2 (B) $\frac{1}{2}$ (C) 0 (D) $-\frac{1}{2}$ (E) -2
22NC	Let f be a differentiable function such that $f(3) = 15$, $f(6) = 3$, $f'(3) = -8$, and $f'(6) = -2$. The function g
	is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of $g'(3)$?
	(A) $-\frac{1}{2}$
	(B) $-\frac{1}{8}$
	(C) $\frac{1}{6}$
	(D) $\frac{1}{3}$
	(E) The value of $g'(3)$ cannot be determined from the information given.
23C	The derivative of the function f is given by $f'(x) = x^2 \cos(x^2)$. How many points of inflection does the graph
	of f have on the open interval $(-2, 2)$?
	(A) One (B) Two (C) Three (D) Four (E) Five

27C The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant when the radius of the sphere is 3 centimeters, what is the rate of change, in square centimeters per second, of the surface area of the sphere? (The surface area S of a sphere with radius r is $S = 4\pi r^2$.) (C) -48π (D) -24π (E) -16π (B) -72π (A) -108π 28NC If $f(x) = e^{-x} + \sin x - \cos x$, then f''(0) =(B) -1 (C) 0 (D) 1 (E) 2 (A) -2 29NC The slope of the line tangent to the curve $3x^2 - 2xy + y^2 = 11$ at the point (1, -2) is (A) $-\frac{1}{6}$ (B) 0 (C) 1 (D) $\frac{5}{3}$ (E) 10 30NC $\frac{d}{dx} \left[\ln(\sec x) \right] =$ (A) $\cos x$ (B) $\tan x$ (D) $\frac{\sec x \tan x}{x}$ (E) $\frac{\sec x}{x} + \ln(\sec x \tan x)$ (C) $\cos x \cot x$ 31NC If f''(0) < 0, f'(0) = 0, and f(0) > 0, which of the following could be the graph of y = f(x)? (B) (C) (D) $\xrightarrow{y_1}$ (A) (B) (D) (E) Given that f(-3) = 4 and f'(-3) = 2, which of the following is the tangent line 32NC approximation of f(-3.1)? (B) 3.9 (C) 4.0 (D) 4.1 (E) 4.2 (A) 3.8 33NC If $x^2y + y^2 + 4 = 0$, then when x = 2, the value of $\frac{dy}{dx}$ is (A) -2 (B) -1 (C) 0 (D) 2 (E) nonexistent

34NCThe slope to the tangent line to the graph of
$$y = \tan 2x$$
 at $x = \frac{\pi}{8}$ is(A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$ (C) 2(D) $2\sqrt{2}$ (E) 435NCIf $x^2 - y^2 = 5$, what is the value of $\frac{d^2y}{dx^2}$ at the point (3, 2)?(A) $-\frac{13}{8}$ (B) $-\frac{11}{8}$ (C) $-\frac{7}{8}$ (D) $-\frac{5}{8}$ (E) $-\frac{1}{4}$ 36NCThe velocity of a particle at time t is given by the function $v(t) = t^3 - \sin t + 2$.What is the acceleration of the particle at time $t = 2\pi$?(A) $6\pi - 1$ (B) $6\pi + 1$ (C) $12\pi^2 - 1$ (D) $12\pi^2$ (E) $12\pi^2 + 1$

Integration

$$\frac{45\text{NC}}{45\text{NC}} \quad \text{If } \int_{0}^{3} e^{\sin x} dx = k \text{, then } \int_{1}^{2} x e^{\sin(4-x^{2})} dx = \frac{1}{(A)} - \frac{k}{2} \quad (B) - \frac{k}{3} \quad (C) \frac{k}{6} \quad (D) \frac{k}{3} \quad (E) \frac{k}{2}$$

$$\frac{46\text{NC}}{46\text{NC}} \quad \frac{\text{What is the x-coordinate of the point of inflection of the graph of } y = x^{2} + 3x^{2} - 45x + 81? \\ (A) -9 \quad (B) -5 \quad (C) -1 \quad (D) 1 \quad (E) 3$$

$$\frac{47\text{NC}}{16} \quad \text{The area of the region enclosed by the graph of } y = 5 - x^{2} \text{ and the line } y = 1 \text{ is } \\ (A) \frac{4}{3} \quad (B) \frac{8}{3} \quad (C) 4 \quad (D) \frac{16}{3} \quad (E) \frac{32}{3}$$

$$\frac{48\text{NC}}{12} \quad \text{The average value of } e^{3x} \text{ on the interval } [0, 4] \text{ is } \\ (A) \frac{e^{12} - 1}{12} \quad (B) \frac{e^{12}}{12} \quad (C) \frac{e^{12} - 1}{4} \quad (D) \frac{e^{12}}{4} \quad (E) \frac{e^{12} - 1}{3}$$