
Mathematics Summer Review Packet

(Optional-Please submit to 7th grade teacher) For ALL Students Entering 7th Grade Fall 2025

Medford Public Schools

Department of Mathematics

📚 Printed Copies Available:

If you prefer a paper copy, please don't hesitate to reach out before the school year ends. The Medford Public Library will have a limited number of paper copies available for students throughout the summer.

🧠 ST Math Practice:

Additionally, students are encouraged to complete 20 minutes of ST math a week. Students should log in through Clever using your district login.

Table of Contents

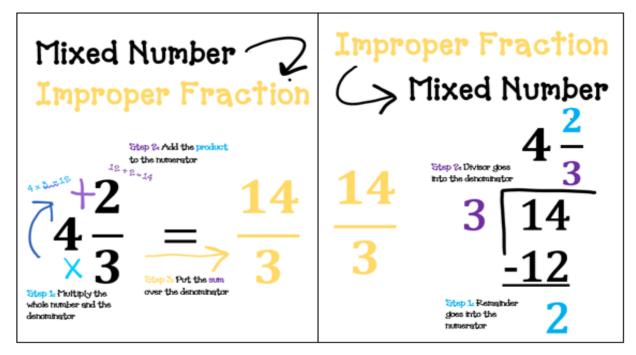
 Week 1: Number System-Part 1
Fractions
 Week 2: Number System-Part 2
Week 3: Number System-Part 3
 Week 4: Ratios and Proportional Relationships
 Week 5: Expressions and Equations-Part 1
 Week 6: Expressions and Equations-Part 216 Simplifying Expressions Solving One-Step Equations
 Week 7: Expressions and Equations-Part 3
 Week 8: Geometry
 Week 9: Statistics

Week 1: Number System

Decimal Operations:

Example: $42.79 + 3.027$ $\frac{42.790}{+ 03.027} \downarrow^{\text{Decimal}}$	ADDINC DECIMALS Steps: 1. Line up the decimals. 2. Fill in zeroes as needed. 3. Begin adding normally from right to left. 4. Bring the decimal straight down.	Example: 23.462 × 3.7 $ \begin{array}{r} 23.462 \\ \times & 3.7 \\ \hline 164234 \\ +703860 \\ \hline 86.8094 \\ \hline 4321 \end{array} $	MULTIPLYINC DECIMALS Steps: 1. Ignore the decimals, and line up the numbers. 2. Multiply as usual. 3. Count the total number of digits after the decimal points in the question. 4. Starting at the right, count that many digits to the left in your answer, and place the decimal point.
Example: 68.5-23.447 68.500 Decimal - 23.447 45.053	SUBIDACTINC DECIMALS Steps: 1. Line up the decimals. 2. Fill in zeroes as needed. 3. Begin subtracting normally from right to left. 4. Bring the decimal straight down.	Example: 2.52+2.1 2.1.) 2.5.2 -21 42 -42 0	DIVIDINC DECIMALS Steps: 1. Move the decimal in the divisor to the right to make it a whole number. 2. Move the decimal in the dividend the same number of places to the right. 3. Place the decimal in the quotient directly above the decimal in the dividend. 4. Divide normally, adding zeroes to the dividend if needed.

Skills Practice


.9 - 4.5 = 23.75 + 6.048	8.78 + 6.2 = 21.9 - 4.5 =	46 - 3.63
86 ÷ 0.2 0.13 × 5.1	7.2 x 5 7.86 ÷ 0.2	9.585 ÷ 5
36 ÷ 0.2 0.13 × 5.1	7.2 x 5 7.86 ÷ 0.2	9.585 ÷ 5

Problem-Solving

Sam, Jessie, and Emma go out for burgers. The total cost is \$21.39. If they split the cost equally, how much will each person pay?	Amy and Bhanu both compete in a race. Amy takes 42.8 seconds to finish, and Bhan finishes in 49.27 seconds. How many seconds faster was Amy than Bhanu?
---	--

Potatoes cost \$0.85 per pound. Luca bought 2.75	Ana Maria has \$10. Will she be able to buy a burger
pounds of potatoes. How much did he pay for the	for \$5.49, chips for \$1.29, and a milkshake for \$2.79?
potatoes? Round to the hundredth place.	Explain your reasoning.

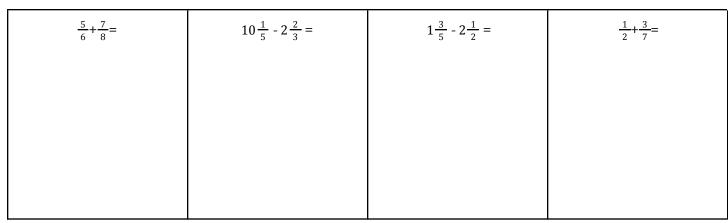
Fractions:

$\frac{10}{4}$	<u>7</u> 6	<u>12</u> 5	<u>32</u> 7	<u>110</u> 12
Change each improper fraction into a mixed number:				
$7\frac{1}{2}$	$4\frac{1}{3}$	$11\frac{2}{5}$	$3\frac{5}{12}$	$2\frac{1}{7}$

	Simplify the following fra	ictions:	
SIMPLIFYING Practions	$\frac{12}{30}$	$\frac{4}{10}$	$\frac{17}{51}$
Step 1 Make a T-Chart For both the Numerator and Denominator Step 2 Circle the Greatest Common Factor Divide both top and			
Step 3 $\frac{16}{24}$ $\frac{16}{\frac{1}{1}}$ $\frac{16}{\frac{1}{1}}$ $\frac{24}{\frac{1}{4}}$ $\frac{28}{\frac{2}{4}}$ $\frac{212}{\frac{1}{4}}$ $\frac{16}{\frac{24}{\frac{1}{4}}}$ $\frac{16}{\frac{24}{\frac{1}{4}}}$ $\frac{16}{\frac{24}{\frac{1}{4}}}$ $\frac{16}{\frac{24}{\frac{1}{4}}}$ $\frac{16}{\frac{24}{\frac{1}{4}}}$	$\frac{10}{35}$	<u>24</u> 108	$\frac{13}{39}$

<u>Skills Practice</u>

Steps for adding and subtracting mixed numbers:

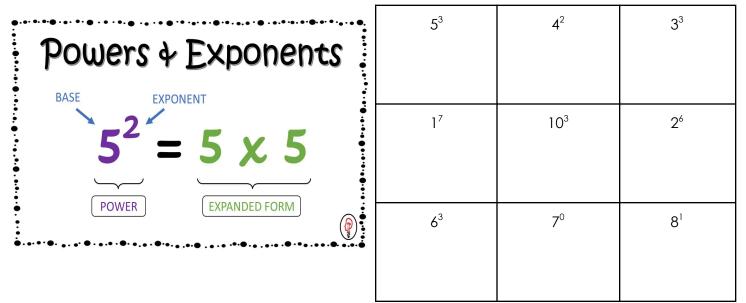

- 1. Change each mixed number to an improper fraction (if there are mixed numbers)
- 2. Find the lowest common denominator (LCD or LCM)
- 3. Write the equivalent fractions using the LCD
- 4. Add or subtract the numerators
- 5. Add the whole numbers and fractions
- 6. Simplify your answer (rewrite improper fraction to mixed number and in lowest term)

Steps for multiplying fractions and mixed numbers:

- 1. Change each mixed number to an improper fraction if there are mixed numbers or rewrite whole number as fraction
- 2. Multiply the numerators
- 3. Multiply the denominators
- 4. Simplify your answer (rewrite improper fractions to mixed number and in lowest terms)

Steps for dividing fractions and mixed numbers:

- 1. Change each mixed number to an improper fraction or rewrite whole number as fraction
- 2. Change the division to multiplication
- 3. Flip the second number(reciprocal)
- 4. Multiply the numerators. Multiply the denominators
- 5. Simplify your answer (rewrite improper fractions to mixed number and in lowest terms)


$\frac{3}{8} \times 12 =$	$18 \div 1\frac{1}{2} =$	$10\frac{4}{5} \times 1\frac{5}{8} =$
	$\frac{3}{8} \times 12 =$	$\frac{3}{8} \times 12 =$ $18 \div 1\frac{1}{2} =$

Problem Solving

Tom bought a board that was $\frac{7}{8}$ of a yard long. He cut off $\frac{1}{2}$ of a yard. How much was left?	Kelly ran $2\frac{1}{4}$ miles. Amber ran $\frac{1}{3}$ of the distance that Kelly ran. How far did Amber run?
John bought $\frac{3}{4}$ of a pound of jelly beans and $\frac{5}{8}$ of a pound of gummy bears. How many pounds of candy did he buy in all?	Six friends share $\frac{4}{5}$ of a pizza equally. What fraction of the pizza will each friend get?

Week 2: Number System (Continued)

Exponents:

Order of Operations:

Order of Operations PEMDAS			5 · (4 + 2) - 3 ³
Ρ	Parenthesis, ()		
Е	Expo	nents, a ⁿ	
M D	Multiplication or Division (Left to right)		7 + (9 ¹ · 2) ÷ 6
A S	Addition or Subtraction (Left to Right)		
	8 + 9 ² - (5 + 6)	13 - 7 · 12º	(2 + 6) ² + 7

Greatest Common Factor/Least Common Multiple:

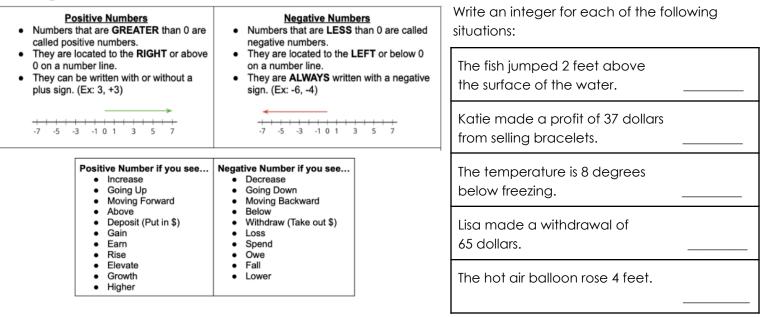
Finding GCFs

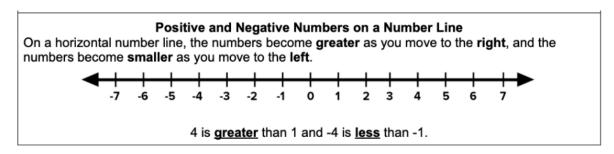
1. List the factors for each number.		What is the GCF of 12 and 30?
2. Look for the factors that both numbers have in		12: U234 Q12
common.		30: 0205 6 10 15 30
The common factor with the biggest value will be your Greatest Common Factor (GCF).		Common Factors GCF: 6
inding LCMs		
6: 6, 12, 18, 24, 30, 36,	1. List the multiples for	each number.
\sim	2. Look for the multiple	s that both numbers have in common.
10: 10, 20,(30,)40, 50, 60,		e with the energy perturbative will be seen

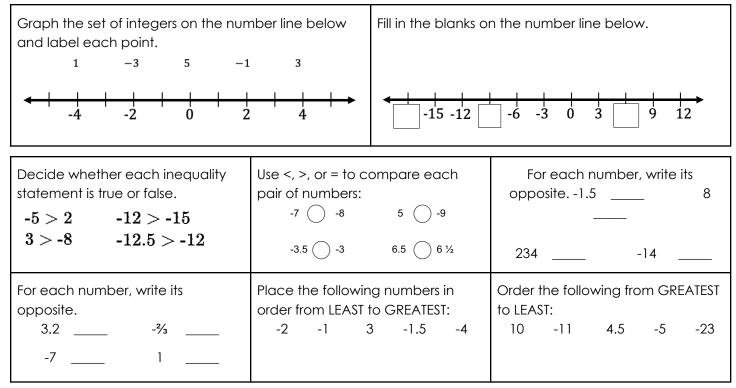
3. The common multiple with the smallest value will be your Least Common Multiple (LCM).

Find the Greatest Common Factor for each set of numbers:

[CM = 30]

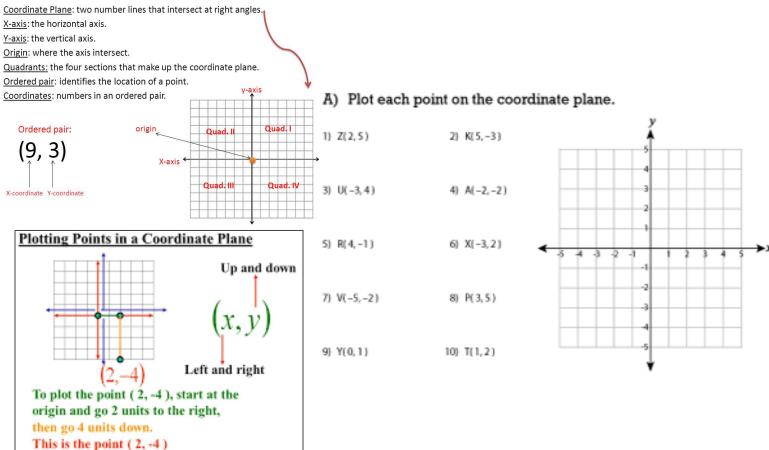

6 and 15	32 and 56
10, 20, and 25	36 and 96


Find the Least Common Multiple for each set of numbers:


6 and 9	5 and 7
12 and 16	3, 6, and 15

Week 3: Number System (Continued)


Integers:



Absolute Value:

<u>Coordinate Plane:</u>

Week 4: Ratios and Proportional Relationships

<u>Ratios:</u> A ratio is a comparison of two quantities. Ratios can be	Write the ratio of tomatoes to onions:
expressed three ways. 1:10 to 10 1	
Sam has 2 cats, 1 bird,	Write the ratio of chairs to furniture:
2 hamsters and 4 dogs.	• • • • • •
Whole to Part 9:2 9	Write the ratio of pumpkins to broccoli:
Animals to hamsters. 9 10 2 2	
Part to Part 1:2 1	
Birds to cats. 1 to 2	Write the ratio of phones to binoculars:
Pert to Whole 4:9 4	* * * *
Dogs to animals. 4 to 9 9	Write the ratio of ladybugs to insects:

Equivalent Ratios:

You can find equivalent ratios by multiplying or dividing by the same number.

Example:

5:2	20	8 : 24 =	1:
$\frac{\text{Multiply}}{5:20 \rightarrow \frac{5}{20}}$ 5 2 5.2 10	$\frac{\text{Divide}}{5:20 \rightarrow \frac{5}{20}}$ 5 5 5 5 1	7 : = 49 : 63	6 : 7 =: 21
$\frac{5}{20} \cdot \frac{2}{2} = \frac{5 \cdot 2}{20 \cdot 2} = \frac{10}{40}$ $\frac{10}{40} \rightarrow 10:40$	$\frac{1}{20 \div 5} = \frac{1}{20 \div 5} = \frac{1}{4}$ $\frac{1}{4} \rightarrow 1:4$		3 : 6 = : 30
8 : 3 =	: 27	20 : 36 = : 9	18 : 10 = : 5

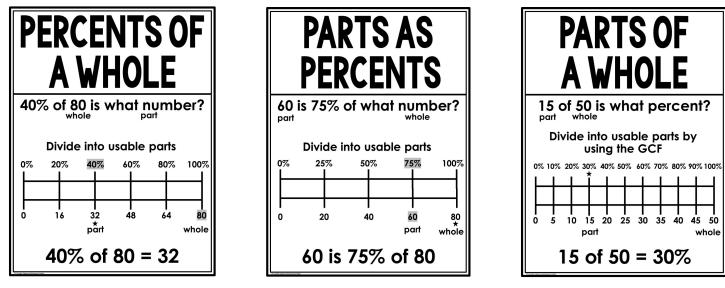
Problem Solving-Equivalent Ratios:

The ratio of kiwis to mangoes in a	There are 2 trucks for every 5 cars in	The ratio of girls to boys in a
fruit bowl is 4 : 9. If there are 44	the school parking lot. If there are 25	basketball club is 3 : 4. There are
kiwis, how many mangoes are	cars, how many TOTAL vehicles are	24 girls. How many boys are in
there?	there in the parking lot?	the basketball club?

Rates/Unit Rates:

a	ate is RATIO witind time. We can	h two different o create a ratio o	Here are two	g a fraction.	A unit rate r	niles ÷	something. For exam one pound of somet he denominator equa	ple: How much we earn hing costs. als one. Minutes Minutes
	<u>two</u> di	ples below. Not	additional examples of how rates may be written ice the ratios (fraction x. length, time, money	35:7 (1) measure		deno equ	als one	miles PER minute
	ook at the exam <u>two</u> di	ples below. Not fferent things (e t in RATES, none	of how rates may be written ice the ratios (fraction x. length, time, money of the denominators a	35:7 (1) measure (1) are 1.	Example	deno equ The / sig	in means pe	minute er.
Tra	ook at the exam <u>two</u> di Notice that veling 250 _	pples below. Not fferent things (e t in RATES, none <u>250 km</u>	of how rates may be written ice the ratios (fraction x. length, time, money of the denominators a measure of	35:7 is) measure i) are 1. length	Example	deno equ	in means pe	minute er. s kilometers/hour
Tra	ook at the exam <u>two</u> di Notice that	ples below. Not fferent things (e t in RATES, none	of how rates may be written ice the ratios (fraction x. length, time, money of the denominators a	35:7 (1) measure (1) are 1.		The / sig	in means per pur is the same a <u>miles</u>	minute er. s kilometers/hour <u>price</u>
Tra	ook at the exam <u>two</u> di Notice that veling 250 _ in 5 hours	pples below. Not fferent things (e t in RATES, none <u>250 km</u>	of how rates may be written ice the ratios (fraction x. length, time, money of the denominators a measure of	35:7 is) measure i) are 1. length	UNLES	The / sig	in means pe	minute er. s kilometers/hour
Tra km	ook at the exam <u>two</u> di Notice that veling 250 = in 5 hours bounds of	pples below. Not fferent things (e t in RATES, none <u>250 km</u> 5 hours	of how rates may be written ice the ratios (fraction ix. length, time, money of the denominators a measure of measure of	are 1.	UNLES	The / sig	in means per bur is the same a <u>miles</u> hour <u>kilometers</u>	minute er. s kilometers/hour <u>price</u> product <u>price</u>
Tra km 4 j	veling 250 = in 5 hours bounds of e costs \$5 =	aples below. Not fferent things (e t in RATES, none 250 km 5 hours <u>\$5</u> 4 pounds	 of how rates may be written ice the ratios (fraction .x. length, time, money of the denominators at the denominators at	35:7 is) measure are 1. length time money weight	UNLES	The / sig	minator als one 5 In means per bur is the same a <u>miles</u> hour	minute er. s kilometers/hour <u>price</u> product
Tra km 4 j ric Ear	ook at the exam <u>two</u> di Notice that veling 250 = in 5 hours bounds of	pples below. Not fferent things (e t in RATES, none <u>250 km</u> 5 hours <u>\$5</u>	of how rates may be written ice the ratios (fraction x. length, time, money of the denominators a measure of measure of measure of	are 1. length time money	UNLES other state	The / sig	in means per bur is the same a <u>miles</u> hour <u>kilometers</u>	minute er. s kilometers/hour <u>price</u> product <u>price</u>

You can drive 450 miles in 6 hours. How many miles can you travel in one hour?	6 pounds of almonds cost \$39.54. What is the cost per pound?	Jada babysat 20 hours and earned \$180. How much did she make per hour?	While training for a race, Laura ran 12 miles in 75 minutes on a treadmill. How long did it take for her to run 1 mile?
A snail travels 12 cm in 4 minutes. How far does the snail travel per minute?	Lyla types 63 words in 3 minutes? How many words does she type in 1 minute?	David paid \$17.82 for 9 gallons of gas. What was the cost per gallon?	Benjamin drove 252 miles in 4 hours. How many miles did he travel in 1 hour?


Susie read 288 pages in 12 hours. At this rate, how many pages did she read in 16 hours?	The teacher supplied 72 markers for 6 students. At this rate, how many markers would he need to supply for 10 students?	At a party, there are 36 cookies for 16 people. How many cookies are needed for 20 people?

Fractions, Decimals, and Percents:

A <u>percent</u> is a rate per 100 where 100 is a total of something. It can be represented with a % sign.			
Converting a FRACTION to a Converting a DECIMAL to a Converting a PERCENT to a			
DECIMAL 1. Divide the numerator by the denominator.	FRACTION 1. Remove the decimal	DECIMAL 1. Put the percent over 100.	
	2. Write as a fraction using the last decimal place value as the denominator.	2. Write as a decimal using place value OR divide by 100.	
	3. Simplify		
DEDCENT	PERCENT	EBACTION	
PERCENT	1. Remove the decimal and	FRACTION	
1. Divide the numerator by the		1. Put the percent over 100.	
denominator.	write as a fraction using the last	2 Simplify	
2. Remove the decimal and	decimal place value as the denominator.	2. Simplify	
write as a fraction using the last		3. Convert to a mixed number if	
decimal place value as the	2. Write as a percent.	the percent is greater that	
denominator.		100%.	
3. Write as a percent.			
		1	

Percent	Decimal	Fraction
24%		
	0.72	
		<u>7</u> 10
	1.25	
67%		
		$l\frac{1}{5}$

Percentages and Double Number Lines:

Problem	Double Number Line	Answer
8 is what percent of 40?	0 8 40 	
There are 60 students at the dance. 40% of them are 6th graders. How many students at the dance are 6th graders?	0 ? 60 	
25% of the books in the library are science fiction. If there are 11 science fiction books, how many total books are in the library?	0 11 ? 	

Percent of a Number:

To find the percent of a number means to find the PART given the whole and percent. **To find the percent of a number...**

- 1. Change the percent to a fraction or decimal.
- 2. Multiply the percent (fraction or decimal form) by the whole.

The percent x the whole = the part

Week 5: Expressions and Equations

Parts of an Expression:

Identify the parts of the expression:

٦

Г

Terms: $3x^2$, $4x$, 12 Coefficients $3x^2 + 4x - 12$ Variables Constants		2x + 4y - 9 Terms: Coefficients: Variables: Constants: 4x - 6y + c - 2 Terms: Coefficients: Variables: Constants:
2x - 5 - 7x + 4z ² - y	7a + 4a + 3b - 6	3y - 1 + 8b + 15
Terms:	Terms:	Terms:
Coefficients:	Coefficients:	Coefficients:
Variables:	Variables:	Variables:
Constants:	Constants:	Constants:

Translating Expressions:

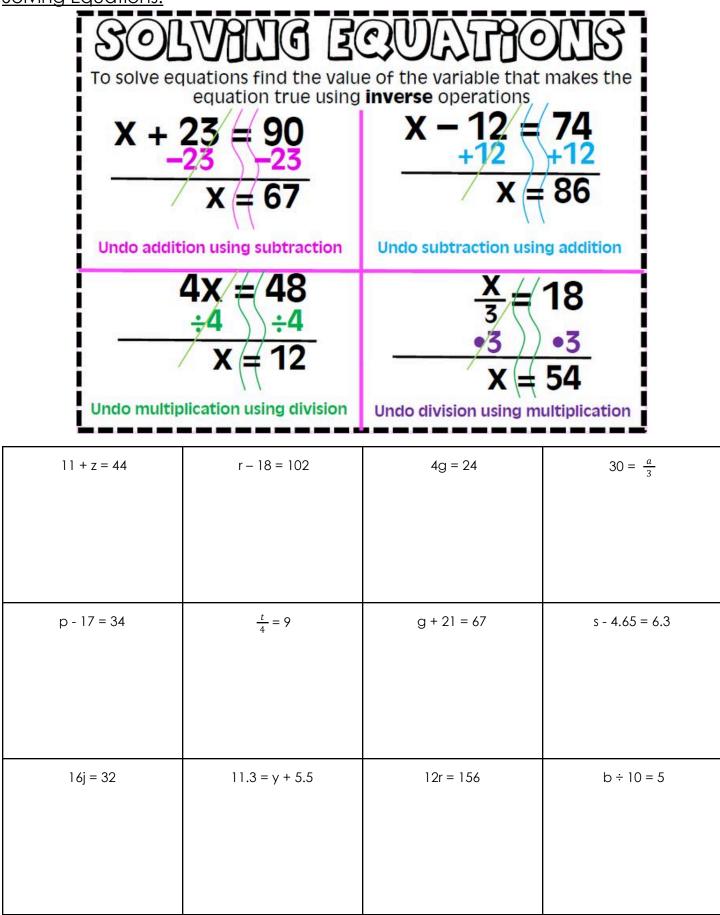
Operation	Addition	Subtraction	Multiplication	Division
Key Words and Phrases	added to plus sum of more than increased by total of and	subtracted from minus difference of less than decreased by fewer than take away	multiplied by times product of twice of	divided by quotient of

the quotient of twenty-nine and a number <i>h</i>						
a number <i>n</i> plus forty-nine						
three divided by a number g						
the total of twenty-four and a number x						
the difference between eighteen and a number m						
a number k added to twenty-eight						
ninety-eight more than a number d						
a number <i>j</i> multiplied by fifty-six						
a number y increased by eighty-six						
twenty-nine to the w th power						
a number q decreased by eighty-five						
the difference between a number <i>f</i> and two						
the quotient of a number <i>t</i> and thirty-seven						
a number <i>s</i> minus eighty-two						
the product of a number z and eighty-four						

Evaluating Expressions:

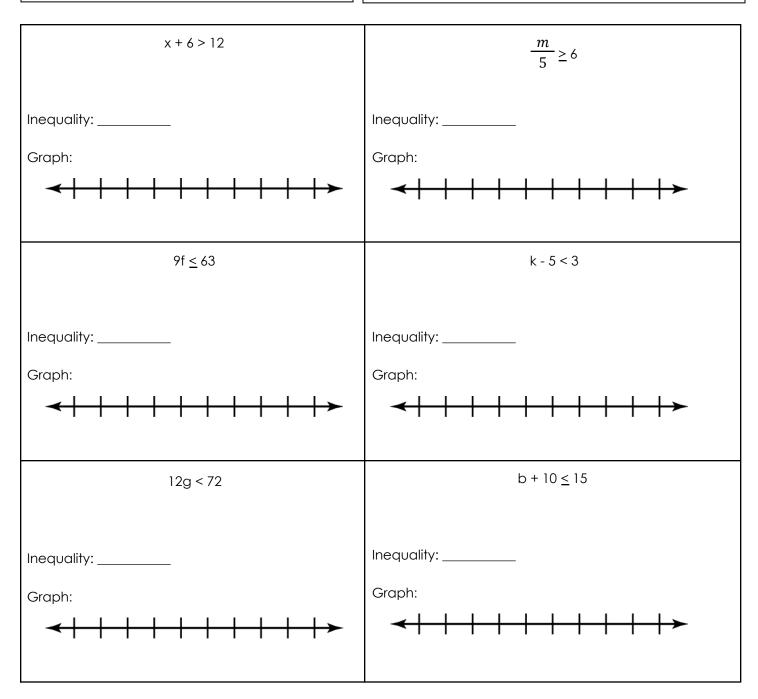
Evaluating A	Igebraic Expressions	Evaluate when $x = 4$			
5		3x + 15	x ² - 10	8x + x - 2	
Evaluate	e 2y + 3 for y = 4				
Step 1:					
Substitute 4 for y.	2(4) + 3				
Step 2:					
Multiply.	8 + 3		en x = 7 and y = 2	3 . 5 . 00	
Step 3: Add.	11	7x + y	9y - 10 + 2x	y ³ + 5x - 20	

Week 6: Expressions and Equations (Continued)


Distributive Property

3(x-7)	Original p	problem	9(w + 12) Draw a tape diagram:	10(3b + c - 12) Draw a tape diagram:		
	the parer Multiply	istribute the 3 throughout otheses. the 3 times the x. Then 3 times 7.	Simplified expression:	Simplified expression:		
3x - 21	Simplify					
. ,	4(x - 5) $12(3 + 2y)$		5(7r + s + 9) Draw a tape diagram:	3(p - 17) Draw a tape diagram:		
Draw a tape diagram: Simplified expression: Draw a tape diagram: Simplified expression:		Simplified expression:	Simplified expression:			

Combining Like Terms


5x <mark>+</mark>	<mark>9 + 2x</mark>	3a + 4b + 2a - 2b	4y + m + 5 +3y + 3m
5x + 2x = 7x 9 = 9	7x + 9		
5n - n + 8n + 10	4(3x + 6) + 8x - 12	3(5x + 6) - 7x + 2	8h + 3(2h + 5) + h + 4

Solving Equations:

Week 7: Expressions and Equations (Continued)

Solving and Graphing Inequalities: **Graphing Inequalities Example** greater than > \longrightarrow x - 3 > 7 Perform inverse operations to isolate less than the variable. < +3 +3 ~ Ю greater than or equal to \rightarrow > x > 10 less than or equal to < Solved! ~

Independent and Dependent Variables:

Independent Variable (IV) – The variable that **CAUSES** something, or **changes the DV**.

-The independent variable is **ALWAYS** graphed on the **x-axis**.

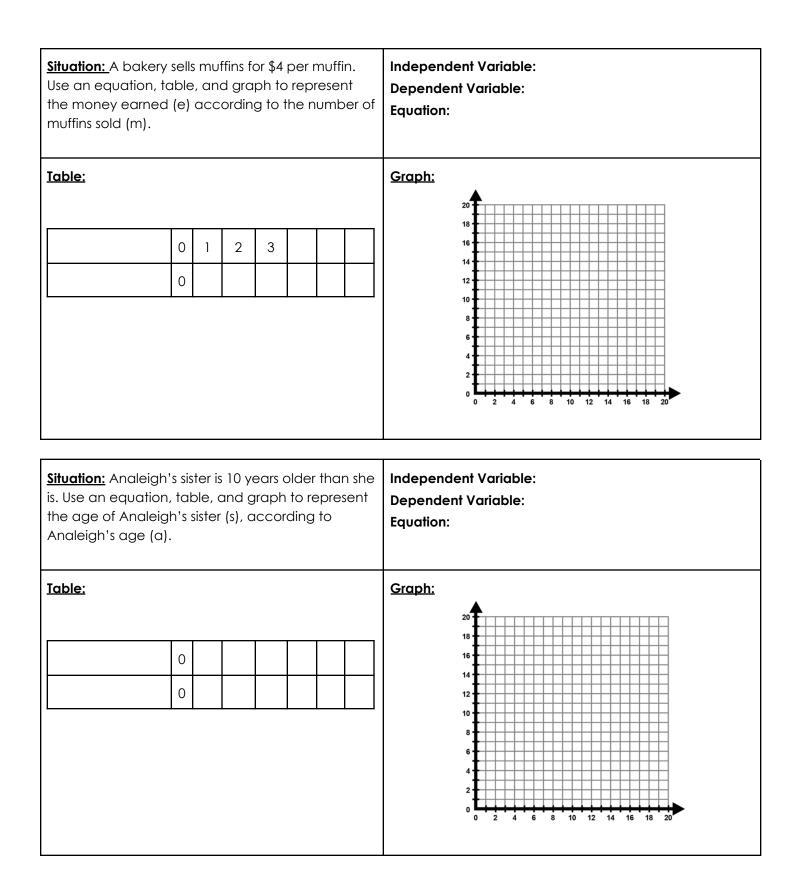
-The independent variable is represented as the "x value" in a table.

Dependent Variable (DV) – The variable that is a **RESULT/EFFECT** of something. It **DEPENDS on the IV**.

-The dependent variable is **ALWAYS** graphed on the **y-axis**.

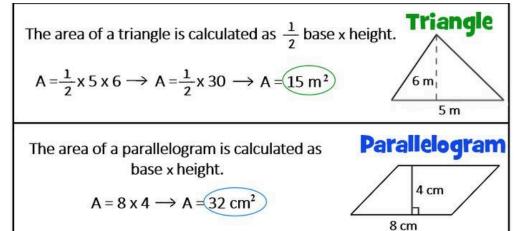
-The dependent variable is represented as the "y value" in a table.

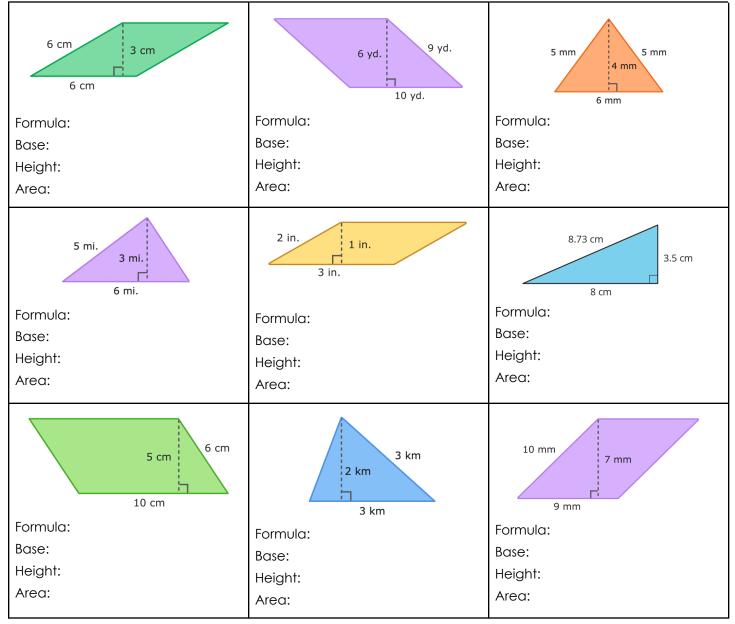
EXAMPLE: You work 8 hours and get paid \$96. Independent Variable: # of hours worked Dependent Variable: Money earned

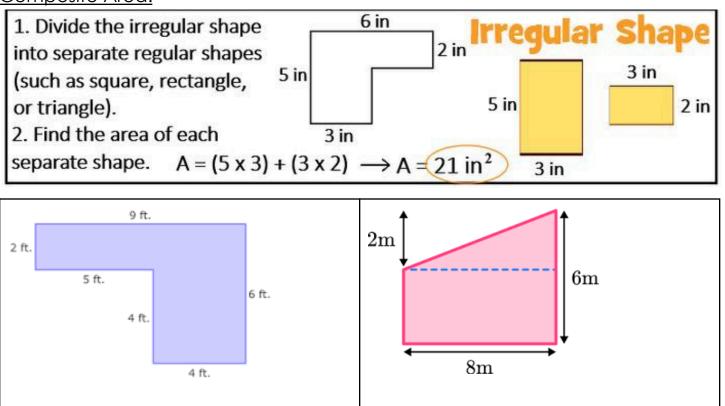

Identify the independent and dependent variables below:

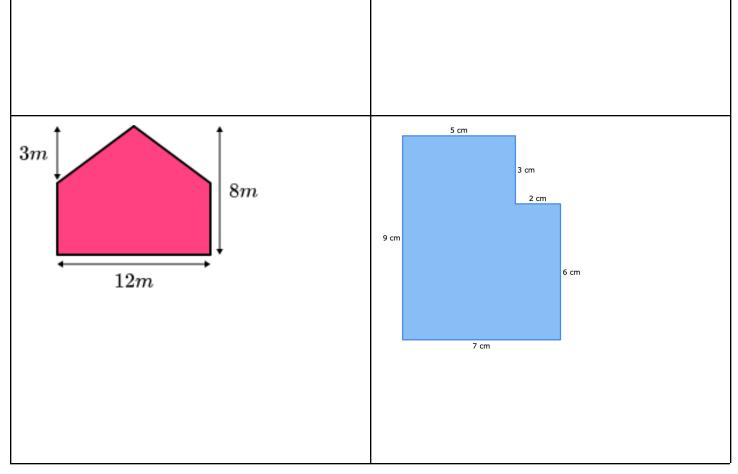
Your teacher is planning a p more students that attend, the bu	·	You earn money for sell	ing shirts at the local fair.
IV:	DV:	IV:	DV:
•	er job mowing lawns in your ss by, you mow more lawns.		ho join the kickball tournament any teams are needed.
IV:	DV:	IV:	DV:

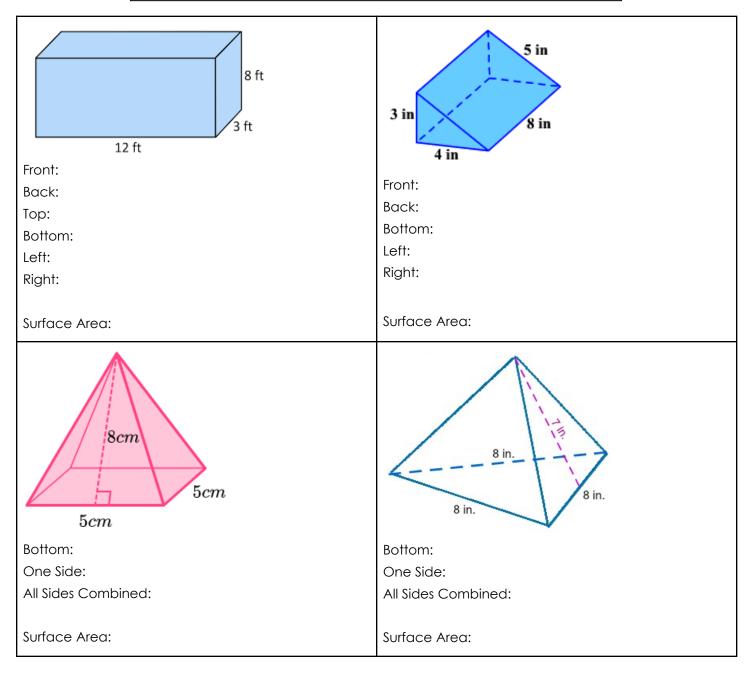
Graphs, Tables, and Equations:

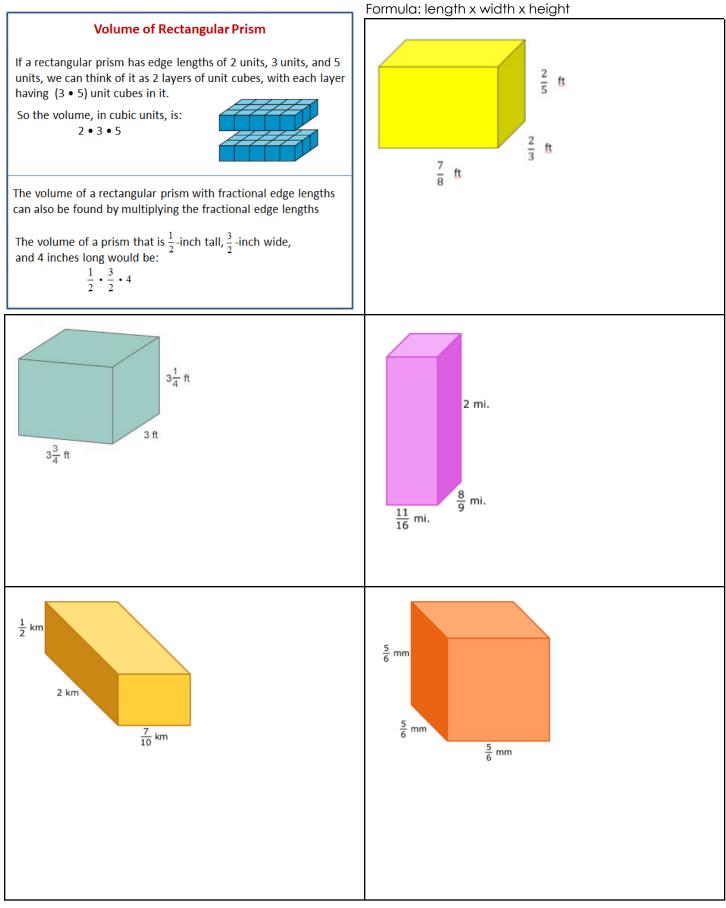

We can represent situations through graphs, tables, and equations. Here is an example:


<u>Situation:</u> At your new job, you earn \$12 for every hour (h) that you work.							ר)	Independent Variable: Hours Worked Dependent Variable: Money Earned Equation: m = 12h
<u>Table:</u>								Graph: \$120 \$100
Hours Worked (h)	0	1	2	3	4	5	6	ы жарана жар жар жар жар жар жар жар жа
Money Earned (m)	0	12	24	36	48	60	72	\$40 \$20 2 4 6 8 10 hours worked


Week 8: Geometry


Area of Parallelograms and Triangles:


Composite Area:



Surface Area:

The **surface area** of a three dimensional shape is the total area of all of the faces. To find the surface area of a shape, we find the area of each face and add them together. Face Area E.g. Front 1/2 x 4 x 3 = 6 Back 6 5cm4 x 6 = 24 Bottom Тор 5 x 6 = 30 Left side 3 x 6 = 18 3cmTotal surface area = 6 + 6 + 24 + 30 + 186cm= 84cm² 4cmLEARNING

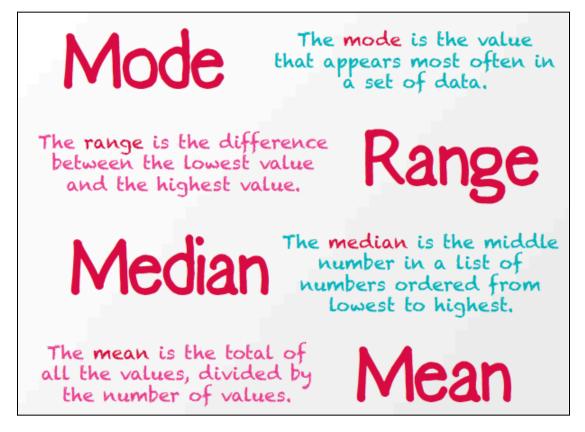
Volume:

Week 9: Statistics

Statistical Questions:

 Statistical Question - A question that anticipates and accounts for a variety of answers. (Does not have an exact answer)
 Non-Statistical Question - A question with one set answer that will not change.

 Ex:
 • How many text messages do you send each day?
 • How many days are in March?


 • What is the minimum driving age for each state in the US?
 • How many people attended the concert last night?

How many movies do you own?

Identify if the following is a statistical question. Assume that these questions are being asked to 20 students in your math class:

How old are you?	Y	or	Ν
What is your math teacher's name?	Y	or	Ν
 How many days did it snow in February? 	Y	or	Ν
What is your favorite color?	Y	or	Ν
 How many siblings do you have? 	Y	or	Ν

<u>Mean, Median, Mode, and Range:</u>

Example 01 Find the Mean, Median, Mode, and Range of the data set: Goals Scored Over the Last 7 Games						
1	3	4	6	6	7	8
mear average	n 5		most co	ode ommon	6	
medi	an	6	ra larges	nge t - smalles	st 7	

During a statistics lesson, students were told to measure the amount of sugar in 5 sugar packets. Liam and his lab partner measured these masses (in grams): 3, 4, 2, 3, 3	A car dealership tracked the number of cars sold each month: 81, 75, 78, 83, 81
Mean: Median: Mode: Range:	Mean: Median: Mode: Range:
A pilot counted the number of empty seats on 8 planes that he flew:	Collin's coach wrote down how many kilometers he had run over the past 5 days.
1, 1, 3, 4, 1, 4, 4, 2	7, 1, 1, 1, 7
Mean: Median: Mode: Range:	Mean: Median: Mode: Range: