AP Chemistry Summer Assignment

Date Due:1st Day of ClassFor Questions Contact:Laura Trout troutl@lancastercountryday.org

"Why is there a summer assignment for AP Chemistry?" The AP Chemistry course assumes that you recall the concepts you learned in Honors Chemistry and can use those concepts with confidence. The summer work serves to review topics you studied in first-year Honors chemistry. The AP Chemistry summer work will help you adjust to the course and will show you areas where you need to review. We dive right in on the first day of class, assuming you remember moles, stoichiometry, writing reactions, gas laws, solutions, etc.

"So how do I go about doing the summer assignment?"

Take a look at the problems in each section. If you remember how to do the problems without re-reading that material in the text, please do so. If not, use the resources you have to try and figure it out: e-book from Honors Chemistry, your notes from class, etc. Feel free to use other resources such as Khan Academy. Working with others in the class, or those that have completed the class, is also fair. It would be a good idea to check your answers against someone else when you are finished. Do not just copy answers! If you can't do most of these on your own, you are going to have a hard time in AP Chemistry.

I will offer Zoom help sessions over the summer. Here are the dates and times. <u>Use this link</u> to enter the Zoom room when it is time.

July 16	10-11 am	Aug 14 7-8 pm
July 31	4-5 pm	Aug 18 7-8 pm
Aug 11	10-11 am	

For mathematical problems *I expect to see all work* (with the exception of adding up molar masses and simple metric conversions, i.e. mL to L). *Units should be included* on all numerical values (within the problem and in the answer). This will be the rule in the class as well. Use your understanding of significant figures to round answers to an appropriate number of digits. *I love to see the Factor Label Method used to solve problems*.

"Will there be a lot of memorization in AP Chem?"

The short answer is "no". For AP Chemistry, you will not need to memorize ion names, however it is helpful. You will always be given the chemical formula for a substance on an exam. You will not need to memorize any mathematical equations. There is an AP Chemistry equation sheet that will always be available for you during class and on exams. I also encourage you to start using the AP Chemistry periodic table, rather than the PT from Honors Chemistry. Notice there are no names on the AP Chemistry periodic table, so that will take some getting used to for some people. There are two things you must memorize, 1) the six strong acids and 2) some simple solubility rules. I suggest you start now.

Six Strong Acids	hydrochloric acid hydrobromic acid hydroiodic acid	HCl HBr HI	nitric acid sulfuric acid perchloric acid	HNO ₃ H ₂ SO ₄ HClO ₄
Solubility Rules Think SNAAP.	Compounds conta sodium (Na ⁺) nitrate (NO ₃ ⁻)	ining these	ions are always so ammonium (NH ₄ ⁺) acetate (C ₂ H ₃ O ₂ ⁻) potassium (K ⁺)	luble.)

AP Chemistry Summer Assignment For each problem below show your work. Always use units and box your final answer.

Can you work with significant figures and scientific notation?

Round each of the following numbers to four significant figures, and express the result in scientific notation:

300.235800 456,500 0.006540210 - 0.000957830 -0.035000

Record the measurement to the correct number of significant figures.

Carry out the following operations, and express the answers with the appropriate number of significant figures: 1.24056 + 75.80

75 - 45.88

890,000 x 112.3

78,132 / 2.50

Can you use dimensional analysis (FLM) to convert measurements to other units?

Perform the following conversions. Watch your significant figures. If the answer is less than 0.001 or greater than 1000, put the answer in scientific notation:

8.60 cm to nm	
3.00 days to s	
75.00 km/hr to m/s	
55.35 m ³ to cm ³	
1.08 atm to kPa	
900.0 mmHg to atm	

Can you use density as a conversion factor in a FLM problem?

a. The density of pure silver is 10.5 g/cm³ at 20°C. If 5.25 g of pure silver pellets are added to a graduated cylinder containing 11.2 mL of water, to what volume level will the water in the cylinder rise?

b. The density of air at ordinary atmospheric pressure and 25°C is 1.19 g/L. What is the mass, in kilograms, of the air in a room that measures 12.5 x 15.5 x 8.0 ft? (Note: 1 foot = 0.3048 m)

Do you have a good understanding of atomic theory?

1. Let's pretend you are holding two atoms of carbon that are isotopes. Describe what the two atoms have in common and how they are different.

Symbol	³⁹ K				
Protons		25			82
Neutrons		30	64		
Electrons			48	56	
Mass #				137	207

2. Fill in the gaps in the following table, assuming each column represents a neutral atom:

- 3. Write the correct symbol, with both superscripts and subscripts, for each of the following :
 - (a) the isotope of sodium with mass 23
 - (b) the atom of vanadium that contains 28 neutrons
 - (c) the isotope of chlorine with mass 37
 - (d) an atom of magnesium that has an equal number of protons and neutrons

Do you know the order of sublevels in an electron configuration (without a cheat sheet- only the PT)?

1. Write the full electron configuration for the following atoms. Underline the valence electrons.

Mg :

Br :

2. Draw an orbital diagram (lines and arrows) for the following atoms.

P :

Co:

Do you know your way around the Periodic Table?

On the diagram	of the	e Pe	riodi	c Tal	ole b	elow	, ide	ntify	the	loca	tion	for:							
metals	nonr	neta	ls	S	emin	netal	s(me	etallo	oids)			tran	sitio	n me	tals		la	nthanide	es
halogens	alkal	i me	tals	n	oble	gass	ses					alka	line	eartl	n me	tals			
	1	1				Pe	eriod	lic Ta	able	of tł	ne El	leme	nts					18	
	Hydrogen	2											13	14	15	16	17	He	
	3 Li	4 Be Beryllum]										5 Boron	6 Carbor	7 N	n ⁸ O	9 F	10 Ne Neon	
	6.941	9.012]										10.811	12.011	14.007	15.999	18.998 17	20.190	
	Na Sodium 22.990	Mg Magneslum 24.305	3	4	5	6	7	8	9	10	11	12	Aluminur 26.982	n Silicon 28.086	Phospho 30.974	rus Sulfur 32.066	Chlorine 35.453	Argon 39.948	
	19 K Potassium	20 Calcum	21 Sc Scandium	22 Ti Titanium	23 Vanadium	24 Cr Chromium	25 Mn Manganese	Fe Iron	Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc	31 Galium	32 Germania	m Arsen	34 Selentur	35 Bromine	36 Kr Krypton	
	39.098	40.078	44.956 39	47,88	50.942 41	42	43	44	45	46	47	48	49	50	51	52	53	84.80 54	
	Rb Rubidium 84.468	Strontium 87.62	Yttrium RE 906	Zr Zirconium 91 224	Niobium 92.906	Mo Molibdenum 95.94	Tc Technetium 98 907	Ruthentur 101.07	n Rhodium	Palladium 106.42	n Ag Silver	Cadmun	n Indium	Sn Tin	Sb Antimo 121.76	Telluriur	lodine	Xe Xenon 131.29	
	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	Cestum 132.905	Barium 137.327	Lanthanides	Hafnlum 178.49	a Tantalum 190.948	Tungsten 183.85	Rhenium 186.207	Osmium 190.23	Iridium 192.22	Platinum 195.08	Gold 196.967	Mercury 7 200.59	Thailium 204.383	207.2	Bismut 208.99	Polonium 0 [208.982	At Astatine 209.987	Radon 222.018	
	87 Fr Francium	88 Ra Radium	89-103 Actinides	104 Rf	105 Db Dubrium	106 Sg Seaborglum	107 Bh Bohrium	108 Hs Hassium	109 Mt Meltheriu	Dermeteden			II3 Unution	Fleroviu			Unurseptu		
	223.020	226.025		[261]	[262]	[266]	[264]	[269]	[268]	[269]	[272]	[277]	unknow	[289]	unknow	n [298]	unknown	unknown	
			5	7 5 La anthanum	8 5 Ce Certum	9 Pr suscentian	0 6 Nd Iaodymium	Pm	62 Sm Samarium	63 Eu Europlum	64 Gd Gadolinium	65 Tb Terblum	66 Dy Dysprosium	67 Ho Holmium	68 Erblum	69 Tm Thultum	70 Yb	71 Lutatum	
			8	9 9	0 9	1 9	2 9	3	94	95	96	97	98	99	100	168.734	102	103	
				Actinium 227.028	Thorium P 232.038	Pa rotactinium 231.036	Uranium M 238.029	Np Neptunium 237,048	Plutonium 244.064	Americium 243.061	Curium 247,070	Berkeltum 247.070	Cf Californium 251.090	Einsteinium [254]	Fermium 257.095	Mendelevium 258.1	Nobelium 259,101	Lr Lawrenclum 12671	

Do you understand how to calculate average atomic mass?

- 1. What isotope is used as the standard in establishing the atomic mass scale?
- 2. The atomic mass of magnesium is reported as 24.3, yet no atom of magnesium has the mass of 24.3 amu. Explain.
- 3. Only two isotopes of copper occur naturally, Cu-63 (abundance 69.09 percent) and Cu-65 (abundance 30.91 percent). Calculate the average atomic mass of copper.

Do you know your nomenclature rules?

(Note: You do not need to memorize the ions or prefixes for naming. You may use the reference sheet from H. Chem.)

Give the name for each of the following ionic compounds: For transition metals that have more than one charge, use Roman numerals.

AIF ₃	Hg₂S
Fe(OH) ₂	$Ca(C_2H_3O_2)_2$
Cu(NO ₃) ₂	$Cr_2(CO_3)_3$
Ba(CIO ₄) ₂	K ₂ CrO ₄
Li ₃ PO ₄	(NH ₄) ₂ SO ₄

Write the chemical formula for each of the following ionic compounds:

copper (I) oxide	mercury (I) bromide
aluminum hydroxide	iron (III) carbonate
zinc nitrate	sodium hypobromite

Give the name or chemical formula, as appropriate, for each of the following acids:

HBrO ₃	hypochlorous acid
HBr	iodic acid
H ₃ PO ₄	sulfurous acid

Give the name or chemical formula, as appropriate, for each of the following molecular substances:

SF ₆	dinitrogen tetroxide
IF ₅	hydrogen cyanide
XeO ₃	tetraphosphorous hexasulfide

Can you calculate percent mass? (show your work!)

Calculate the percentage by mass of oxygen in the following compounds:

NO₂ Cr(NO₃)₃

Can you balance a chemical equation and identify the type of reaction it illustrates?

Balance the following equations, and indicate what type of reaction each one is:

a.	$AI(s) + CI_{2}(g) \rightarrow AICI_{3}(s)$	
b.	$PbCO_{3}(s) \rightarrow PbO(s) + CO_{2}(g)$	
c.	$C_{7}H_{8}O_{2}\left(l\right) \hspace{0.1 cm} + \hspace{0.1 cm} O_{2}\left(g\right) \hspace{0.1 cm} \rightarrow \hspace{0.1 cm} CO_{2}\left(g\right) \hspace{0.1 cm} + \hspace{0.1 cm} H_{2}O\left(l\right)$	
d.	$AI(NO_3)_3 (aq) + Na_3PO_4 (aq) \rightarrow AIPO_4 (s) + NaNO_3 (aq)$	
e.	$AICI_3 (aq) + Zn (s) \rightarrow ZnCI_2 (aq) + AI (s)$	

Can you imagine a chemical reaction?

Write balanced chemical equations, including phase notations, to correspond to each of the following descriptions. Then draw a picture of what you would see if you were watching the reaction occur in the lab. Label all of the substances in the drawing.

Solid calcium carbide, CaC_2 , reacts with water to form an aqueous solution of calcium hydroxide and acetylene gas, C_2H_2 .

When solid potassium chlorate is heated, it decomposes to form solid potassium chloride and oxygen gas.

Solid zinc metal reacts with sulfuric acid to form hydrogen gas and an aqueous solution of zinc sulfate.

When liquid phosphorus trichloride is added to water, it reacts to form a solution of phosphorous acid and hydrochloric acid.

A solution of acetic acid (CH₃COOH) is titrated with a solution of sodium hydroxide.

Can you work with mass, moles and particle number in conversions?

- 1. The molecular formula of aspartame, the artificial sweetener marketed as NutraSweet, is $C_{14}H_{18}N_2O_5$.
 - a. What is the molar mass of aspartame?
 - b. How many moles of aspartame are present in 1.00 mg of aspartame?
 - c. How many molecules of aspartame are present in 1.00 mg of aspartame?
 - d. How many hydrogen atoms are present in 1.00 mg of aspartame?

Can you determine the empirical and molecular formulas of a compound from mass or %mass data?

1. Determine the empirical formula of each of the following compounds if a sample contains

a.	10.4 percent C	27.8 percent S	61.7 percent CI

b. 6.51 g C

2.88 g O

20.61 g F

- 2. Determine the empirical and molecular formulas of each of the following substances:
 - a. Ibuprofen, a headache remedy contains 75.69 percent C, 8.80 percent H, and 15.51 percent O by mass; molar mass about 206 g

b. Benzene contains only carbon and hydrogen and is 7.74% hydrogen by mass. The molar mass of benzene is 78.1 g/mol.

Can you perform stoichiometry calculations to predict quantities involved in reactions?

1. Automotive air bags inflate when sodium azide, NaN₃, rapidly decomposes to its component elements:

 $2 \text{ NaN}_{3}(s) \longrightarrow \text{Na}(s) + 3 \text{N}_{2}(g)$

a. How many moles of N₂ are produced by the decomposition of 1.50 moles of NaN₃?

b. How many grams of NaN_3 are required to form 5.00 g of nitrogen gas?

c. How many grams of NaN $_3$ are required to produce 10.0 L of nitrogen gas if the gas has a density of 1.25 g/L?

- 2. A piece of aluminum foil 0.550 mm thick and 1.00 cm square is allowed to react with bromine to form aluminum bromide.
 - a. How many moles of aluminum were used? (The density of aluminum is 2.699 g/cm³.)

b. How many grams of aluminum bromide form, assuming that the aluminum reacts completely?

Can you find the limiting reactant and theoretical yield for a reaction?

1. The fizz produced when an Alka-Seltzer tablet is dissolved in water is due to the reaction between sodium bicarbonate, NaHCO₃, and citric acid, H₃C₆H₅O₇:

 $3 \text{ NaHCO}_3 (aq) + H_3C_6H_5O_7 (aq) --> 3 CO_2 (g) + 3 H_2O(I) + Na_3C_6H_5O_7 (aq)$

In a certain experiment 1.00 g of sodium bicarbonate and 1.00 g of citric acid are allowed to react.

a. Which reactant is the limiting reactant? You must show work to support your answer.

b. What is the theoretical yield of carbon dioxide (in grams)?

c. How much of the limiting reactant is left when the reaction is complete?

d. How many grams of the excess reactant remain after the reaction is complete?

 When hydrogen sulfide gas is bubbled into a solution of sodium hydroxide, the reaction forms sodium sulfide and water. What is the theoretical yield of sodium sulfide if 2.50 g of hydrogen sulfide is bubbled into 150.0 mL of a 0.300 M solution of sodium hydroxide? Assume that the limiting reagent is completely consumed.

3. Hydrogen peroxide is oxidized with permanganate solution to produce oxygen gas by the following reaction. 10 H⁺ (aq) + 3 H₂O₂ (aq) + 4 MnO₄¹⁻ (aq) \rightarrow 4 MnO₂ (aq) + 8 H₂O + 3 O₂ (g)

In the lab a student mixed 30.0 mL of 0.30 M hydrogen peroxide solution with 30.0 mL of 0.30 M potassium permanganate solution. The oxygen that was produced was collected by water displacement at 298 K and 1.00 atm of pressure. The volume of oxygen collected was 178 mL. (Ignore the effect of water vapor in the collection tube here.)

a. What is the limiting reactant?

b. What is the theoretical yield of oxygen gas, in milliliters?

c. What is the percent yield of oxygen gas?

Can you work with concentrations?

1. a) What is the molarity of a copper (II) chloride solution where 5.00 g of copper(II) chloride solid is placed in a volumetric flask and dissolved in deionized water up to the 250 mL mark?

b) What is the molarity of copper(II) ions in the solution above?

- c) What is the concentration of chloride ions in the solution above?
- 2. A student is given a stock solution of sodium acetate that is 8.000 M.
 - a) If 25.00 mL of the stock solution was placed in a 100 mL volumetric flask and filled to the line with distilled water, what would be the concentration of the new solution?

b) How many milliliters of the stock solution would be needed if the student wanted to make 1.00 L of 0.250 M sodium acetate?

c) Describe the procedure, including the specific glassware or tools that would be needed for the student to make the solution described in part b).