

POCATELLO/CHUBBUCK SCHOOL DISTRICT 25

LEARNING TODAY FOR THE POSSIBILITIES OF TOMORROW

Administration Offices 3115 Pole Line Road Pocatello, Idaho

INVITATION TO BID

SPECIFICATIONS FOR

2025-26 FIRE ALARM REPLACEMENT AT FRANKLIN MIDDLE SCHOOL

PROJECT NO.	<u>SCHOOL</u>	<u>ADDRESS</u>
1	Franklin Middle School	2271 E Terry St

BIDS WITH CONDITIONS WILL NOT BE ACCEPTED

BID OPENING

April 8, 2025 10:30 A.M.

POCATELLO/CHUBBUCK SCHOOL DISTRICT 25

LEARNING TODAY FOR THE POSSIBILITIES OF TOMORROW

POCATELLO/CHUBBUCK SCHOOL DISTRICT NO. 25 INVITATION TO BID

Sealed bids will be received at the Pocatello/Chubbuck School District No. 25 Business Office, Bannock County, Idaho at 3115 Pole Line Road, Pocatello, Idaho, 83201, until **10:30 AM, on April 8, 2025** for the following:

2025 Fire Alarm Replacement at Franklin Middle School

A mandatory pre-bid conference and walk-thru to review the projects will be held at the District Maintenance Shop, 185 E. Maple, Pocatello, Idaho, on April 2, 2025 at 1:30 PM.

Specifications or additional details, (including bid forms), may be secured at the Business Office, 3115 Pole Line Road, Pocatello, Idaho, 83201 or by calling (208) 235-3270. All bids must be on the forms furnished, all blank spaces filled, and signed with the name and address of the Bidder. No unqualified bids will be read.

Each bid shall be accompanied by a certified check, cashier's check, or a bidder's bond, (executed by a qualified surety company with the power to do business in the State of Idaho) in the sum of not less than five percent, (5%) of the total bid, made payable to School District No. 25, Bannock County, Pocatello, Idaho. This surety shall be forfeited by the bidder in the event of failure to enter into a contract. Personal or company checks will not be accepted. Compliance with Idaho Public Works Law is required.

The Board of Trustees reserves the right to reject any or all bids or to waive any informalities, or to accept the bid or bids deemed best for Pocatello/Chubbuck School District No. 25, Bannock County, Pocatello, Idaho.

Renae Johnson, Clerk
Pocatello/Chubbuck School District No. 25

Publish dates:

March 29, 2025 April 5, 2025

IDAHO STATE JOURNAL

INSTRUCTIONS TO BIDDERS

BIDS:

Sealed bids will be received on or before the time and date set forth under Invitation to Bid

The owner reserves the right to accept or reject any part or all bids.

Bidders submitting a bid on this work will be required to figure and furnish everything as called for by these specifications and the requirements of the Bid sheet.

All bids shall be in a sealed envelope addressed to the Pocatello/Chubbuck School District No. 25 Business Office, Bannock County, Idaho at 3115 Pole Line Road, Pocatello, Idaho. The following shall be written on the exterior of the envelope:

"BID FOR 2025 FIRE ALARM REPLACEMENT AT FRANKLIN MIDDLE SCHOOL TO BE OPENED AT 10:30 AM MST on APRIL 8, 2025"

Bids not delivered by contractors at time of bid opening must be received in mail no later than 4:00 PM on April 7, 2025, the day before the bid opening.

EXAMINATION OF THE SITE AND DOCUMENTS: *Pre-Bid Walk through.*

Refer all questions to Mr. Brian Glenn, School Plant Facilities Coordinator, at (208)233-2604. Contact with other district staff, Board of Trustees, or Administration, will be by written permission only.

A mandatory pre-bid conference and walk-thru to review projects will be held at the District Maintenance Shop, 185 East Maple, Pocatello, Idaho, on April 2, 2025 at 1:30 pm.

The purpose of the pre-bid conferences is to:

- 1. Carefully examine the specifications.
- 2. Visit the worksite.
- 3. Be fully informed of existing conditions and limitations.
- 4. Include in the bid sums sufficient to cover all items required by the contract, which shall rely entirely upon your own examinations in making this proposal.

INTERPRETATIONS:

Should a bidder find discrepancies in, or omissions from the specifications, or be in doubt as to their meaning, he should at once notify the Owner, who will send written instructions or addenda to all bidders. The owner will not be responsible for oral interpretations. Questions received less than 48 hours before time for bid opening cannot be answered. All addenda issued during the time of bidding will be incorporated in the contract.

BID GUARANTEE:

As a guarantee, if awarded the contract, the bidder will execute same and furnish bond. Each bid will be accompanied by a Certified Check, Cashier's Check, or Bid Bond for not less than five percent (5%) of the base bid payable to Owner. NO PERSONAL OR COMPANY CHECKS WILL BE ACCEPTED.

OBJECTIONS:

Written objections to specifications or bid procedures must be received by the clerk, secretary, or other authorized official of the District at least one (1) business day before the date and time upon which bids are scheduled to be received, per Idaho Code Section 68-2806(c).

EVIDENCE OF QUALIFICATIONS:

Upon request of Owner, a bidder whose bid is under consideration for award of the contract shall submit, promptly, satisfactory evidence of his financial resources, his experiences, and the organization and equipment he has available for performance of the contract.

LAWS AND ORDINANCES:

The contractor hereby binds himself to protect and save harmless the owner from all damages arising from the violation of any and all Federal, State, County, City, and all other laws, rules, regulations, in the performance of the terms of the contract.

HOLD HARMLESS AGREEMENTS:

The District expects your work to conform to professional standards. The contractor is expected to hold the District harmless for all damages or claims arising out of the work performed by the contractor. The District will not agree to hold the contractor harmless for damages or claims.

EQUIPMENT:

The contractor shall provide all labor, materials, tools, and equipment, etc. necessary for the complete and substantial execution of everything described in the specifications.

STORAGE OF MATERIALS:

The contractor shall make arrangement and coordinate with the Maintenance Department for delivery and storing of materials. Any damages of life or property caused by storage of materials on the above-indicated place shall be paid for by the contractor, who shall hold the owner harmless for any damages concerning the same.

SUPERVISION:

The supervision of this work will be done by Pocatello/Chubbuck School District No. 25 Maintenance Department.

INSPECTION OF WORK:

The representative of the owner shall at all times have access to the work wherever it is in preparation or progress and the contractor shall provide facilities for such access and for inspection.

EMPLOYMENT OF RESIDENTS OF IDAHO:

In compliance with Idaho Laws, Section 44-1001 and 44-1002 Idaho Code, the contractor "... must employ <u>ninety-five percent</u> (95%) bona fide Idaho residents as employees on any such contracts <u>except where under such contracts</u> fifty (50) or less persons are employed the contractor may employ <u>ten percent</u> (10%) nonresidents, provided however, in all cases such employers must give preference to the employment of bona fide Idaho residents in the performance of such work...."

CONTRACTOR'S LICENSE:

In compliance with Idaho Laws, the contractor must be registered with the State of Idaho, and hold the required <u>Public Works Contractor's License</u> before obtaining the contract documents and before submitting a bid for this work.

INSURANCE:

All contractors who provide goods or services to the District are required to provide the District with certificates of insurance for General Liability, Auto Liability, Workers Compensation, and Professional Liability if applicable.

The General Liability and/or Professional Liability certificate must name the District as an additional insured under the contractor's policy.

Certificates are to be provided to the District prior to any work commencing on District property. This would include the placement of any equipment or materials at the work site.

Minimum Insurance Limits

General Liability \$1,000,000 per occurrence

\$1,000,000 products and completed operations

\$1,000,000 annual aggregate

Auto Liability \$1,000,000 per occurrence

Workers Compensation Statutory

PERFORMANCE BOND:

The successful bidder will be required to furnish a 100% performance bond when entering into the contract work, per Idaho Code Section 54-1926, "....conditioned upon the faithful performance of the contract in accordance with the plans, specifications and conditions thereof."

PAYMENT BOND:

The successful bidder will be required to furnish a 100% payment bond when entering into the contract work, per Idaho Code Section 54-1926, "solely for the protection of persons supplying labor or materials, or renting, leasing, or otherwise supplying equipment to the contractor or his subcontractors in the prosecution of the work provided for in such contract."

5% RETAINAGE:

The Owner will retain 5% of the Contractor's earned sum to ensure faithful performance. This 5% will be released to the Contractor upon receipt of tax release from State of Idaho.

OWNER/CONTRACTOR AGREEMENT:

The Agreement for the work will be written on a District provided Form of Agreement between Owner and Contractor where the basis of payment is a stipulated sum.

LIQUIDATED DAMAGES:

Contractor shall be required to pay Owner as liquidated damages the sum of \$500 for each day, after the scheduled completion date, that the project is unfinished.

CHANGES IN THE WORK:

The owner, without invalidating the contract, may order extra work or make changes by altering, adding to, or deducting from the work; the contract sum being adjusted accordingly. All such work shall be executed under the conditions of the original contract, except that any claim for extension of the time caused thereby shall be adjusted at the time of ordering such change.

The total allowance for combined overhead and profit for changes shall be included in the total cost to the owner and shall be based on the following schedule:

- a) For the Contractor, 10% over cost;
- b) For the Sub-Contractor, 15% over cost to be divided 10% for Sub-Contractor and 5% for Contractor; and
- c) For any Sub-Subcontractor, 15% over cost to be divided 5% for Contractor, 5% for Sub-Contractor, and 5% for Sub-Subcontractor.

FORM WH5:

Per Idaho Code Section 54-1904A, within thirty (30) days of award of bid, the contractor shall file with the State Tax Commission a form WH-5, Public Works Contract Report.

WARRANTY:

Manufacturer shall warrant products, projects under normal use to be free from defects in materials and workmanship for a period of one year from date of installation and completion of project.

Warranty shall cover repair or replacement of areas determined defective upon inspection.

CLEAN UP:

The contractor shall at all times keep the premises free from accumulations of waste material or rubbish caused by his employees or work, and at the completion of the work he shall remove all his rubbish from and about the building and all tools and surplus materials and shall leave his work clean. In case of dispute, the owner shall remove the rubbish and surplus materials and charge the cost to the contractor. At no time shall the School District Dumpsters be used to remove the Contractor's waste or garbage scraps.

IDAHO EMPLOYER ALCOHOL AND DRUG-FREE WORKPLACE ACT: Include with your bid sheet a contractor's affidavit pursuant to Idaho Code Section 72-1717.

BIDDER CERTIFICATION FORM: All bidders must complete and submit the Bidder Certification Form included with this bid request.

PAYMENTS:

Prices must remain firm as quoted by supplier until quantity awarded is received. Application for payment dated on or before the 25th of the month, shall be paid by the 15th of the following month. Application for payment dated after the 25th of the month, shall be paid within 30 days. Invoices must break down work by school and other District buildings, then totaled.

Delivery may be accepted any time, however, payment for the 2025-2026 fiscal year cannot be made until after July 1, 2025 when those funds have been released.

BID:

The following specifications are being used as a guideline. Alternate bids for equal carpet material will be considered upon District approval two weeks prior to the bid due date. Substitutions or major alterations must be indicated upon the proposal sheet at the time of the bid submission. Bids must be based upon conditions at the site and these specifications. Bids shall be submitted in accordance with the requirements shown on the bid form.

BID EVALUATION CRITERIA:

Contractor selection on this project will be evaluated based on the following:

- 1. Price.
- 2. Contractor reputation in providing quality materials, installation and service of work with current customers or past performance with Pocatello/Chubbuck School District 25. (Please list all jobs/contracts greater than \$50,000 performed in the past two years if contractor has not performed one for the District in past 5 years).
- 3. Vendor ability to best match the listed criteria as specified.

The contract will be awarded to the lowest responsive and responsible bidder or bid/offer most advantageous to the District with price and other factors considered.

BASIS OF PAYMENT

The accepted quantity of this item will be paid for at the contract price per unit completed as called for on the proposal sheet, which price shall be full compensation for the furnishing of all materials, labor, equipment, tools, or any other work necessary to complete this item in conformance with the plans and these specifications or as directed by the School Plant Coordinator.

DELIVERY AND START OF WORK:

Work can begin as soon as possible after June 2, 2025 and be completed no later than August 8, 2025.

REQUIREMENTS FOR REPLACEMENT OF FIRE ALARM SYSTEM:

FRANKLIN MIDDLE SCHOOL

SCOPE OF WORK - This work is to replace the existing fire alarm system with a new updated fire alarm system and shall include the following:

- A. Removal and disposal of all existing fire alarm system components.
- B. Installation of new Potter fire alarm control panel and components as per drawings to meet current code requirements.
- C. Installation of all new low voltage wiring and necessary piping to connect new components as shown on drawings.
- D. All high voltage electrical and necessary piping for a fully functional fire alarm system.
- E. All testing as required by local fire authority.
- F. Repair of building areas affected by project to original pre-project condition.
- G. Costs for all permits and inspections.

GENERAL NOTES THAT APPLY TO ALL OF THE ABOVE BID ITEMS:

- 1. Contractor will submit equipment, materials and/or design submittals to the District for approval prior to ordering equipment.
- 2. New installation shall meet all Federal, state and local code requirements. The contractor will be responsible for obtaining any required permits and/or jurisdictional approvals. The contractor is responsible for providing any and all drawings and specifications that are required by governmental agencies. The contractor will be required to provide proof of final approval from all governmental agencies having jurisdiction over this work once the installation is complete.
- 3. 3. Contractor is responsible for verifying existing electrical loads and notifying the District if electrical service modifications might be required. The Contractor is responsible for making all electrical connections necessary unless directed differently in individual item descriptions.
- 4. The Contractor is responsible for providing any changes or modifications required to the building (drywall, painting, roofing, insulation, etc.) so as to provide a complete, finished product.
- 5. Contractor will provide industry standard warrantee for this application.
- 6. Contractor will provide operation and maintenance training of O&M personnel once the installation is complete. Completed operation & maintenance manuals are to be turned into the District Maintenance Department.

BID PROPOSAL

2026 FIRE ALARM REPLACEMENT AT FRANKLIN MIDDLE SCHOOL

Board of Trustees	Date:
Pocatello/Chubbuck School District No. 25	
3115 Pole Line Road	·
Pocatello, ID 83201-6119	Company Name
	accepted, to enter into an agreement with Owner to to complete work called for by these specifications in at Franklin Middle School.
The District will award the Fire Alarm Replaceme responsible bid.	nt bid by project(s) number to the vendor with the lowest
We further acknowledge Addendum(s) received,	if applicable. No, dated
PROJECT	AMOUNT
No. 1 – Franklin Middle School	\$
Work can begin June 2, 2025 and be completed	no later than August 8, 2025.
	ct any/or all bids or to waive any informalities, or to accept uck School District No. 25, Bannock County, Pocatello, Idaho.
Respectfully submitted,	
 Attached, if applicable, is a listing of sub-contra Attached is our Affidavit of Alcohol and Drug-Fr Attached is Bidder Certification Form. 	ctor's names and addresses for this project. ee Worksite, as pursuant to Idaho Code 72-1717.
Company Name	Authorized Signature / Date
Address	Title
City, State, Zip	Public Works License Number
Phone / Fax Number	Worker's Comp & Liability Insurance Exp. Date
Email, if applicable	

COUNTY OF _______ Pursuant to the Idaho Code, Section 72-1717, I, the undersigned, being duly sworn, depose and certify that named contractor is in compliance with the provisions of Idaho Code section 72-1717; that named contractor provides a drug-free workplace program that complies with the provisions of Idaho Code, title 72, chapter 17 and will maintain such program throughout the life of a state construction contract and that named contractor shall subcontract work only to subcontractors meeting the requirements of Idaho Code, section 72-1717(1)(a). Name Authorized Signature / Date Subscribed and sworn to before me this _____ day of _______, 2025.

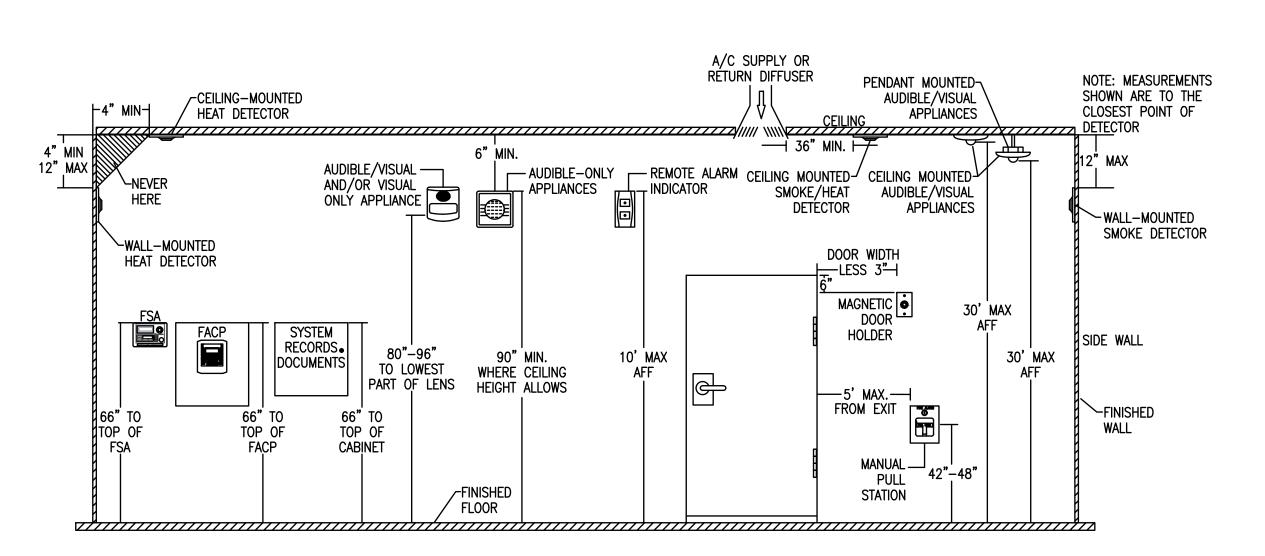
NOTARY PUBLIC, residing at

CONTRACTOR'S AFFIDAVIT

Commission expires:

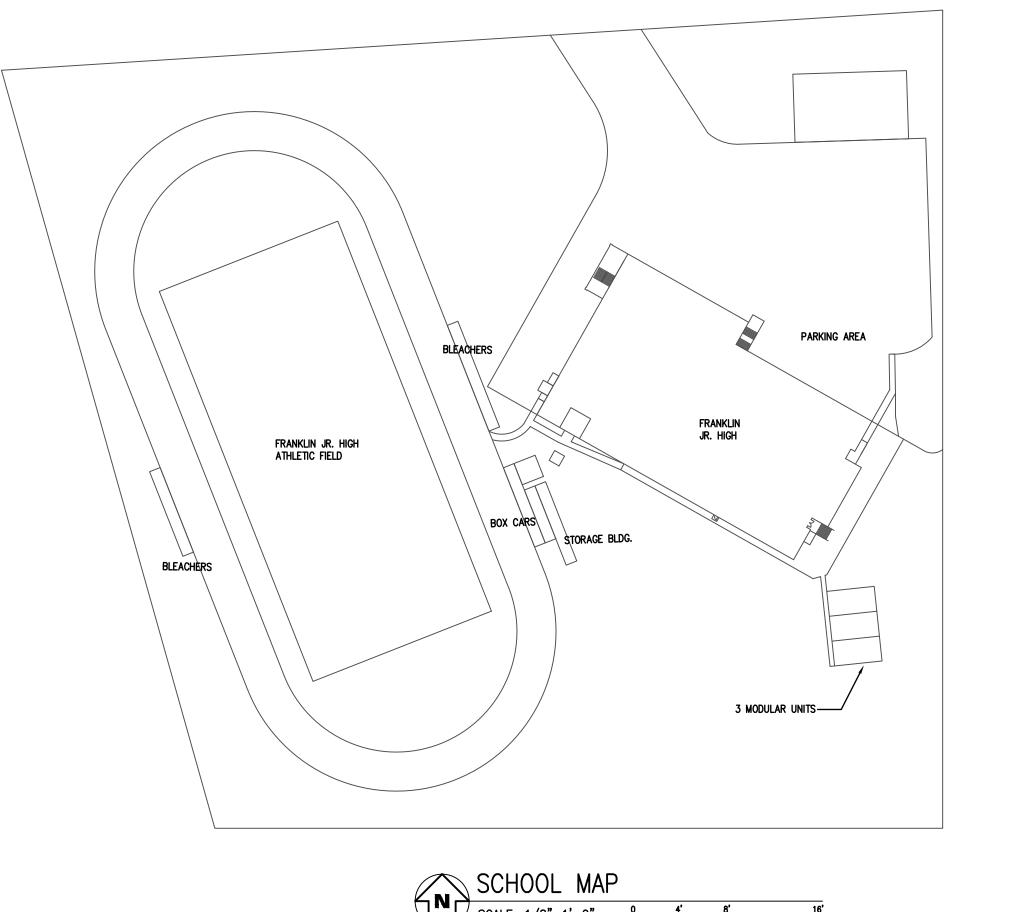
POCATELLO/CHUBBUCK SCHOOL DISTRICT 25

LEARNING TODAY FOR THE POSSIBILITIES OF TOMORROW


BIDDER CERTIFICATION FORM

- 1. **Debarment and Suspension** In submitting this bid proposal, we hereby certify that we have not been suspended or in any way excluded from Federal procurement actions by any Federal Agency. We fully understand that if information contrary to this certification subsequently becomes available, such evidence may be grounds for non-award or nullification of a bid contract.
- 2. **Anti-Collusion** In submitting this bid proposal, we hereby certify this proposal was developed and prepared without any collusion with any competing bidder or District employee. The content of this proposal has not been disclosed to any competing or potentially competing bidder prior to the proposal due date and time. Furthermore, no action to persuade any person, partnership or corporation to submit or withhold a bid has been made.
- 3. Anti-Lobbying In submitting this bid proposal, we hereby certify that to the best of our knowledge and belief, no appropriated Federal funds have been paid or will be paid by or on behalf of person associated with this proposal to any person for influencing or attempting to influence and officer or employee of any agency, a member of Congress, an office or employee of Congress or an employee of a member of Congress in connection with the awarding of any Federal contract, the making of any Federal grant, the making of any Federal loan, the entering into of any cooperative agreement and the extension, continuation, renewal, amendment or modification of any Federal contract, grant, loan or cooperative agreement.
- 4. National Sexual Offender Registry In submitting this bid proposal, you certify to the District that your company will prohibit any persons in your employ who are registered or required to register under the Idaho Sex Offender Registration Act from participation in company business with the District if such participation would require them to be present on school property. You certify further that you have cross checked such employees against the National Sex Offender Registry found at the following web link: http://www.nsopr.gov/

Signed:	_ Date:	
Name & Title:		
Company:	Phone:	
Address:		
City/State/Zip:		


					SYMBOL LEGEN	ND				
SYMBOL		DESCRIPTION	MANUF. & PA	ART #	MOUNTING	MOUNT IN	QTY			
FACP	FIRE AL	ARM CONTROL PANEL	POTTER - AFC-100)OV	WALL - TOP @ 66"	CABINET INCLUDED	1			
FPS	FIRE AL	ARM POWER SUPPLY	POTTER - PSN1000)	WALL - TOP @ 66"	CABINET INCLUDED	2			
AMP1	VOICE /	AMPLIFIER PANEL	POTTER - SCA-507	70	WALL - TOP @ 66"	CABINET INCLUDED	1			
APS	AUXILIA	RY POWER SUPPLY	EXISTING		WALL - TOP @ 66"	BY OTHERS	1			
СОМ	FIRE AL	ARM COMMUNICATOR	NAPCO - SLE-MAX	2-FIRE	WALL - TOP @ 66"	CABINET INCLUDED	1			
DOC	DOCUMI	ENT BOX	SPACE AGE ELEC	- SSU00691	WALL - TOP @ 66"	CABINET INCLUDED	1			
LOC	LOCAL	OPERATORS CONSOLE	POTTER - LOC-100	00	WALL - TOP @ 66"	CABINET INCLUDED	1			
S	SMOKE	DETECTOR	POTTER - PAD300-	-PD	CEILING	4 SQ. DEEP W/ SINGLE GANG MUD RING - MOUNTED FLUSH	73			
•	HEAT D	ETECTOR	POTTER - PAD300-	-HD	CEILING	4 SQ. DEEP W/ SINGLE GANG MUD RING - MOUNTED FLUSH	120			
ММ	MONITO	R MODULE	POTTER - PAD100-	POTTER - PAD100-SIM FIELD VERIFY		4 SQ. DEEP - MOUNTED FLUSH	9			
RM	RELAY	MODULE	POTTER - PAD100-	TER - PAD100-RM FIELD VEF		4 SQ. DEEP — MOUNTED FLUSH	19			
Р	PULL S	TATION	POTTER - PAD100-	R - PAD100-PSSA WALL @ 48		4 SQ. DEEP W/ SINGLE GANG MUD RING - MOUNTED FLUSH	13			
VS	SPRINK	LER VALVE TAMPER	FIELD VERIFY	FIELD VERIFY		INSTALLED BY OTHERS	2			
WF	SPRINK	LER WATERFLOW	FIELD VERIFY	FIELD VERIFY		INSTALLED BY OTHERS	2			
DH	DOOR I	HOLDER	EXISTING	EXISTING		INSTALLED BY OTHERS	Е			
(DD)=	DUCT SMOKE DETECTOR		POTTER - PAD300-	POTTER - PAD300-DUCTR		DUCT DETECTOR HOUSING	13			
	CARBON	N MONOXIDE DETECTOR	SYSTEM SENSOR -	SYSTEM SENSOR - CO1224TR		4 SQ. DEEP W/ SINGLE GANG MUD RING - MOUNTED FLUSH	16			
CO	MINI MO	ONITOR MODULE	POTTER - PAD100-	-MIM	CEILING	IN CO BACKBOX	16			
	HORN ,	/ STROBE	SYSTEM SENSOR -	P2R(W)L	WALL 80"-96"	4 SQ. DEEP W/ SINGLE GANG MUD RING - MOUNTED FLUSH	3			
[SS]<	WALL M	IOUNT SPEAKER / STROBE	SYSTEM SENSOR -	SPSRL	WALL 80"-96"	4 SQ. DEEP W/ SINGLE GANG MUD RING - MOUNTED FLUSH	110			
ABBREVIA	TION	DESCRIPTION	ABBREVIATION	DE	SCRIPTION	2 P DEVICE ADDRESS - P				
E		EXISTING	AWG		WIRE GAUGE	L1SÓO1 OR MÒ1				
G	WITH GUARD TWP TWISTED PAI			(L — DENOTES LOOP #) (S or M — DENOTES SENSOR OR MODULE #)						
Р		PENDENT MOUNT	TWSP		HIELDED PAIR	· · · · · · · · · · · · · · · · · · ·				
R S		RESIDENTIAL (110V) SOUNDER BASE	FPLP FPLR		R LIMITED PLENUM R LIMITED RISER	1-#16/2 TWP				
WP		WEATHERPROOF				WIRE TYPE ABBREVIATED CONDUCTOR COUNT				
EOL	TRANS			STROBE -		WIRE SIZE				
EOLR		END OF LINE RELAY		15 CANDELA		# OF CABLES (IF OMITTED ONLY 1 CABLE NEEDED)				

OPERATIONS MATRIX FIRE ALARM INPUT	FIRE ALARM OUTPUT	DISPLAY DESCRIPTIVE TEXT AT FACP AND/OR ANNUNCIATOR	ACTIVATE ALARM INDICATOR AT FACP	ACTIVATE AUDIBLE ALARM AT FACP	ACTIVATE SUPERVISORY INDICATOR AT FACP	ACTIVATE AUDIBLE SUPERVISORY SIGNAL AT FACP	ACTIVATE TROUBLE INDICATOR AT FACP	ACTIVATE AUDIBLE TROUBLE INDICATOR AT FACP	TRANSMIT WATERFLOW SIGNAL	TRANSMIT ALARM SIGNAL	TRANSMIT SUPERVISORY SIGNAL	TRANSMIT TROUBLE SIGNAL	ACTIVATE ALTERNATE ELEVATOR RECALL	ACTIVATE PRIMARY RECALL	ACTIVATE ELEVATOR SHUNT	ACTIVATE FIREMAN'S HAT	ACTIVATE NOTIFICATION APPLIANCES	RELEASE MAGNETICALLY HELD SMOKE DOORS	SHUTDOWN AIR HANDLERS IN EXCESS OF 2,000 CFM	ACTIVATE CARBON MONOXIDE SOUNDER
SMOKE DETECTORS		•	•	•						•							•	•	•	
HEAT DETECTORS		•	•	•						•							•	•	•	
PULL STATIONS		•	•	•						•							•	•	•	
PRIMARY RECALL FLR, ELEV LOBBY SMOKE DET		•	•	•						•			•				•	•	•	
ALTERNATE RECALL FLR, ELEV LOBBY SMOKE DET	•	•	•	•						•				•			•	•	•	
TOP OF ELEV SHAFT SMOKE DET		•	•	•						•				•		•	•	•	•	
ELEVATOR EQUIPMENT ROOM SMOKE DET		•	•	•						•				•		•	•	•	•	
ELEVATOR EQUIPMENT ROOM HEAT DET		•	•	•						•					•		•	•	•	
TOP OF ELEV SHAFT HEAT DET		•	•	•						•					•		•	•	•	
WATERFLOW SWITCHES		•	•	•					•								•	•	•	
VALVE SUPERVISORY SWITCHES		•			•	•					•									
DUCT DETECTORS		•			•	•					•								•	
CARBON MONOXIDE DETECTOR		•			•	•					•									•
FIRE ALARM AC POWER FAIL		•					•	•				•								
FIRE ALARM LOW BATTERY		•					•	•				•								
OPEN CIRCUIT		•					•	•				•								
GROUND FAULT		•					•	•				•								
NAC SHORT CIRCUIT		•						•				•								
LOSS OF AC TO BUILDING		•					•	•				•						•		

FIRE ALARM DEVICE MOUNTING HEIGHTS

SCALE: NOT TO SCALE

GENERAL NOTES:

- 1. SCOPE OF WORK: THIS PROJECT SHALL INCLUDE THE REPLACEMENT OF AN EXISTING FIRE ALARM SYSTEM AND THE INSTALLATION OF A NEW ADDRESSABLE FIRE ALARM SYSTEM WITH OCCUPANT VOICE EVACUATION NOTIFICATION THROUGHOUT.
- 2. THESE DRAWINGS ARE DIAGRAMMATIC. REFER TO THE ARCHITECTURAL DRAWINGS FOR EXACT DIMENSIONS.
- 3. INSTALLATION SHALL COMPLY WITH NEC, NFPA 72 AND ALL OTHER APPLICABLE CODES AS REQUIRED BY THE LOCAL AUTHORITY HAVING JURISDICTION.
- 4. WIRING DEPICTED ON THESE PLANS IS SCHEMATIC ACTUAL WIRE LOCATIONS MAY DIFFER FROM THESE PLANS. WIRING SHALL BE PERFORMED AS ACTUAL BUILDING CONSTRUCTION CONDITIONS ALLOW AND TO MINIMIZE PENETRATIONS THROUGH AREA SEPARATION WALLS AND FIRE WALLS. THE USE OF A RACEWAY IS PERMITTED AS LONG AS NO 110V OR HIGHER VOLTAGE CABLES ARE IN THE SAME RACEWAY.
- 5. FIRE RATINGS SHALL BE MAINTAINED FOR ALL PENETRATIONS THROUGH FIRE—RATED CONSTRUCTION.
- 6. POWER FOR ALL FIRE ALARM PANELS AND FIRE ALARM POWER SUPPLIES MUST BE PROVIDED BY A DEDICATED AC BRANCH CIRCUIT. THE LOCATION OF THE BRANCH CIRCUIT BREAKER SHALL BE PERMANENTLY IDENTIFIED AT THE CONTROL UNIT, MECHANICALLY PROTECTED, ACCESSIBLE ONLY TO AUTHORIZED PERSONNEL AND SHALL BE RED AND LABELED "FIRE ALARM CIRCUIT CONTROL" IN ACCORDANCE WITH NFPA 72. ELECTRICAL CONTRACTOR SHALL PERFORM LOAD CALCULATIONS TO DETERMINE SIZE OF WIRING AND BREAKERS FOR ALL FIRE ALARM AC BRANCH CIRCUITS BASED ON THE INFORMATION PROVIDED IN THE BATTERY CALCULATIONS FOR THE FIRE ALARM EQUIPMENT.
- 7. POWER-LIMITED AND NONPOWER-LIMITED CIRCUIT WIRING MUST REMAIN SEPARATED IN CABINET. ALL POWER-LIMITED CIRCUIT WIRING MUST REMAIN AT LEAST 0.25" AWAY FROM ANY NONPOWER-LIMITED CIRCUIT WIRING. FURTHERMORE, ALL POWER-LIMITED AND NONPOWER-LIMITED CIRCUIT WIRING MUST ENTER AND EXIT THE CABINET THROUGH DIFFERENT KNOCK OUTS AND/OR SEPARATE CONDUITS.
- 8. WHEN UTILIZING CLASS "A" CIRCUITS, SEPARATE OUTGOING AND RETURN CONDUCTORS OF CLASS "A" CIRCUITS BY A MINIMUM OF 12" WHERE RUN VERTICALLY AND 48" WHERE RUN HORIZONTALLY.
- 9. WHEN UTILIZING SHIELDED CABLE TIE SHIELDS THROUGH AND INSULATE AT EACH JUNCTION BOX. INSULATE AND TAPE BACK AT END.
- 10. ALL FIRE ALARM CABLING SHALL BE ACCEPTABLE TO THE FIRE ALARM EQUIPMENT MANUFACTURER FOR THE INTENDED PURPOSE. CABLES USED IN VERTICAL RUNS SHALL BE TYPE FPLP OR FPLR. CABLE SPLICES OR TERMINATIONS SHALL BE MADE IN LISTED FITTINGS, BOXES, ENCLOSURES, FIRE ALARM DEVICES, OR UTILIZATION EQUIPMENT. WHERE INSTALLED EXPOSED, CABLES SHALL BE ADEQUATELY SUPPORTED AND INSTALLED IN SUCH A WAY THAT MAXIMUM PROTECTION AGAINST PHYSICAL DAMAGE IS AFFORDED BY BUILDING CONSTRUCTION. WHERE LOCATED WITHIN 7 FT OF THE FLOOR, CABLES SHALL BE SECURELY FASTENED IN AN APPROVED MANNER AT INTERVALS OF NOT MORE THAN 18 IN.
- 11. SMOKE DETECTORS SHALL NOT BE INSTALLED UNTIL AFTER CONSTRUCTION CLEAN—UP IS COMPLETED AND FINAL.
- 12. LOCATE SMOKE DETECTORS A MINIMUM OF THREE (3) FEET FROM MECHANICAL DIFFUSERS. WALL-MOUNTED SMOKE DETECTORS SHALL BE LOCATED A MAXIMUM OF 12" FROM CEILING.
- 13. PROVIDE SYNCHRONIZATION OF ALL VISUAL NOTIFICATION APPLIANCE CIRCUITS. PROVIDE ALL REQUIRED SYNC MODULES. PROVIDE A MULTI-SYNC MODE SLAVE CONNECTION BETWEEN ALL SYNC MODULES.
- 14. VERIFY ALL FIELD SELECTABLE AUDIBILITY SETTINGS OF NOTIFICATION APPLIANCES WITH FIRE ALARM CONTRACTOR.
- 15. UPON COMPLETION OF THE FIRE ALARM SYSTEM INSTALLATION AND PROGRAMMING, THE INSTALLING CONTRACTOR SHALL PERFORM FINAL TESTING OF THE ENTIRE SYSTEM, PER ALL APPLICABLE CODES, AND SHALL COORDINATE AND PERFORM A FINAL FIRE ALARM SYSTEM INSPECTION.
- 16. PROVIDE OFF-SITE MONITORING AS REQUIRED BY THE INTERNATIONAL FIRE CODE, SECTION 907.6.6 AND THE LOCAL AUTHORITY HAVING JURISDICTION.
- 17. INSTALLING CONTRACTOR SHALL, PHYSICALLY, LABEL ALL INITIATING DEVICES AND NOTIFICATION APPLIANCE CIRCUIT END OF LINE (WHEN WIRING CLASS "B"). THESE LABELS SHALL BE IN PLACE PRIOR TO START-UP AND TESTING.
- 18. ROOMS CONTAINING CONTROLS FOR AIR—CONDITIONING SYSTEMS, SPRINKLER RISERS AND VALVES OR OTHER FIRE DETECTION, SUPPRESSION OR CONTROL ELEMENTS SHALL BE IDENTIFIED WITH PERMANENTLY MOUNTED SIGNS WITH LETTERING NOT LESS THAN 2 INCHES TALL WITH A PRINCIPAL STROKE OF NOT LESS THAN 3/8 INCH. LETTERS SHALL CONTRAST WITH BACKGROUND.

PROJECT CODE ANALYSIS:

- BUILDING INFORMATION:
- A) OCCUPANCY CLASSIFICATION(S): GROUP E
- B) OCCUPANCY LOAD(S): 4,596
- C) SPRINKLERS: YES
- D) CONSTRUCTION TYPE: II-B
 E) BUILDING HEIGHT: THREE STORIES
- F) PROJECT SQUARE FOOTAGE: 91,928.18 SF
- G) APPLICABLE CODES:
- 2018 INTERNATIONAL FIRE CODE
- 2019 NFPA 72

H) CIRCUIT CLASSIFICATION: POWER LIMITED

shop drawings created by:
5794 W. 4600 So. Hooper, UT 84315
Office: 801.985.0410

Www.unicad.net

Fire Alarm Design & Drafting Services

1 ADDED CO PADS AND ALTERED SP-2100

2271 E TERRY ST. POCATELLO, ID 83201 FIRE ALARM PLAN NOTES AND DETAIL

0

9

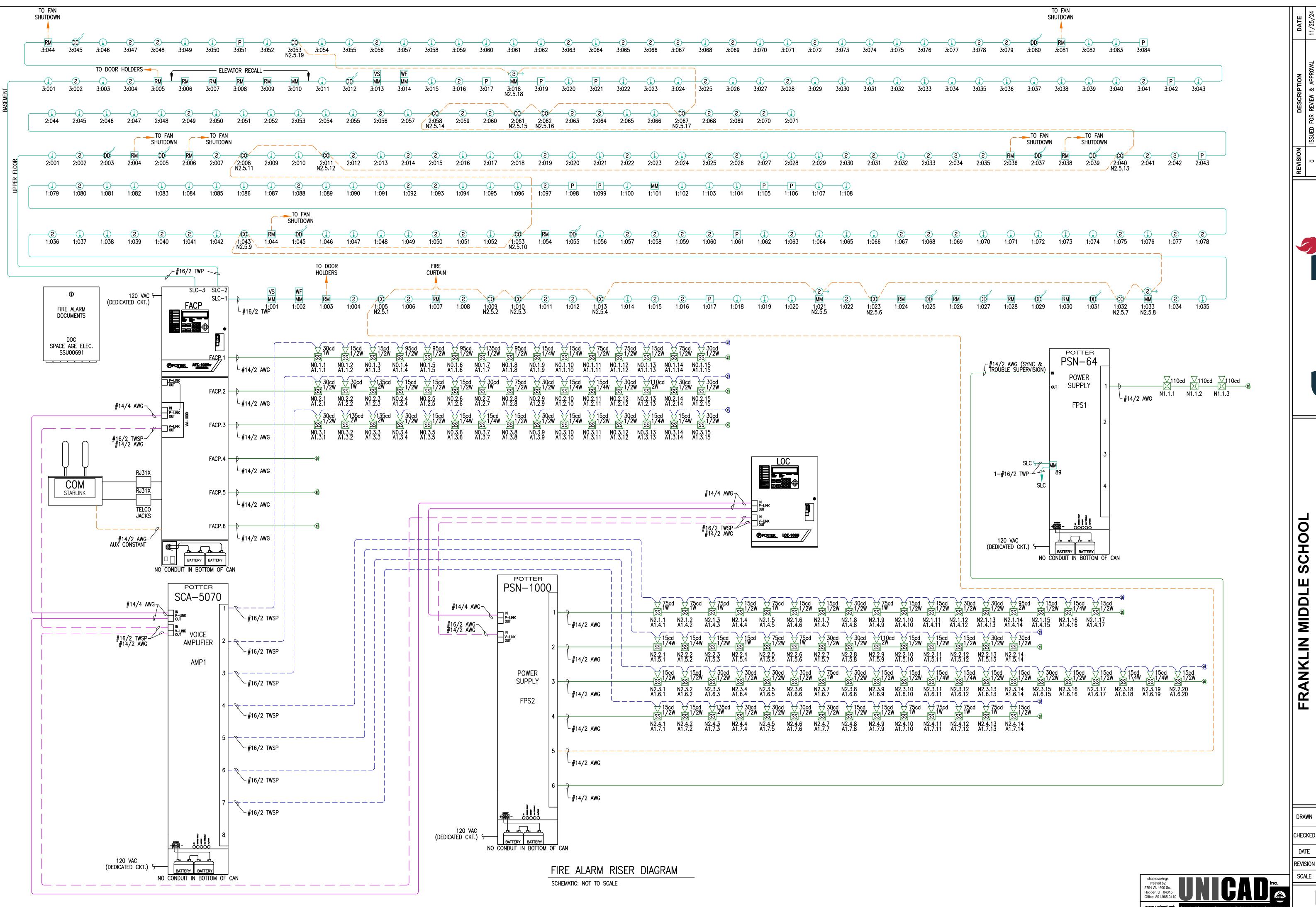
C

S

MIDD

NELIN

FA-1


1/21/25

DRAWN

DATE

MD UNICAD JOB #24705

BRADY B. HAWS, SET NICET IV FAS 138751

REVISION DESCRIPTION

0 ISSUED FOR REVIEW & APPROVAL

1 ADDED CO PADS AND ALTERED DEVICES

-4300
2100

FRANKLIN MIDDLE SCHOOL 2271 E TERRY ST. POCATELLO, ID 83201

AN RISER DIA

ARM

DRAWN MD UNICAD JOB #24705

CHECKED BRADY B. HAWS, SET NICET IV FAS 138751

DATE 1/21/25
REVISION 1

ΕΛ 2

A0.1 dB Loss Calculation	
Audio Voltage (Vrms)	70
Wire Gauge	16
Wire Resistance (ohms/ft)	0.00948
Speaker Load (watts)	8
Distance (feet)	646
dB Loss	-0.086
Percent dB Loss	2.1%
*D	1

*Resistance values are doubled to account for two conductors (NFPA 70 2017 Ch.9 Table 8, uncoated, single strand, copper)

A0.5 dB Loss Calculation	
Audio Voltage (Vrms)	70
Wire Gauge	16
Wire Resistance (ohms/ft)	0.00948
Speaker Load (watts)	9
Distance (feet)	438
dB Loss	-0.066
Percent dB Loss	1.6%
*Resistance values are doubled to account for	or two
conductors (NFPA 70 2017 Ch.9 Table 8, un	coated, single
strand, copper)	

A0.2 E dI	B Loss Calculation	
	Audio Voltage (Vrms)	70
	Wire Gauge	16
	Wire Resistance (ohms/ft)	0.00948
	Speaker Load (watts)	11
	Distance (feet)	527
	dB Loss	-0.096
	Percent dB Loss	2.4%
*Resistance valu	ues are doubled to account fo	r two

conductors (NFPA 70 2017 Ch.9 Table 8, uncoated, single

A0.6 dB Loss Calculation	
Audio Voltage (Vrms)	70
Wire Gauge	16
Wire Resistance (ohms/ft)	0.00948
Speaker Load (watts)	9.5
Distance (feet)	593
dB Loss	-0.094
Percent dB Loss	2.3%
*Resistance values are doubled to account for	r two
conductors (NFPA 70 2017 Ch.9 Table 8, unc strand, copper)	oated, single

A0.3 dB Loss Calculation	
Audio Voltage (Vrms)	70
Wire Gauge	16
Wire Resistance (ohms/ft)	0.00948
Speaker Load (watts)	9.25
Distance (feet)	624
dB Loss	-0.096
Percent dB Loss	2.4%
*Resistance values are doubled to account fo	r two
conductors (NFPA 70 2017 Ch.9 Table 8, und	coated, single

A0.7 dB Loss Calculation	
Audio Voltage (Vrms)	7
Wire Gauge	1
Wire Resistance (ohms/ft)	0.0094
Speaker Load (watts)	10.
Distance (feet)	49
dB Loss	-0.08
Percent dB Loss	2.23
*Resistance values are doubled to account for	or two
conductors (NFPA 70 2017 Ch.9 Table 8, un	coated, single
strand, copper)	

strand, copper)

A0.4 dB Loss Calculation	
Audio Voltage (Vrms)	70
Wire Gauge	16
Wire Resistance (ohms/ft)	0.00948
Speaker Load (watts)	10.5
Distance (feet)	522
dB Loss	-0.091
Percent dB Loss	2.3%
*Resistance values are doubled to account for	two
conductors (NFPA 70 2017 Ch.9 Table 8, unc	oated, single

strand, copper)

AMP E	Battery Calcu	ılation				12-18-24
	PROJECT NAME:	FRANKLIN MIDI	DLE S	SCHOOL		
	Required Standby Time:		Hou			
	Required Alarm Time:		Minu			
	System Manufacturer					
	AC B	ranch Cu	rre	\overline{nt}		
	AC Branch Current:	2.08		Amps	0	120V
	Maxim	um NAC	Out	put		
	Panel Max:	6.50		Amps		
	Circuit Max:	3.00		Amps		
	Regulated	d Load in	St	andby		
		Number		Current		Total Current
Device Type	Model	of Devices		(Amps)		(Amps)
AMP MAINBOARD	SCA-5070	1	Χ	0.058000	=	0.05800
TOTAL STANDBY LOAD						0.05800
	Regulate	d Load i	n A	LARM		
		Number		Current		Total Current
Device Type	Model	of Devices		(Amps)		(Amps)
AMP MAINBOARD	SCA-5070	1	Χ	0.608000	=	0.60800
TOTAL ALARM LOAD						0.60800
	Batter	y Require	me	ents		
Standby Load	•	<u> </u>		Required Stand	lby 1	ime in Hours
Current (Amps)		0.058000	Χ	24.00000	=	1.39200
Alarm Load				Required Alarm	ı Tim	ne in Hours
Current (Amps)		0.608000	Χ	0.250000	=	0.15200
Total Ampere Hours (before derating factor)						1.54400
Derating Factor					Х	1.:
TOTAL AMPERE HOURS REQUIRED	10.				=	1.85280
BATTERIES TO BE PROVIDED (2 -	12v)					7 AF

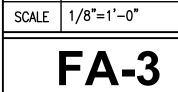
TACD	Dattarr Cala	1.4:				
ГАСР	Battery Calc					1/22/2025
	PROJECT NAME:	FRANKLIN MIDE				
	Required Standby Time:	24	Hou	ırs		
	Required Alarm Time:	15	Min	utes		
	System Manufacturer]		
	•	ranch Cu	rre	ent		
	AC Branch Current:	2.08		Amps	0	120V
	Maxim	um NAC ()u	tput		
	Panel Max:	6.50		Amps		
	Circuit Max:	3.00		Amps		
	Regulated	l Load in	<u> </u>			Total Current
Dayler Torre	M. J. I	Number		Current		
Device Type	Model	of Devices	.,	(Amps)		(Amps)
TACP MAINBOARD	AFC-1000V	1	X	0.130000	=	0.130000
SLC CARD	PAD100-SLCE-127	2	X	0.060000	=	0.120000
OMMUNICATOR	SLE-MAX2-FIRE	1	X	0.085000	=	0.085000
MOKE DETECTOR	PAD300-PD	73	X	0.000300	=	0.021900
EAT DETECTOR	PAD300-HD	120	X	0.000300	=	0.036000
IINI MONITOR MODULE	PAD100-MIM	16	X	0.000200	=	0.003200
UCT SMOKE DETECTOR	PAD300-DUCTR	13	X	0.000500	=	0.006500
ONITOR MODULE	PAD100-SIM	9	X	0.000240	=	0.002160
ELAY MODULE	PAD100-RM	19	Х	0.000240	=	0.004560
ULL STATION	PAD100-PSSA	13	X	0.000200	=	0.002600
EAM DETECTOR	OSID-R	3	Χ	0.011000	=	0.033000
TOTAL STANDBY LOA						0.444920
	Regulate	d Load i	<u>1</u>	ALARM		
		Number		Current		Total Current
Device Type	Model	of Devices		(Amps)		(Amps)
ACP MAINBOARD	AFC-1000V	1	Χ	0.220000	=	0.220000
LC CARD	PAD100-SLCE-127	2	Χ	0.060000	=	0.120000
OMMUNICATOR	SLE-MAX2-FIRE	1	Χ	0.325000	=	0.325000
MOKE DETECTOR	PAD300-PD	73	Χ	0.000300	=	0.021900
EAT DETECTOR	PAD300-HD	120	Χ	0.000300	=	0.036000
INI MONITOR MODULE	PAD100-MIM	16	Χ	0.000200	=	0.003200
UCT SMOKE DETECTOR	PAD300-DUCTR	13	Χ	0.000500	=	0.006500
IONITOR MODULE	PAD100-SIM	9	Χ	0.000240	=	0.002160
ELAY MODULE	PAD100-RM	19	X	0.000240	=	0.004560
ULL STATION	PAD100-PSSA	13	X	0.000200	=	0.002600
ACP.1 (See Voltage Drop Calculations)	•		-	0.789000	=	0.789000
ACP.2 (See Voltage Drop Calculations)				0.504000	=	0.504000
ACP.3 (See Voltage Drop Calculations)				0.464000	=	0.464000
ACP.4 (See Voltage Drop Calculations)				0.000000	=	0.000000
ACP.5 (See Voltage Drop Calculations)				0.000000	=	0.000000
ACP.6 (See Voltage Drop Calculations)				0.000000	=	0.000000
TOTAL ALARM LOA	.n					2.498920
		y Require	me			
tandby Load				Required Stand	•	
urrent (Amps)		0.444920	Χ	24.00000		10.678080
larm Load				Required Alarm	Time	in Hours
urrent (Amps)		2.498920	Χ	0.250000	=	0.624730
otal Ampere Hours (before derating factor)	-		· · · · · · · · · · · · · · · · · · ·		11.302810
Perating Factor	•				Χ	1.2
OTAL AMPERE HOURS REQUIRED					=	13.563372

Point t	o Point	NAC Voltage Drop	Calculation					
Date			12/9/2024					
Project N	lame		FRANKLIN M	IDDLE SCH	100L			
Circuit No	umber		FPS0.1					
Nominal :	System Vo	ltage	20.4	volts	Wire F	Resistance		
Minimum	Device Vo	ltage	16.0	volts	Gauge	Per 1000		
Distance	from sour	ce to 1st device	40	feet	14	3.07		
Wire Gau	ge for bal	ance of circuit			14	3.07		
Max Outp	ut Current	:	3.00	amps]	S	peaker ID	A0.1.
Total Circ	uit Curren	t	0.789	amps			NAC ID	N0.1.
Spare Cu	rrent Capa	icity	20%		1			
End of L	ine Voltage	•	18.64	volts	1			
Notification	n Applian	ce Manufacturer	System Sen	sor	1			
Circuit	is with	in limits			Distance	Voltage	Drop	
Speaker	NAC	Device Model #	Device	Device	Previous	at	From	Percent
Identifier	Identifier	and Candela	Wattage	Current	Device	Device	Source	Drop
A0.1.1	N0.1.1	SPSRLED 30	1	0.022	40	20.21	0.194	0.95%
A0.1.2	N0.1.2	SPSRLED 15	1/2	0.018	32	20.06	0.344	1.69%
A0.1.3	N0.1.3	SPSRLED 15	1/2	0.018	33	19.90	0.496	2.43%
A0.1.4	N0.1.4	SPSRLED 110	1/2	0.085	48	19.69	0.712	3.49%
A0.1.5	N0.1.5	SPSRLED 110	1/2	0.085	49	19.49	0.906	4.44%
A0.1.6	N0.1.6	SPSRLED 110	1/2	0.085	100	19.15	1.250	6.13%
A0.1.7	N0.1.7	SPSRLED 135	1/2	0.105	42	19.03	1.373	6.73%
A0.1.8	N0.1.8	SPSRLED 110	1/4	0.085	31	18.96	1.444	7.08%
A0.1.9	N0.1.9	SPSRLED 15	1/4	0.018	20	18.92	1.479	7.25%
A0.1.10	N0.1.10	SPSRLED 15	1/2	0.018	74	18.80	1.601	7.85%
A0.1.11	N0.1.11	SPSRLED 75	1/2	0.070	40	18.74	1.662	8.15%
A0.1.12	N0.1.12	SPSRLED 75	1/2	0.070	47	18.69	1.714	8.40%
A0.1.13	N0.1.13	SPSRLED 15	1/2	0.018	13	18.68	1.723	8.45%
A0.1.14	N0.1.14	SPSRLED 75	1/2	0.070	62	18.64	1.758	8.62%
A0.1.15	N0.1.15	SPSRLED 30	1	0.022	15	18.64	1.760	8.63%
Totals			8	0.789	646			
Notes:								

20.4	volts	Wire F	Resistance		
16.0	volts	Gauge	Per 1000		
40	feet	14	3.07		
		14	3.07		
3.00	amps]	S	peaker ID	A0.1.
	amps			NAC ID	NO.1.
20%					
18.64	volts				
System Sens					
		Distance	Voltage	Drop	
Device	Device	Previous	at	From	Percent
Wattage	Current	Device	Device	Source	Drop
1	0.022	40	20.21	0.194	0.95%
1/2	0.018	32	20.06	0.344	1.69%
1/2	0.018	33	19.90	0.496	2.43%
1/2	0.085	48	19.69	0.712	3.49%
1/2	0.085	49	19.49	0.906	4.44%
1/2	0.085	100	19.15	1.250	6.13%
1/2	0.105	42	19.03	1.373	6.73%
1/4	0.085	31	18.96	1.444	7.08%
1/4	0.018	20	18.92	1.479	7.25%
1/2	0.018	74	18.80	1.601	7.85%
1/2	0.070	40	18.74	1.662	8.15%
1/2	0.070	47	18.69	1.714	8.40%
1/2	0.018	13	18.68	1.723	8.45%
1/2	0.070	62	18.64	1.758	8.62%
1	0.022	15	18.64	1.760	8.63%
8	0.789	646			

Wire resistance is doubled in the calculations for two wires (Positive and Negative). The voltage calculated to the last device must not be lower than the manufactures listed minimum operating voltage (IE: rated operating voltage 16-33 VDC (24 VDC nominal)).

Date			12/9/2024						Date			12/9/2024					
Project N	ame		FRANKLIN MI	DDLF SCH	1001				Project N	ame		FRANKLIN M	DDLF SCH	1001			
Circuit Nu			FPS0.2	JJLL 00.					Circuit No			FPS0.3	DDLL 00.				
Oll Cult 140	iiiibci		11 30.2						Oncore in	2111001		11 30.0					
Nominal S	System Vo	oltage	20.4	volts] Wire R	esistance			Nominal :	System Vo	oltage	20.4	volts] Wire F	Resistance		
Minimum	•	•		volts	4	Per 1000			Minimum	•	•		volts	-4	Per 1000		
		rce to 1st device		feet	14	3.07			I		rce to 1st device		feet	14	3.07]	
		ance of circuit		1001	14	3.07					lance of circuit		1000	14	3.07		
mio oddg	101 Dai	and or chount				0.07			"""	jo 101 bu	idiloc of circuit				0.07	ı	
Max Outp	ut Curren	t	3.00	amps	1	S	peaker ID	A0.2.	Max Outp	ut Curren	t	3.00	amps	1	S	peaker ID	A0.3.
Total Circ				amps	1		NAC ID			uit Currer			amps			NAC ID	
Spare Cui			20%		1		· · · · · - · · -		Spare Cu			20%		1			
End of Li			19.47	volts	1				End of Li		•	19.53	volts				
		ce Manufacturer	System Sens		1					_	ce Manufacturer	System Sens					
		nin limits			Distance	Voltage	Drop				nin limits			Distance	Voltage	Drop	
Speaker		Device Model #	Device	Device	Previous	at	From	Percent	Speaker	NAC	Device Model #	Device	Device	Previous	at	From	Percer
Identifier	Identifier	and Candela	Wattage	Current	Device	Device	Source	Drop	Identifier	Identifier	and Candela	Wattage	Current	Device	Device	Source	Drop
A0.2.1	N0.2.1	SPSRLED 30	1/2	0.022	50	20.25	0.155	0.76%	A0.3.1	N0.3.1	SPSRLED 30	1/2	0.022	60	20.23	0.171	0.84%
A0.2.2	N0.2.2	SPSRLED 30	1	0.022	58	20.07	0.326	1.60%	A0.3.2	N0.3.2	SPSRLED 135	2	0.105	62	20.06	0.339	1.66%
	N0.2.3	SPSRLED 135	2	0.105	24	20.01	0.394	1.93%	A0.3.3	N0.3.3	SPSRLED 135	2	0.105	57	19.94	0.457	2.24%
A0.2.4	N0.2.4	SPSRLED 15	1/2	0.018	59	19.88	0.523	2.56%	A0.3.4	N0.3.4	SPSRLED 30	1/2	0.022	71	19.84	0.558	2.74%
A0.2.5	N0.2.5	SPSRLED 15	1/2	0.018	32	19.81	0.589	2.89%	A0.3.5	N0.3.5	SPSRLED 15	1/2	0.018	107	19.70	0.696	3.41%
A0.2.6	N0.2.6	SPSRLED 15	1/2	0.018	21	19.77	0.630	3.09%	A0.3.6	N0.3.6	SPSRLED 15	1/4	0.018	17	19.68	0.716	3.51%
A0.2.7	N0.2.7	SPSRLED 30	1	0.022	67	19.65	0.754	3.70%	A0.3.7	N0.3.7	SPSRLED 15	1/4	0.018	17	19.67	0.734	3.60%
A0.2.8	N0.2.8	SPSRLED 75	1/2	0.070	16	19.62	0.781	3.83%	A0.3.8	N0.3.8	SPSRLED 15	1/2	0.018	39	19.63	0.772	3.78%
	N0.2.9	SPSRLED 30	1/2	0.022	11	19.60	0.795	3.90%	A0.3.9	N0.3.9	SPSRLED 30	1/2	0.022	46	19.59	0.811	3.97%
	N0.2.10	SPSRLED 15	1/4	0.018	25	19.58	0.824	4.04%	A0.3.10		SPSRLED 15	1/4	0.018	20	19.57	0.825	4.04%
A0.2.11	N0.2.11	SPSRLED 15	1/4	0.018	36	19.54	0.862	4.22%	A0.3.11	N0.3.11	SPSRLED 15	1/2	0.018	19	19.56	0.836	4.10%
		SPSRLED 30	1/2	0.022	24	19.52	0.884	4.33%	A0.3.12		SPSRLED 30	1/2	0.022	34	19.55	0.853	4.18%
A0.2.13	N0.2.13	SPSRLED 110	2	0.085	47	19.48	0.921	4.51%	A0.3.13		SPSRLED 15	1/4	0.018	41	19.53	0.868	4.25%
A0.2.14		SPSRLED 30	1/2	0.022	24	19.47	0.927	4.55%			SPSRLED 15	1/4	0.018	20	19.53	0.873	4.28%
	NO.2.15	SPSRLED 30	1/2	0.022	33	19.47	0.932	4.57%	A0.3.15	N0.3.15	SPSRLED 30	1/2	0.022	14	19.53	0.875	4.29%
Totals			11	0.504	527				Totals			9 1/4	0.464	624			
Notes:				/-					Notes:				/-				
		doubled in the calculation		•	-	•	•				doubled in the calculati		•	•	•	•	
		must not be lower than		s listed m	ninimum op	erating v	oltage (IE:	rated			must not be lower than		s listed m	ninimum o _l	perating v	oltage (IE:	: rated
operating	voltage 1	16-33 VDC (24 VDC nor	ninal)).						operating	voltage '	16-33 VDC (24 VDC no	minal)).					


Date			12/9/2024					
Project N	ame		FRANKLIN M	IDDLE SCH	00L			
Circuit No			FPS0.3					
Nominal :	System Vo	ltage	20.4	volts	Wire R	Resistance		
	Device Vo		16.0	volts	Gauge	Per 1000		
Distance	from sour	ce to 1st device	60	feet	14	3.07		
Wire Gaug	ge for balo	ance of circuit			14	3.07		
					1	_		
	ut Current			amps		S	peaker ID	
	uit Curren			amps			NAC ID	N0.3.
•	rrent Capo		20%		1			
End of Li	ne Voltage			volts				
Notification	n Appliana	ce Manufacturer	System Sen	sor				
Circuit	is with	in limits			Distance	Voltage	Drop	
Speaker	NAC	Device Model #	Device	Device	Previous	at	From	Percent
Identifier	Identifier	and Candela	Wattage	Current	Device	Device	Source	Drop
A0.3.1	N0.3.1	SPSRLED 30	1/2	0.022	60	20.23	0.171	0.84%
A0.3.2	N0.3.2	SPSRLED 135	2	0.105	62	20.06	0.339	1.66%
A0.3.3	N0.3.3	SPSRLED 135	2	0.105	57	19.94	0.457	2.24%
A0.3.4	N0.3.4	SPSRLED 30	1/2	0.022	71	19.84	0.558	2.74%
A0.3.5	N0.3.5	SPSRLED 15	1/2	0.018	107	19.70	0.696	3.41%
A0.3.6	N0.3.6	SPSRLED 15	1/4	0.018	17	19.68	0.716	3.51%
A0.3.7	N0.3.7	SPSRLED 15	1/4	0.018	17	19.67	0.734	3.60%
A0.3.8	N0.3.8	SPSRLED 15	1/2	0.018	39	19.63	0.772	3.78%
A0.3.9	N0.3.9	SPSRLED 30	1/2	0.022	46	19.59	0.811	3.97%
A0.3.10	N0.3.10	SPSRLED 15	1/4	0.018	20	19.57	0.825	4.04%
A0.3.11	N0.3.11	SPSRLED 15	1/2	0.018	19	19.56	0.836	4.10%
A0.3.12	N0.3.12	SPSRLED 30	1/2	0.022	34	19.55	0.853	4.18%
A0.3.13	N0.3.13	SPSRLED 15	1/4	0.018	41	19.53	0.868	4.25%
A0.3.14	N0.3.14	SPSRLED 15	1/4	0.018	20	19.53	0.873	4.28%
A0.3.15	N0.3.15	SPSRLED 30	1/2	0.022	14	19.53	0.875	4.29%
Totals			9 1/4	0.464	624			

SCHOOL TERRY FRANKLIN MIDDLE

ALARM PLAN CALCULATIONS

DRAWN MD UNICAD JOB #24705 CHECKED BRADY B. HAWS, SET NICET IV FAS 138751 DATE 1/21/25

REVISION

TDC4 T	2 11 01 1	1 1 .				
FPS1 F	Battery Calc	ulation	1			12/9/2024
	PROJECT NAME:	FRANKLIN MIDI	DLE	SCH00L		
	Required Standby Time:		Hou			
	Required Alarm Time:		Min			
	System Manufacturer			1		
	· · · · · · · · · · · · · · · · · · ·	ranch Cu	rre	nt		
	AC Branch Current:	2.08		Amps	0	120V
	Maxim	um NAC	Out	tput		
	Panel Max:	6.50		Amps		
	Circuit Max:	3.00		Amps		
	Regulated	l Load in	S	tandby		
		Number		Current		Total Current
Device Type	Model	of Devices		(Amps)		(Amps)
FPS1 MAINBOARD	PSN-64	1	Х	0.075000	=	0.075000
TOTAL STANDBY LOAD						0.075000
	Regulate	d Load i	n A	ALARM		
		Number		Current		Total Current
Device Type	Model	of Devices		(Amps)		(Amps)
FPS1 MAINBOARD	PSN-64	1	Х	0.075000	=	0.075000
FPS1.1 (See Voltage Drop Calculations)				0.282000	=	0.282000
FPS1.2 (See Voltage Drop Calculations)				0.000000	=	0.000000
FPS1.3 (See Voltage Drop Calculations)				0.000000	=	0.000000
FPS1.4 (See Voltage Drop Calculations)				0.000000	=	0.000000
TOTAL ALADIA LOAD						0.757000
TOTAL ALARM LOAD	Dotton	Doguina				0.357000
Chandles I and	Batter	y Require	:1116		JL., 1	Fine a din Harrina
Standby Load		0.075000	V	Required Stan	•	
Current (Amps)		0.075000	<u> </u>	24.00000	= - T'	1.800000
Alarm Load		0.757000	v	Required Alarn		
Current (Amps)		0.357000	<u> </u>	0.250000		0.089250
Total Ampere Hours (before derating factor)					V	1.889250
Derating Factor					<u> </u>	1.2
TOTAL AMPERE HOURS REQUIRED					=	2.267100

BATTERIES TO BE PROVIDED (2 - 12v)

Point t	o Point	NAC Voltage	Drop C	alculation							
Date				12/9/2024							
Project N	lame			FRANKLIN MI	DDLE SCH	00L					
Circuit Nu				FPS1.1							
Nominal :	System Vo	ltage		20.4	volts	Wire F	Resistance				
Minimum	Device Vo	Itage		16.0	volts	Gauge	Per 1000				
Distance	from sour	ce to 1st device		63	feet	14	3.07				
Wire Gau	ge for bal	ance of circuit				14	3.07				
· ·	-										
Max Outp	ut Current	:		3.00	amps]					
	uit Curren			0.282		1			N1.1.		
Spare Cu	rrent Capo	ıcity		20%							
	ine Voltage	•		20.22	volts	1					
Notification	on Appliand	ce Manufacturer		System Sens	sor	1					
Circuit	is with	in limits				Distance	Voltage	Drop			
	NAC	Device Model #		1	Device	Previous	at	From	Percent		
	Identifier	and Candela			Current	Device	Device	Source	Drop		
	N1.1.1	P2RLED 110			0.094	63	20.29	0.109	0.53%		
	N1.1.2	P2RLED 110			0.094	38	20.25	0.153	0.75%		
	N1.1.3	P2RLED 110			0.094	39	20.22	0.175	0.86%		
Totals				0	0.282	140					
Notes:											
		doubled in the calc			•	•	•	•			
to the la	st device	must not be lower	than the	manufactures	s listed m	inimum op	perating vo	oltage (IE:	rated		
operating	voltage 1	6-33 VDC (24 VD	C nominal)).							

Date		NAC Voltage Drop	12/9/2024					
Project N	lame		FRANKLIN M	IDDLE SCH	00L			
Circuit No			FPS2.2					
Nominal :	System Vo	Itage	20.4	volts	Wire R	esistance		
Minimum	Device Vo	Itage	16.0	volts	Gauge	Per 1000		
Distance	from sour	ce to 1st device	50	feet	14	3.07		
Wire Gau	ge for bal	ance of circuit			14	3.07		
Max Outp	out Current	:	3.00	amps]	S	peaker ID	A1.5.
•	uit Curren			amps	1		NAC ID	N2.2.
Spare Cu	rrent Capo	icity	20%	<u> </u>	1		•	
•	ine Voltage	-	19.75	volts	1			
	•	ce Manufacturer	System Sen	sor	1			
		in limits			Distance	Voltage	Drop	
Speaker	NAC	Device Model #	Device	Device	Previous	at	From	Percen
Identifier	Identifier	and Candela	Wattage	Current	Device	Device	Source	Drop
A1.5.1	N2.2.1	SPSRLED 15	1/4	0.018	50	20.27	0.135	0.66%
A1.5.2	N2.2.2	SPSRLED 15	1/4	0.018	27	20.20	0.205	1.00%
A1.5.3	N2.2.3	SPSRLED 15	1/2	0.018	14	20.16	0.239	1.17%
A1.5.4	N2.2.4	SPSRLED 15	1	0.018	27	20.10	0.303	1.49%
A1.5.5	N2.2.5	SPSRLED 75	1/2	0.070	34	20.02	0.380	1.86%
A1.5.6	N2.2.6	SPSRLED 75	1	0.070	43	19.94	0.458	2.25%
A1.5.7	N2.2.7	SPSRLED 30	1/2	0.022	40	19.89	0.514	2.52%
A1.5.8	N2.2.8	SPSRLED 30	1/2	0.022	27	19.85	0.548	2.69%
A1.5.9	N2.2.9	SPSRLED 110	2	0.085	49	19.80	0.603	2.96%
A1.5.10	N2.2.10	SPSRLED 15	1/2	0.018	24	19.78	0.617	3.03%
A1.5.11	N2.2.11	SPSRLED 15	1/2	0.018	24	19.77	0.629	3.08%
A1.5.12	N2.2.12	SPSRLED 15	1/2	0.018	19	19.76	0.636	3.12%
A1.5.13	N2.2.13	SPSRLED 30	1/2	0.022	21	19.76	0.642	3.15%
A1.5.14	N2.2.14	SPSRLED 30	1/2	0.022	39	19.75	0.647	3.17%
Totals			9	0.439	438			
Notes:	<u> </u>					ve). The		

Date			12/9/2024						Date			12/9/202
Project N	lame		FRANKLIN M	IDDLE SCH	100L				Project N	lame		FRANKLIN
Circuit N			FPS2.3						Circuit No			FPS2.4
Nominal	System Vo	ultage	20.4	volts] Wire R	Resistance			Nominal	System Vo	ltage	20
	Device Vo	•		volts	4	Per 1000				Device Vo		16
		ce to 1st device		feet	14	3.07					ce to 1st device	7
		ance of circuit		1661	14	3.07					ance of circuit	
Max Outr	ut Current	.	3.00	amps	1	ς	peaker ID	A1.6.	Max Outr	ut Current	•	3.0
•	cuit Curren			amps	-	3	NAC ID			uit Curren		0.56
	rrent Capo		20%		1		NAC ID	142.0.		rrent Capo		20
•	ine Voltage	-		volts	1					ine Voltage	-	19.3
	•	e ce Manufacturer	System Sen		1					•	e ce Manufacturer	System Se
		in limits	System Sen	SOF	Dietanee	Voltage	Dran				in limits	System Se
Speaker		Device Model #	Device	Device	Distance Previous	Voltage at	Drop From	Percent	Speaker	NAC NAC	Device Model #	Device
•	1	and Candela	1	1	1 1			l I			ı "	
A1.6.1	N2.3.1	SPSRLED 15	Wattage 1/2	Current 0.018	Device 40	Device 20.29	Source 0.107	Drop 0.52%	Identifier A1.7.1	Identifier N2.4.1	and Candela SPSRLED 15	Wattage 1/2
A1.6.2	N2.3.1	SPSRLED 15	1/2	0.018	20	20.29	0.107	0.32%	A1.7.1	N2.4.1	SPSRLED 15	
A1.6.3	N2.3.2	SPSRLED 30	1/2	0.018	28	20.24	0.138	1.11%	A1.7.2	N2.4.2 N2.4.3	SPSRLED 135	1/2
A1.6.4	N2.3.4	SPSRLED 30	1/2	0.022	38	20.17	0.227	1.55%	A1.7.4	N2.4.4	SPSRLED 30	1/2
A1.6.5	N2.3.5	SPSRLED 30	1/2	0.022	40	20.00	0.403	1.97%	A1.7.5	N2.4.5	SPSRLED 30	1/2
A1.6.6	N2.3.6	SPSRLED 30	1/2	0.022	30	19.94	0.464	2.28%	A1.7.6	N2.4.6	SPSRLED 30	1/2
A1.6.7	N2.3.7	SPSRLED 75	1 1	0.070	38	19.86	0.537	2.63%	A1.7.7	N2.4.7	SPSRLED 30	1/2
A1.6.8	N2.3.8	SPSRLED 30	1/2	0.022	28	19.82	0.579	2.84%	A1.7.8	N2.4.8	SPSRLED 15	1/2
A1.6.9	N2.3.9	SPSRLED 15	1/2	0.018	18	19.80	0.603	2.96%	A1.7.9	N2.4.9	SPSRLED 15	1/2
A1.6.10	N2.3.10	SPSRLED 15	1/2	0.018	15	19.78	0.622	3.05%	A1.7.10	N2.4.10	SPSRLED 75	1
A1.6.11	N2.3.11	SPSRLED 15	1/4	0.018	25	19.75	0.650	3.19%	A1.7.11	N2.4.11	SPSRLED 75	1
A1.6.12		SPSRLED 15	1/4	0.018	24	19.73	0.674	3.31%	A1.7.12	N2.4.12	SPSRLED 75	1
A1.6.13		SPSRLED 15	1/2	0.018	60	19.67	0.729	3.57%	A1.7.13	N2.4.13	SPSRLED 75	1
A1.6.14		SPSRLED 15	1/2	0.018	30	19.65	0.753	3.69%	A1.7.14	N2.4.14	SPSRLED 15	1/2
A1.6.15	N2.3.15	SPSRLED 30	1/2	0.022	29	19.63	0.773	3.79%	Totals		ı	10 1/2
	N2.3.16	SPSRLED 15	1/2	0.018	12	19.62	0.779	3.82%	Notes:			
A1.6.17		SPSRLED 15	1/2	0.018	44	19.60	0.799	3.92%		stance is	doubled in the calculat	ions for two wire
A1.6.18		SPSRLED 15	1/4	0.018	41	19.59	0.812	3.98%			must not be lower the	
A1.6.19	N2.3.19	SPSRLED 15	1/4	0.018	15	19.58	0.816	4.00%			6-33 VDC (24 VDC no	
A1.6.20	N2.3.20	SPSRLED 15	1/2	0.018	18	19.58	0.818	4.01%	p	y- '	<u> </u>	
Totals			9 1/2	0.436	593							
Notes:			•									

operating voltage 16-33 VDC (24 VDC nominal)).

Nominal S	System Vo	ltage	20.4	volts	Wire F	Resistance		
Minimum	Device Vo	ltage	16.0	volts	Gauge	Per 1000		
Distance	from sour	ce to 1st device	75	feet	14	3.07		
Wire Gaug	ge for bal	ance of circuit	•		14	3.07		
Max Outp	ut Current	;	3.00	amps]	S	peaker ID	A1.7.
Total Circ	uit Curren	t	0.563	amps			NAC ID	N2.4.
Spare Cu	rrent Capo	acity	20%				·	
End of Li	ine Voltage	e	19.30	volts	1			
Notificatio	n Appliand	ce Manufacturer	System Sens	sor]			
Circuit	is with	in limits			Distance	Voltage	Drop	
Speaker	NAC	Device Model #	Device	Device	Previous	at	From	Percent
Identifier	Identifier	and Candela	Wattage	Current	Device	Device	Source	Drop
A1.7.1	N2.4.1	SPSRLED 15	1/2	0.018	75	20.14	0.259	1.27%
A1.7.2	N2.4.2	SPSRLED 15	1/2	0.018	24	20.06	0.340	1.66%
A1.7.3	N2.4.3	SPSRLED 135	2	0.105	51	19.90	0.505	2.47%
A1.7.4	N2.4.4	SPSRLED 30	1/2	0.022	39	19.79	0.606	2.97%
A1.7.5	N2.4.5	SPSRLED 30	1/2	0.022	25	19.73	0.667	3.27%
A1.7.6	N2.4.6	SPSRLED 30	1/2	0.022	35	19.65	0.748	3.67%
A1.7.7	N2.4.7	SPSRLED 30	1/2	0.022	32	19.58	0.818	4.01%
A1.7.8	N2.4.8	SPSRLED 15	1/2	0.018	31	19.52	0.882	4.32%
A1.7.9	N2.4.9	SPSRLED 15	1/2	0.018	41	19.44	0.961	4.71%
A1.7.10	N2.4.10	SPSRLED 75	1	0.070	13	19.41	0.985	4.83%
A1.7.11	N2.4.11	SPSRLED 75	1	0.070	42	19.36	1.044	5.12%
A1.7.12	N2.4.12	SPSRLED 75	1	0.070	35	19.32	1.078	5.28%
A1.7.13	N2.4.13	SPSRLED 75	1 1	0.070	36	19.30	1.097	5.38%
A1.7.14	N2.4.14	SPSRLED 15	1/2	0.018	18	19.30	1.099	5.39%
Totals			10 1/2	0.563	497			
Notes:								
		doubled in the calculations f		•	•	•	•	
		must not be lower than the		s listed m	iinimum o _l	perating v	oltage (IE:	rated
operating	voltage 1	6-33 VDC (24 VDC nominal))).					

FPS2 Battery Calculation

Required Standby Time:

PSN-1000

CO1224TR

Device Type

Device Type

Current (Amps)
Total Ampere Hours (before derating factor)

Derating Factor

TOTAL AMPERE HOURS REQUIRED

BATTERIES TO BE PROVIDED (2 - 12v)

FPS2 MAINBOARD

FPS2.1 (See Voltage Drop Calculations)

FPS2.2 (See Voltage Drop Calculations)

FPS2.3 (See Voltage Drop Calculations)

FPS2.4 (See Voltage Drop Calculations)

FPS2.5 (See Voltage Drop Calculations)

FPS2.6 (See Voltage Drop Calculations)

TOTAL STANDBY LOAD

TOTAL ALARM LOAD

FPS2 MAINBOARD

FPS2 MAINBOARD

Standby Load

Current (Amps)
Alarm Load

CARBON MONOXIDE DETECTOR

Required Alarm Time:

System Manufacturer Potter

PROJECT NAME: FRANKLIN MIDDLE SCHOOL

Panel Max: 6.50 Circuit Max: 3.00

AC Branch Current

Maximum NAC Output

Regulated Load in Standby

Regulated Load in ALARM

Battery Requirements

12/9/2024 FRANKLIN MIDDLE SCHOOL

AC Branch Current: 2.08 Amps @ 120V

12 AH

operating voltage 16-33 VDC (24 VDC nominal)).

operating voltage 16-33 VDC (24 VDC nominal)).

= 11.531100

ulation				Point t	to Point	t NAC Voltage Dro	p Calculation					
ulatioi	.1		1/22/2025	Date			12/10/2024	1				
FRANKLIN MID	DIF S	SCHOOL		Project N	lame		FRANKLIN M	IDDLE SCH	100L			
	Hour			Circuit N			FPS2.1					
	Minu											
Potter	MIIIU	ics		Nominal	System Vo	oltage	20.4	volts] Wire R	esistance		
		1			Device Vo	_		volts	4	Per 1000		
ranch Cu	ırre					rce to 1st device		feet	14	3.07]	
2.08		Amps @	120V			ance of circuit			14	3.07	İ	
um NAC	Out	put		Time odd	go 101 bul	and or on our				0.07	l	
6.50		Amps		Max Outr	out Current	t	3 00	amps	1	ς	peaker ID	A1.4.
3.00		Amps			cuit Currer			amps	1	3	NAC ID	N2.1.
l Load in	ı St	•			rrent Capo		20%	anipa	1		ן שו טויייו	112.1.
Number	_ ~\u00f3	Current	Total Current		ine Voltag	•	19.44	volte	ł			
of Devices		(Amps)	(Amps)		_	ce Manufacturer	System Sen		ł			
1	X	0.060000 =	0.060000			nin limits	System Sen	301	Distance	Voltage	Drop	
16	$\frac{1}{X}$	0.020000 =	0.320000	Speaker	NAC NAC	Device Model #	Device	Device	Previous	at	From	Percen
		0.020000	3.02000	Identifier		and Candela	Wattage	Current	Device	Device	Source	Drop
			0.380000	A1.4.1	N2.1.1	SPSRLED 75	1/4	0.070	46	20.22	0.180	0.88%
d Load i	n A	TARM	0.000000	A1.4.2	N2.1.2	SPSRLED 75	1	0.070	44	20.07	0.334	1.64%
Number	II A	Current	Total Current	A1.4.3	N2.1.3	SPSRLED 75	1 1	0.070	10	20.04	0.365	1.79%
of Devices		(Amps)	(Amps)	A1.4.4	N2.1.4	SPSRLED 15	1/2	0.018	10	20.01	0.391	1.92%
1	X	0.200000 =	0.200000	A1.4.5	N2.1.5	SPSRLED 75	1	0.070	48	19.89	0.512	2.51%
ı	 ^ 	0.789000 =	0.789000	A1.4.6	N2.1.6	SPSRLED 15	1/2	0.018	48	19.79	0.613	3.00%
		0.504000 =	0.504000	A1.4.7	N2.1.7	SPSRLED 15	1/2	0.018	24	19.74	0.660	3.24%
		0.464000 =	0.464000	A1.4.8	N2.1.8	SPSRLED 30	1/2	0.022	22	19.70	0.702	3.44%
		0.000000 =	0.000000	A1.4.9	N2.1.9	SPSRLED 75	1	0.070	39	19.63	0.769	3.77%
		0.000000 =	0.000000	A1.4.10	N2.1.10	SPSRLED 30	1/2	0.022	37	19.58	0.818	4.01%
		0.000000 =	0.000000	A1.4.11	N2.1.11	SPSRLED 15	1/2	0.018	34	19.54	0.858	4.20%
		3.333300 -	- 3.000000	A1.4.12	N2.1.12	SPSRLED 30	1/2	0.022	30	19.51	0.890	4.36%
			1.957000	A1.4.13	N2.1.13	SPSRLED 30	1/2	0.022	20	19.49	0.908	4.45%
T Position	omo	nta	1.557555	A1.4.14		SPSRLED 95	2	0.075	55	19.45	0.952	4.66%
y Require			Time in Herma	A1.4.15	N2.1.15	SPSRLED 15	1/2	0.018	20	19.44	0.958	4.70%
0.700000		Required Standby		A1.4.16	N2.1.16	SPSRLED 15	1/4	0.018	20	19.44	0.963	4.72%
0.380000		24.00000 =	9.120000	A1.4.17	N2.1.17	SPSRLED 15	1/2	0.018	15	19.44	0.964	4.73%
4.057000		Required Alarm Ti		Totals			11 1/2	0.639	522			
1.957000	Х	0.250000 =		Notes:			<u> </u>					
			9.609250	Wire resis	stance is	doubled in the calculation	ons for two wires	(Positive	and Negati	ve). The	voltage cal	culated
		X		to the la	st device	must not be lower than	the manufacture	s listed m	ninimum op	erating v	oltage (IE:	rated
		=	11.531100	I 1.	. 11 4	10 77 1/00 /04 1/00						

Date	TO I OIII	NAC Voltage Dr	1/22/202					
Project Name			MIDDLE SCH	1001				
-				MIDDLE SCF	IUUL			
Circuit 1	number		FPS2.5					
	System Vo	~		.4 volts	4	Resistance		
Minimum	n Device Vo	ltage		16.0 volts		Gauge Per 1000		
Distance	from sour	ce to 1st device	12	25 feet	14	3.07		
Wire Ga	uge for bal	ance of circuit			14	3.07		
Max Out	put Current	:	3.0	00 amps	1			
	rcuit Curren			35 amps	1			N2.5.
	urrent Capa		20		1			
	Line Voltage			81 volts	1			
	-	ce Manufacturer	System Se		1			
		in limits			Distance	Voltage	Drop	
SLC	NAC	Device Model #		Device	Previous	at	From	Percer
ID	Identifier	and Candela		Current	Device	Device	Source	Drop
1:005	N2.5.1	C01224TR		0.020	125	20.12	0.280	1.37%
1:009	N2.5.2	C01224TR		0.020	45	20.02	0.375	1.84%
1:010	N2.5.3	C01224TR		0.020	35	19.95	0.445	2.18%
1:013	N2.5.4	C01224TR		0.020	35	19.89	0.511	2.50%
1:021	N2.5.5	OSID-R		0.015	60	19.78	0.616	3.02%
1:023	N2.5.6	C01224TR		0.020	76	19.66	0.742	3.64%
1:032	N2.5.7	C01224TR		0.020	30	19.61	0.788	3.86%
1:033	N2.5.8	OSID-R		0.015	90	19.49	0.915	4.49%
1:043	N2.5.9	C01224TR		0.020	67	19.40	1.003	4.92%
1:053	N2.5.10	CO1224TR		0.020	74	19.31	1.092	5.35%
2:008	N2.5.11	CO1224TR		0.020	136	19.16	1.238	6.07%
2:011	N2.5.12	CO1224TR		0.020	55	19.11	1.291	6.33%
2:040	N2.5.13	CO1224TR		0.020	116	19.01	1.387	6.80%
2:058	N2.5.14	CO1224TR		0.020	156	18.90	1.497	7.34%
2:061	N2.5.15	C01224TR		0.020	41	18.88	1.521	7.45%
2:062	N2.5.16	CO1224TR		0.020	35	18.86	1.537	7.53%
2:067	N2.5.17	CO1224TR		0.020	35	18.85	1.549	7.59%
3:018	N2.5.18	OSID-R		0.015	75	18.84	1.565	7.67%
3:053	N2.5.19	CO1224TR		0.020	170	18.81	1.586	7.77%
Totals			0	0.365	1456			
Notes:								

FIRE

CALCULATIONS

ALARM PLAN

83201

Ö

POC,

TERRY

2271 E

SCHOOL

FRANKLIN MIDDLE

DRAWN MD UNICAD JOB #24705 CHECKED BRADY B. HAWS, SET NICET IV FAS 138751

DATE 1/21/25 REVISION

SCALE 1/8"=1'-0"

FA-4

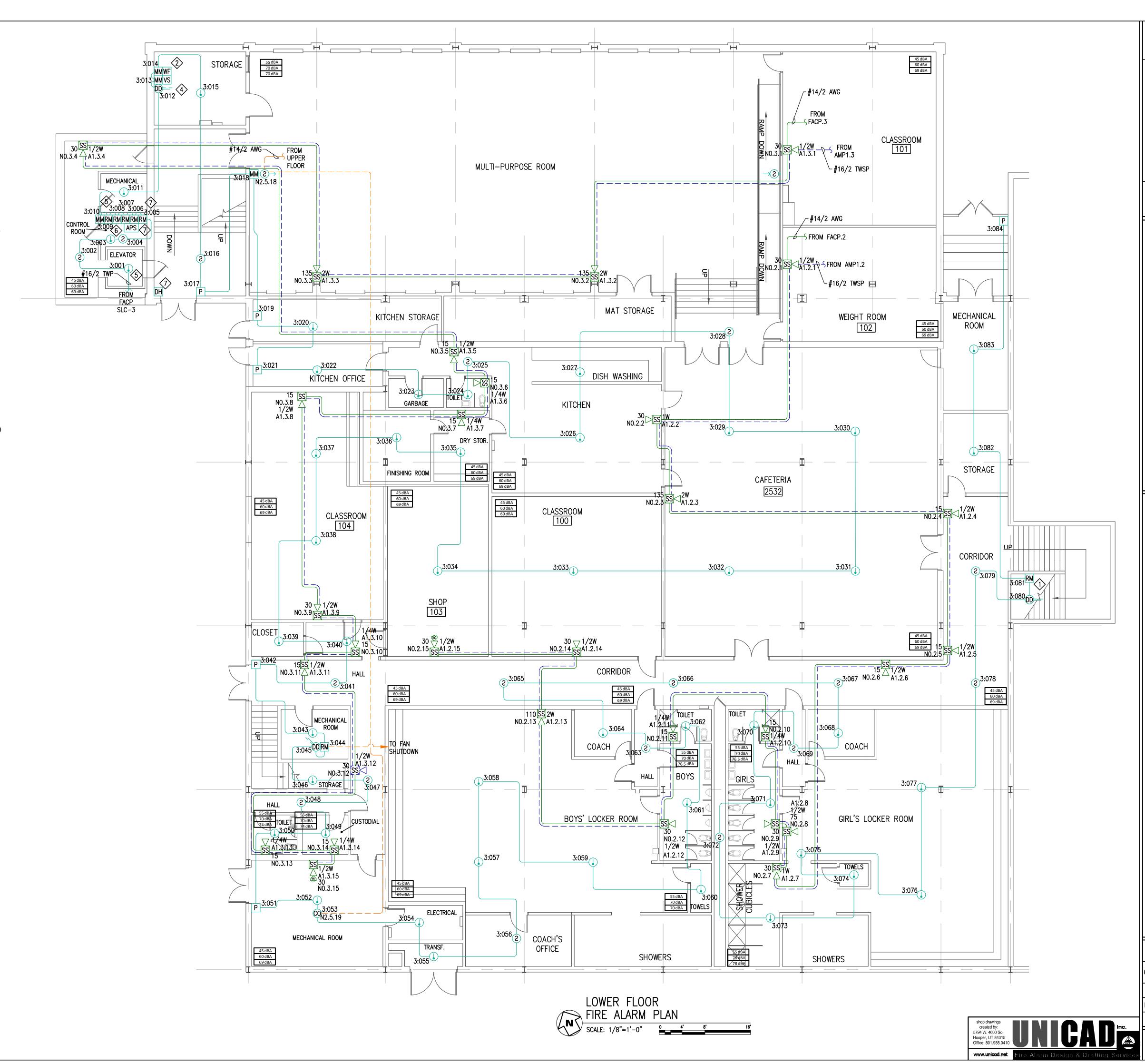
SHEET NOTES:

- ADDRESSABLE RELAY MODULE(S) PROVIDED FOR FAN SHUT DOWN. TIE TO INDICATED UNIT FAN CONTROLLER. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING, AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION.
- ADDRESSABLE MONITOR MODULE(S) PROVIDED TO MONITOR ALL WATER FLOW, PRESSURE SWITCHES, TAMPER SWITCHES AND POST INDICATING VALVES ASSOCIATED WITH THE FIRE SPRINKLER SYSTEM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- MANUAL PULL STATION TO BE LOCATED AT A CONVENIENT CENTRAL POINT UNDER CONTINUOUS SUPERVISION OF RESPONSIBLE EMPLOYEES.
- CONVENTIONAL DUCT SMOKE DETECTORS PROVIDED FOR THE RETURN AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 2,000 CFM AND FOR THE SUPPLY AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 15,000 CFM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. PROVIDE POWER TO THE DETECTOR FROM THE ASSOCIATED UNIT (24 VDC OR 120 VAC) UNLESS OTHERWISE INDICATED. PROVIDE FOR SHUT DOWN OF THE ASSOCIATED UNIT FAN(S). FIELD VERIFY UNIT POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION. PROVIDE REMOTE ALARM/SUPERVISORY INDICATION IN A LOCATION ACCEPTABLE TO THE LOCAL AHJ WHEN IN-DUCT SMOKE DETECTOR INDICATOR IS NOT VISIBLE TO RESPONDING PERSONNEL.
- WHERE HOISTWAY(S) AND ELEVATOR CONTROL ROOM ARE PROTECTED WITH SPRINKLERS, PROVIDE HEAT DETECTOR(S) WITHIN 24" OF EACH SPRINKLER HEAD. HEAT DETECTORS SHALL HAVE A LOWER TEMPERATURE RATING THAN THE SPRINKLERS IN THE AREA AND BE MONITORED FOR INTEGRITY.
- ADDRESSABLE RELAY MODULES (4) PROVIDED FOR THE ELEVATOR RECALL AND SHUT DOWN. TIE TO ELEVATOR EQUIPMENT ROOM DETECTOR(S), HOISTWAY DETECTOR(S) AND LOBBY DETECTOR(S) TO INITIATE RECALL AND SHUT DOWN. ADDRESSABLE MONITOR MODULE PROVIDED TO MONITOR THE CONTROL CIRCUIT TO THE ELEVATOR SHUNT TRIP BREAKER FOR THE PRESENCE OF OPERATING VOLTAGE. LOSS OF VOLTAGE SHALL CAUSE A SUPERVISORY SIGNAL AT THE CONTROL PANEL. FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS.
- EXISTING DEVICES DESIGNATED TO REMAIN.
- ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR FIRE-SMOKE CURTAIN CONTROL. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR DOOR HOLDER CONTROL. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- DUCT DETECTOR LOCATED ON ROOFTOP.

SOUND PRESSURE LEVEL ANNOTATION

AMBIENT SOUND PRESSURE LEVEL

MINIMUM SOUND PRESSURE LEVEL REQUIRED


DESIGNED SOUND PRESSURE LEVEL

NOTIFICATION APPLIANCE DECIBEL OUTPUT				
WATTAGE	UL REVERBERANT dBA @ 10 FT	WATTAGE	UL REVERBERANT dBA @ 10 FT	
CEILING SPEAKER/S	TROBE - SPSCWLED	SPEAKER/STROBE - SPWLED		
1/4 W	77	1/4 W	77	
1/2 W	80	1/2 W	80	
1 W	83	1 W	83	
2 W	86	2 W	86	

	<u>AVERAGE AMBIENT</u>	DESIGN SOUND
<u>LOCATION</u>	<u>SOUND LEVEL (DBA)</u>	<u>LEVEL (DBA)</u>
BUSINESS OCCUPANCIES	55	70
EDUCATIONAL OCCUPANCIES	45	60
INDUSTRIAL OCCUPANCIES	80	95
INSTITUTIONAL OCCUPANCIES	50	65
MERCANTILE OCCUPANCIES	40	55
MECHANICAL ROOMS	85	100
PIERS AND WATER-SURROUNDED STRUCTURES	40	55
PLACES OF ASSEMBLY	55	70
RESIDENTIAL OCCUPANCIES	35	50
STORAGE OCCUPANCIES	30	45
THOROUGHFARES, HIGH-DENSITY URBAN	70	85
THOROUGHFARES, MEDIUM-DENSITY URBAN	55	70
THOROUGHFARES, RURAL AND SUBURBAN	40	55
TOWER OCCUPANCIES	35	50
UNDERGROUND STRUCTURES AND WINDOWLESS BUILDINGS	40	55
VELUCI EC. AND. VECCEL C		٥.

VEHICLES AND VESSELS 50 65

* NOTE: DESIGN SOUND PRESSURE LEVELS ARE MEASURED WITH A LOSS OF 10DB THROUGH WALLS AND CLOSED DOORS.

SC

MIDDLE

NELIN

DRAWN

DATE

SCALE

TERRY

MD UNICAD JOB #24705

BRADY B. HAWS, SET NICET IV FAS 138751

FA-5

MODUL

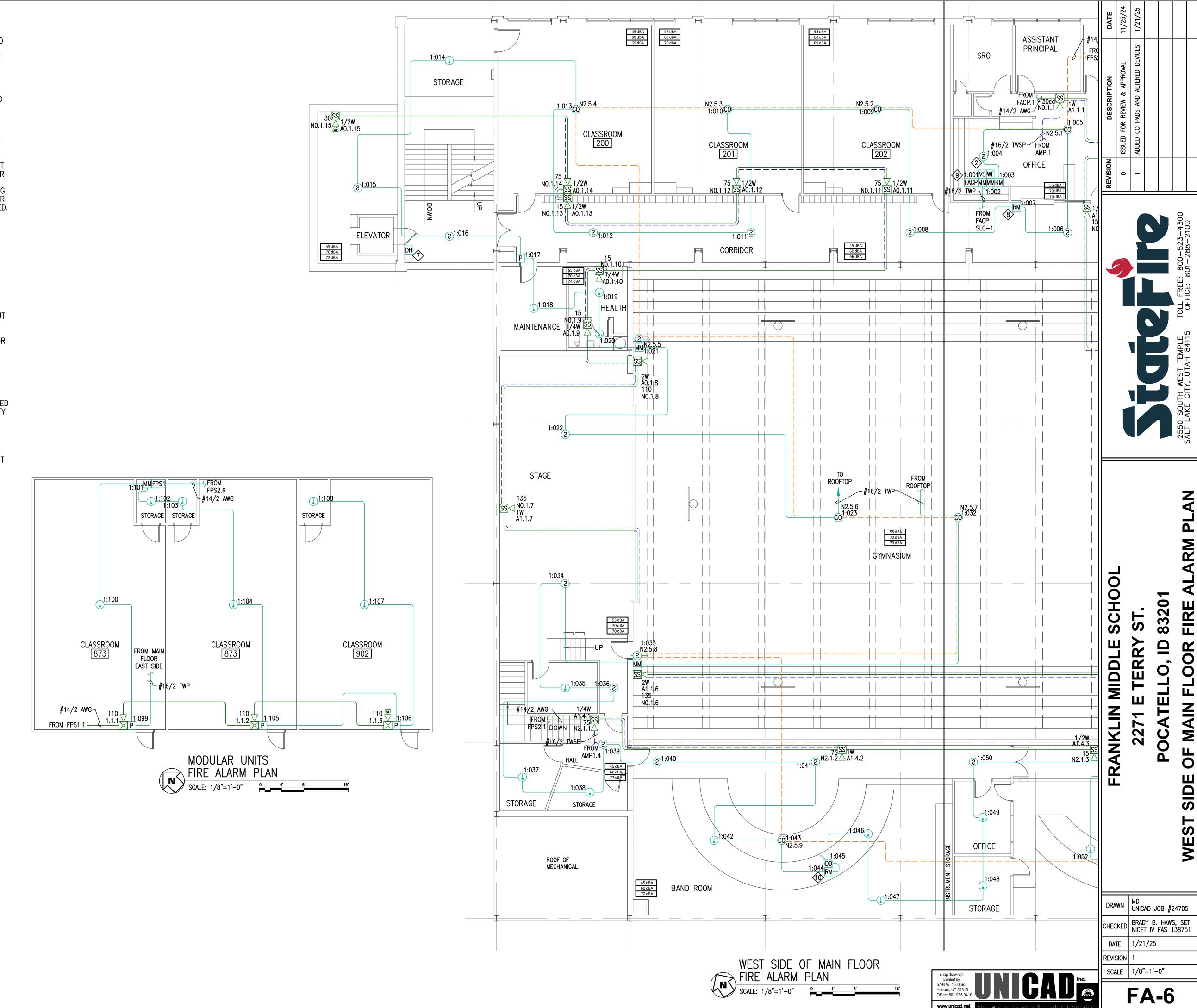
SHEET NOTES:

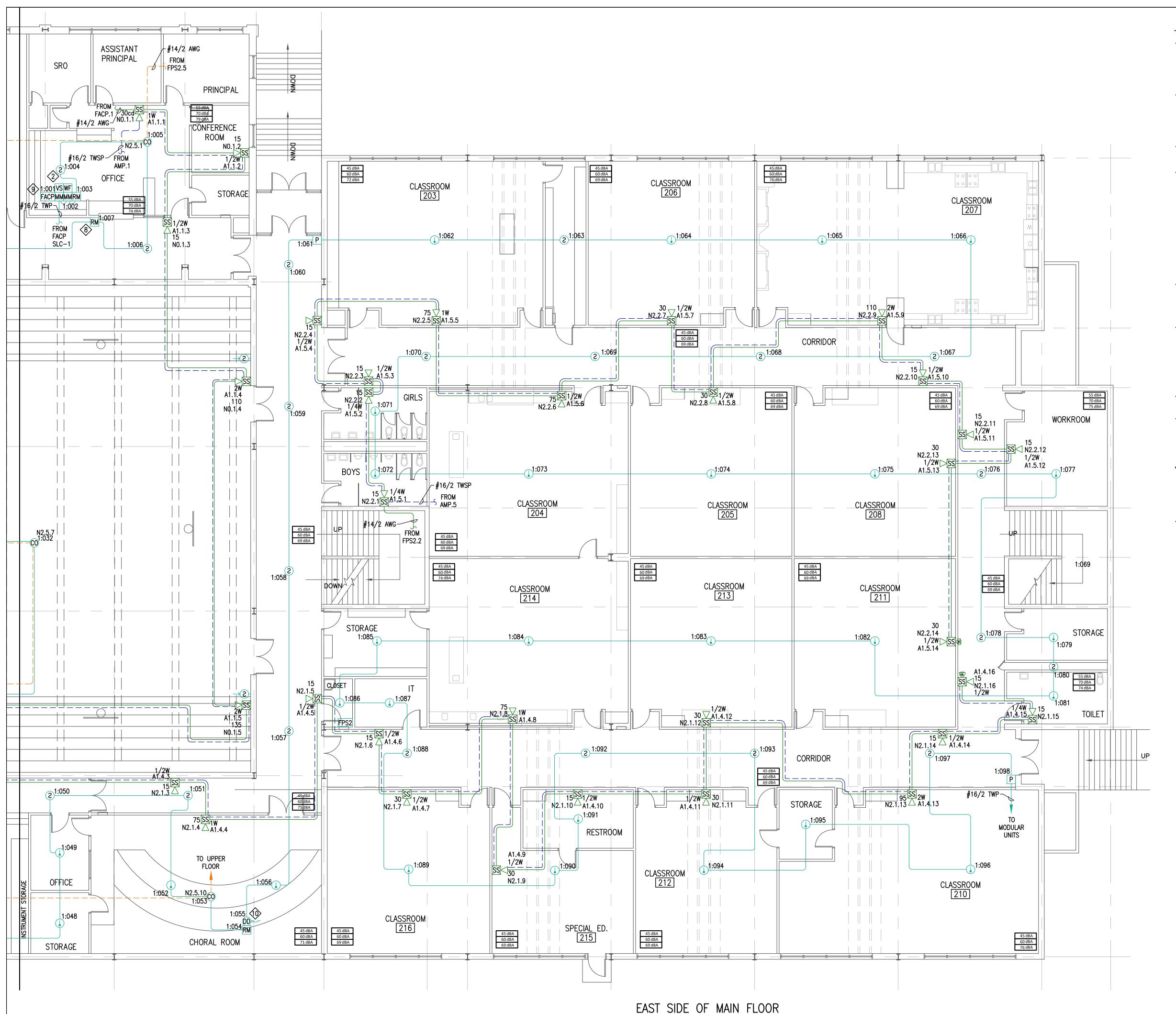
- ADDRESSABLE RELAY MODULE(S) PROVIDED FOR FAN SHUT DOWN. TIE TO INDICATED UNIT FAN CONTROLLER. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING, AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION.
- ADDRESSABLE MONITOR MODULE(S) PROVIDED TO MONITOR ALL WATER FLOW, PRESSURE SWITCHES, TAMPER SWITCHES AND POST INDICATING VALVES ASSOCIATED WITH THE FIRE SPRINKLER SYSTEM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- MANUAL PULL STATION TO BE LOCATED AT A CONVENIENT CENTRAL POINT UNDER CONTINUOUS SUPERVISION OF RESPONSIBLE EMPLOYEES.
- CONVENTIONAL DUCT SMOKE DETECTORS PROVIDED FOR THE RETURN AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 2,000 CFM AND FOR THE SUPPLY AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 15,000 CFM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. PROVIDE POWER TO THE DETECTOR FROM THE ASSOCIATED UNIT (24 VDC OR 120 VAC) UNLESS OTHERWISE INDICATED PROVIDE FOR SHUT DOWN OF THE ASSOCIATED UNIT FAN(S). FIELD VERIFY UNIT POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION. PROVIDE REMOTE ALARM/SUPERVISORY INDICATION IN A LOCATION ACCEPTABLE TO THE LOCAL AHJ WHEN IN-DUCT SMOKE DETECTOR INDICATOR IS NOT VISIBLE TO RESPONDING PERSONNEL.
- WHERE HOISTWAY(S) AND ELEVATOR CONTROL ROOM ARE PROTECTED WITH SPRINKLERS, PROVIDE HEAT DETECTOR(S) WITHIN 24" OF EACH SPRINKLER HEAD. HEAT DETECTORS SHALL HAVE A LOWER TEMPERATURE RATING THAN THE SPRINKLERS IN THE AREA AND BE MONITORED FOR INTEGRITY.
- ADDRESSABLE RELAY MODULES (4) PROVIDED FOR THE ELEVATOR RECALL AND SHUT DOWN. TIE TO ELEVATOR EQUIPMENT ROOM DETECTOR(S), HOISTWAY DETECTOR(S) AND LOBBY DETECTOR(S) TO INITIATE RECALL AND SHUT DOWN. ADDRESSABLE MONITOR MODULE PROVIDED TO MONITOR THE CONTROL CIRCUIT TO THE ELEVATOR SHUNT TRIP BREAKER FOR THE PRESENCE OF OPERATING VOLTAGE. LOSS OF VOLTAGE SHALL CAUSE A SUPERVISORY SIGNAL AT THE CONTROL PANEL. FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS.
- (7) EXISTING DEVICES DESIGNATED TO REMAIN.
- ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR FIRE-SMOKE CURTAIN CONTROL. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR DOOR HOLDER CONTROL. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- DUCT DETECTOR LOCATED ON ROOFTOP.

SOUND PRESSURE LEVEL ANNOTATION:

AMBIENT SOUND PRESSURE LEVEL

MINIMUM SOUND PRESSURE LEVEL REQUIRED


DESIGNED SOUND PRESSURE LEVEL


NOTIFICATION APPLIANCE DECIBEL OUTPUT					
WATTAGE	UL REVERBERANT dBA @ 10 FT	WATTAGE	UL REVERBERANT dBA @ 10 FT		
CEILING SPEAKER/S	TROBE - SPSCWLED	SPEAKER/STROBE - SPWLED			
1/4 W	77	1/4 W	77		
1/2 W	80	1/2 W	80		
1 W	83	1 W	83		
2 W	86	2 W	86		

	AVERAGE AMBIENT	<u>DESIGN SOUND</u>
<u>LOCATION</u>	SOUND LEVEL (DBA)	<u>LEVEL (DBA)</u>
BUSINESS OCCUPANCIES	55	70
EDUCATIONAL OCCUPANCIES	45	60
INDUSTRIAL OCCUPANCIES	80	95
INSTITUTIONAL OCCUPANCIES	50	65
MERCANTILE OCCUPANCIES	40	55
MECHANICAL ROOMS	85	100
PIERS AND WATER-SURROUNDED STRUCTURES	40	55
PLACES OF ASSEMBLY	55	70
RESIDENTIAL OCCUPANCIES	35	50
STORAGE OCCUPANCIES	30	45
THOROUGHFARES, HIGH-DENSITY URBAN	70	85
THOROUGHFARES, MEDIUM-DENSITY URBAN	55	70
THOROUGHFARES, RURAL AND SUBURBAN	40	55
TOWER OCCUPANCIES	35	50
UNDERGROUND STRUCTURES AND WINDOWLESS BUILDINGS	40	55
VEHICLES AND VESSELS	50	65

* NOTE: DESIGN SOUND PRESSURE LEVELS ARE MEASURED WITH A LOSS OF 10DB THROUGH WALLS

AND CLOSED DOORS

FIRE ALARM PLAN

SCALE: 1/8"=1'-0"

9 4' 8'

SHEET NOTES:

- (1) ADDRESSABLE RELAY MODULE(S) PROVIDED FOR FAN SHUT DOWN. TIE TO INDICATED UNIT FAN CONTROLLER. INSTÂLLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING, AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION.
- 2 ADDRESSABLE MONITOR MODULE(S) PROVIDED TO MONITOR ALL WATER FLOW, PRESSURE SWITCHES, TAMPER SWITCHES AND POST INDICATING VALVES ASSOCIATED WITH THE FIRE SPRINKLER SYSTEM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- 3 MANUAL PULL STATION TO BE LOCATED AT A CONVENIENT CENTRAL POINT UNDER CONTINUOUS SUPERVISION OF RESPONSIBLE EMPLOYEES.
- (4) CONVENTIONAL DUCT SMOKE DETECTORS PROVIDED FOR THE RETURN AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 2,000 CFM AND FOR THE SUPPLY AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 15.000 CFM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING. CIRCUITING AND PROGRAMMING REQUIREMENTS. PROVIDE POWER TO THE DETECTOR FROM THE ASSOCIATED UNIT (24 VDC OR 120 VAC) UNLESS OTHERWISE INDICATED. PROVIDE FOR SHUT DOWN OF THE ASSOCIATED UNIT FAN(S). FIELD VERIFY UNIT POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION. PROVIDE REMOTE ALARM/SUPERVISORY INDICATION IN A LOCATION ACCEPTABLE TO THE LOCAL AHJ WHEN IN-DUCT SMOKE DETECTOR INDICATOR IS NOT VISIBLE TO RESPONDING PERSONNEL.
- (5) WHERE HOISTWAY(S) AND ELEVATOR CONTROL ROOM ARE PROTECTED WITH SPRINKLERS, PROVIDE HEAT DETECTOR(S) WITHIN 24" OF EACH SPRINKLER HEAD. HEAT DETECTORS SHALL HAVE A LOWER TEMPERATURE RATING THAN THE SPRINKLERS IN THE AREA AND BE MONITORED FOR INTEGRITY.
- 6 ADDRESSABLE RELAY MODULES (4) PROVIDED FOR THE ELEVATOR RECALL AND SHUT DOWN. TIE TO ELEVATOR EQUIPMENT ROOM DETECTOR(S), HOISTWAY DETECTOR(S) AND LOBBY DETECTOR(S) TO INITIATE RECALL AND SHUT DOWN. ADDRESSABLE MONITOR MODULE PROVIDED TO MONITOR THE CONTROL CIRCUIT TO THE ELEVATOR SHUNT TRIP BREAKER FOR THE PRESENCE OF OPERATING VOLTAGE. LOSS OF VOLTAGE SHALL CAUSE A SUPERVISORY SIGNAL AT THE CONTROL PANEL. FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS.
- (7) EXISTING DEVICES DESIGNATED TO REMAIN.
- 8 ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR FIRE-SMOKE CURTAIN CÒNTROL. INSTALLING CONTRACTOR SHALL FIÉLD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- <9> ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR DOOR HOLDER CONTROL. INSTALLING CONTRACTOR SHALL FIELD VÉRIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- DUCT DETECTOR LOCATED ON ROOFTOP.

SOUND PRESSURE LEVEL ANNOTATION

AMBIENT SOUND PRESSURE LEVEL

MINIMUM SOUND PRESSURE LEVEL REQUIRED

DESIGNED SOUND PRESSURE LEVEL

NOTIFICATION APPLIANCE DECIBEL OUTPUT					
WATTAGE UL REVERBERANT MATTAGE UL REVERBERANT dBA @ 10 FT					
CEILING SPEAKER/STROBE - SPSCWLED SPEAKER/STROBE - SPWLED					
1/4 W	1/4 W 77		77		
1/2 W	80	1/2 W	80		
1 W	83	1 W	83		
2 W	86	2 W	86		

	AVERAGE AMBIENT	DESIGN SOUND
<u>LOCATION</u>	SOUND LEVEL (DBA)	LEVEL (DBA)
BUSINESS OCCUPANCIES	55	70
EDUCATIONAL OCCUPANCIES	45	60
INDUSTRIAL OCCUPANCIES	80	95
INSTITUTIONAL OCCUPANCIES	50	65
MERCANTILE OCCUPANCIES	40	55
MECHANICAL ROOMS	85	100
PIERS AND WATER-SURROUNDED STRUCTURES	40	55
PLACES OF ASSEMBLY	55	70
RESIDENTIAL OCCUPANCIES	35	50
STORAGE OCCUPANCIES	30	45
THOROUGHFARES, HIGH-DENSITY URBAN	70	85
THOROUGHFARES, MEDIUM-DENSITY URBAN	55	70
THOROUGHFARES, RURAL AND SUBURBAN	40	55
TOWER OCCUPANCIES	35	50
UNDERGROUND STRUCTURES AND WINDOWLESS BUILDINGS	40	55
VEHICLES AND VESSELS	50	65

 $\boldsymbol{*}$ NOTE: DESIGN SOUND PRESSURE LEVELS ARE MEASURED WITH A LOSS OF 10DB THROUGH WALLS AND CLOSED DOORS.

BRADY B. HAWS, SET NICET IV FAS 138751 DATE SCALE 1/8"=1'-0"

SCHOO

MIDDLE

ANKLIN

TERRY

0

SIDE

FA-7

MD UNICAD JOB #24705

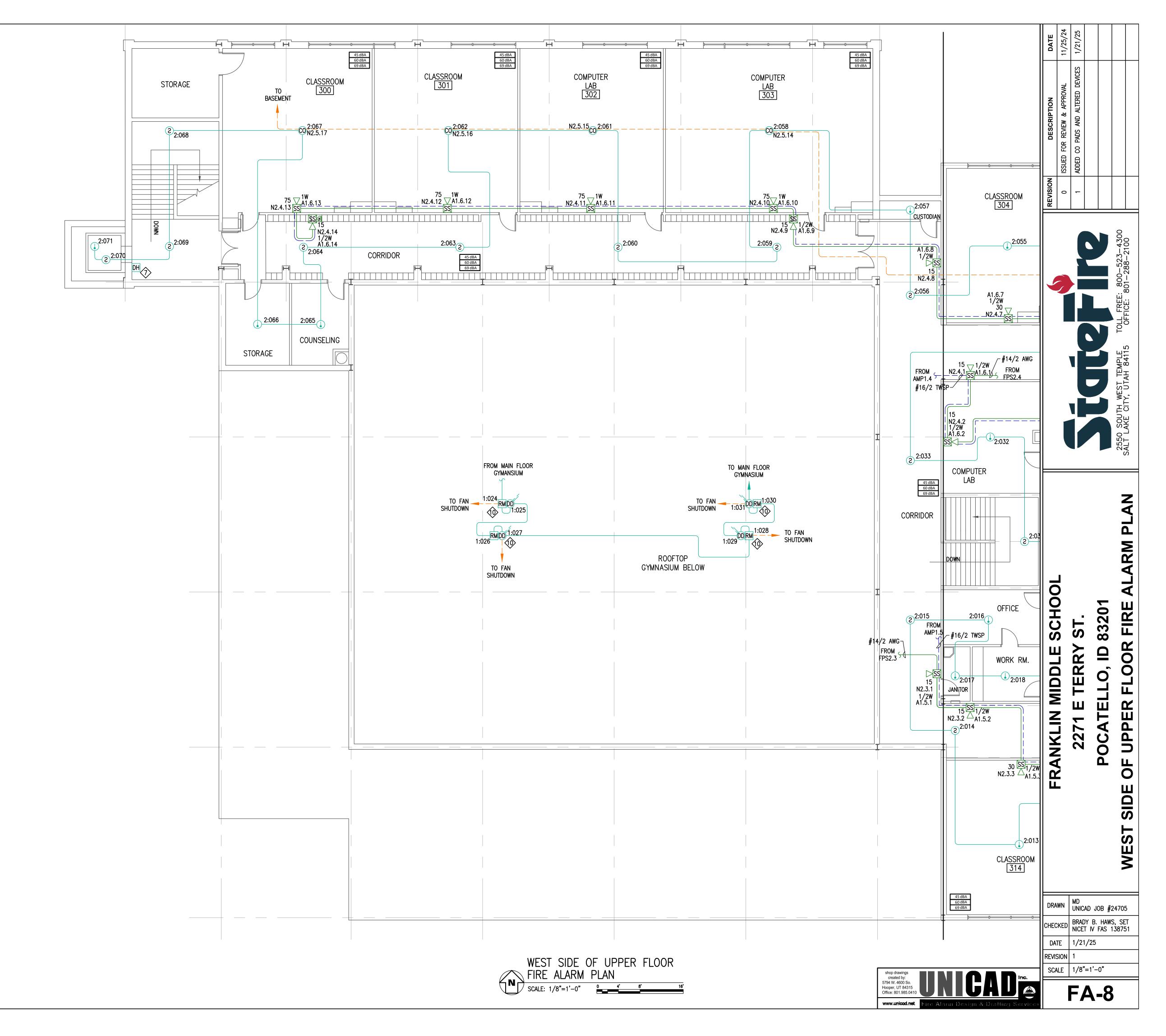
SHEET NOTES:

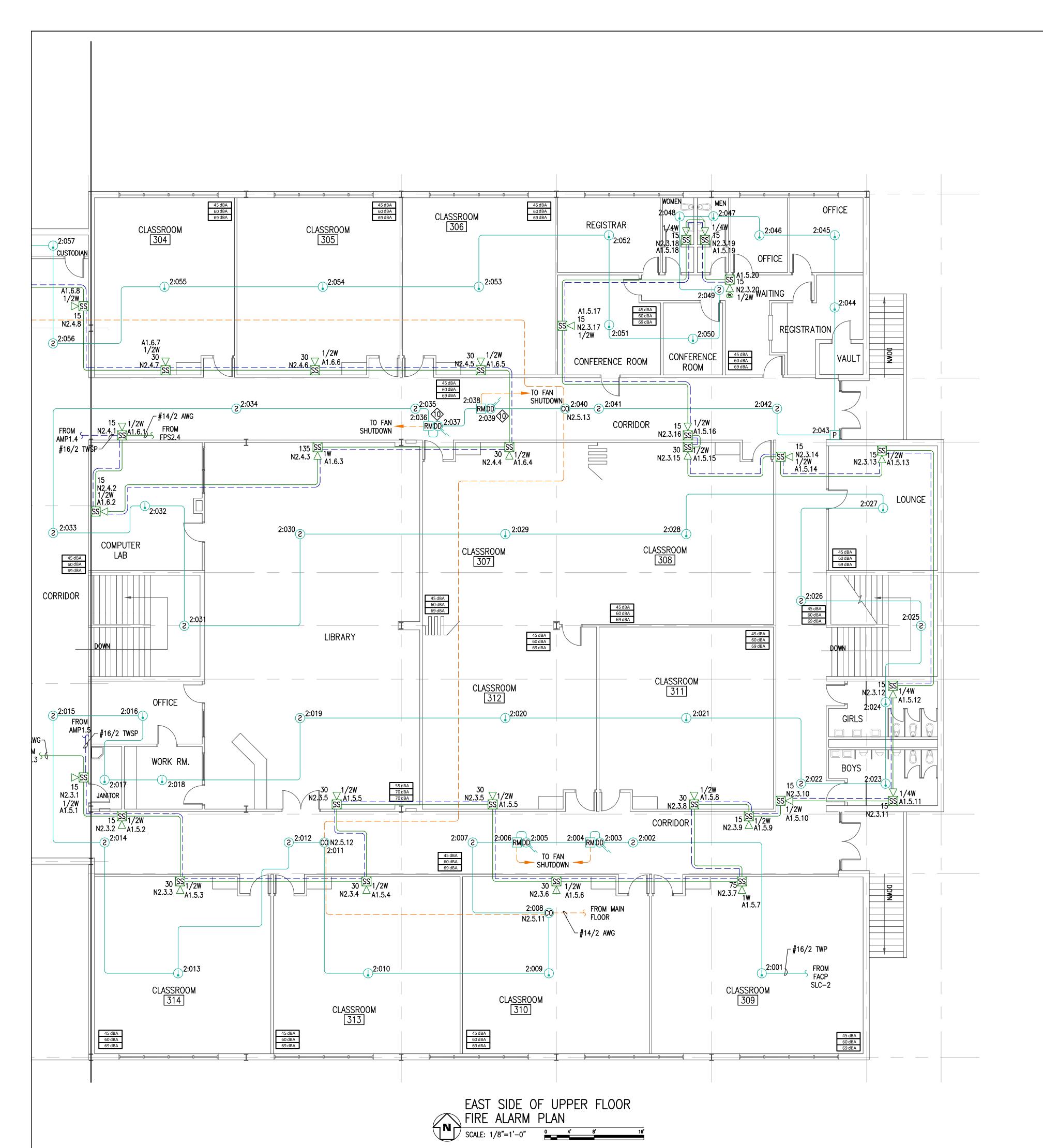
- ADDRESSABLE RELAY MODULE(S) PROVIDED FOR FAN SHUT DOWN. TIE TO INDICATED UNIT FAN CONTROLLER. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING, AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION.
- ADDRESSABLE MONITOR MODULE(S) PROVIDED TO MONITOR ALL WATER FLOW, PRESSURE SWITCHES, TAMPER SWITCHES AND POST INDICATING VALVES ASSOCIATED WITH THE FIRE SPRINKLER SYSTEM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- MANUAL PULL STATION TO BE LOCATED AT A CONVENIENT CENTRAL POINT UNDER CONTINUOUS SUPERVISION OF RESPONSIBLE EMPLOYEES.
- CONVENTIONAL DUCT SMOKE DETECTORS PROVIDED FOR THE RETURN AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 2,000 CFM AND FOR THE SUPPLY AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 15,000 CFM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. PROVIDE POWER TO THE DETECTOR FROM THE ASSOCIATED UNIT (24 VDC OR 120 VAC) UNLESS OTHERWISE INDICATED PROVIDE FOR SHUT DOWN OF THE ASSOCIATED UNIT FAN(S). FIELD VERIFY UNIT POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION. PROVIDE REMOTE ALARM/SUPERVISORY INDICATION IN A LOCATION ACCEPTABLE TO THE LOCAL AHJ WHEN IN-DUCT SMOKE DETECTOR INDICATOR IS NOT VISIBLE TO RESPONDING PERSONNEL.
- WHERE HOISTWAY(S) AND ELEVATOR CONTROL ROOM ARE PROTECTED WITH SPRINKLERS, PROVIDE HEAT DETECTOR(S) WITHIN 24" OF EACH SPRINKLER HEAD. HEAT DETECTORS SHALL HAVE A LOWER TEMPERATURE RATING THAN THE SPRINKLERS IN THE AREA AND BE MONITORED FOR INTEGRITY.
- ADDRESSABLE RELAY MODULES (4) PROVIDED FOR THE ELEVATOR RECALL AND SHUT DOWN. TIE TO ELEVATOR EQUIPMENT ROOM DETECTOR(S), HOISTWAY DETECTOR(S) AND LOBBY DETECTOR(S) TO INITIATE RECALL AND SHUT DOWN. ADDRESSABLE MONITOR MODULE PROVIDED TO MONITOR THE CONTROL CIRCUIT TO THE ELEVATOR SHUNT TRIP BREAKER FOR THE PRESENCE OF OPERATING VOLTAGE. LOSS OF VOLTAGE SHALL CAUSE A SUPERVISORY SIGNAL AT THE CONTROL PANEL. FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS.
- EXISTING DEVICES DESIGNATED TO REMAIN.
- ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR FIRE-SMOKE CURTAIN CONTROL. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR DOOR HOLDER CONTROL. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- DUCT DETECTOR LOCATED ON ROOFTOP.

AND CLOSED DOORS.

SOUND PRESSURE LEVEL ANNOTATION:

AMBIENT SOUND PRESSURE LEVEL


MINIMUM SOUND PRESSURE LEVEL REQUIRED


DESIGNED SOUND PRESSURE LEVEL

NOTIFICATION APPLIANCE DECIBEL OUTPUT					
WATTAGE	UL REVERBERANT dBA @ 10 FT	WATTAGE	UL REVERBERANT dBA @ 10 FT		
CEILING SPEAKER/S	TROBE - SPSCWLED	SPEAKER/STROBE - SPWLED			
1/4 W	77	1/4 W	77		
1/2 W	80	1/2 W	80		
1 W	83	1 W	83		
2 W	86	2 W	86		

	AVERAGE AMBIENT	<u>DESIGN SOUND</u>
<u>LOCATION</u>	SOUND LEVEL (DBA)	<u>LEVEL (DBA)</u>
BUSINESS OCCUPANCIES	55	70
EDUCATIONAL OCCUPANCIES	45	60
INDUSTRIAL OCCUPANCIES	80	95
INSTITUTIONAL OCCUPANCIES	50	65
MERCANTILE OCCUPANCIES	40	55
MECHANICAL ROOMS	85	100
PIERS AND WATER-SURROUNDED STRUCTURES	40	55
PLACES OF ASSEMBLY	55	70
RESIDENTIAL OCCUPANCIES	35	50
STORAGE OCCUPANCIES	30	45
THOROUGHFARES, HIGH-DENSITY URBAN	70	85
THOROUGHFARES, MEDIUM-DENSITY URBAN	55	70
THOROUGHFARES, RURAL AND SUBURBAN	40	55
TOWER OCCUPANCIES	35	50
UNDERGROUND STRUCTURES AND WINDOWLESS BUILDINGS	40	55
VEHICLES AND VESSELS	50	65

* NOTE: DESIGN SOUND PRESSURE LEVELS ARE MEASURED WITH A LOSS OF 10DB THROUGH WALLS

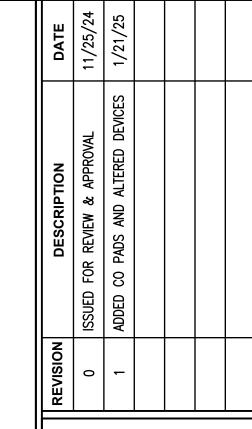
SHEET NOTES:

- ADDRESSABLE RELAY MODULE(S) PROVIDED FOR FAN SHUT DOWN. TIE TO INDICATED UNIT FAN CONTROLLER. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING, AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION.
- ADDRESSABLE MONITOR MODULE(S) PROVIDED TO MONITOR ALL WATER FLOW, PRESSURE SWITCHES, TAMPER SWITCHES AND POST INDICATING VALVES ASSOCIATED WITH THE FIRE SPRINKLER SYSTEM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- MANUAL PULL STATION TO BE LOCATED AT A CONVENIENT CENTRAL POINT UNDER CONTINUOUS SUPERVISION OF RESPONSIBLE EMPLOYEES.
- CONVENTIONAL DUCT SMOKE DETECTORS PROVIDED FOR THE RETURN AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 2,000 CFM AND FOR THE SUPPLY AIR PATH AT ALL AIR HANDLING UNITS HAVING A CAPACITY GREATER THAN 15,000 CFM. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. PROVIDE POWER TO THE DETECTOR FROM THE ASSOCIATED UNIT (24 VDC OR 120 VAC) UNLESS OTHERWISE INDICATED. PROVIDE FOR SHUT DOWN OF THE ASSOCIATED UNIT FAN(S). FIELD VERIFY UNIT POWER SOURCE. USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S) WITH MECHANICAL DIVISION. PROVIDE REMOTE ALARM/SUPERVISORY INDICATION IN A LOCATION ACCEPTABLE TO THE LOCAL AHJ WHEN IN-DUCT SMOKE DETECTOR INDICATOR IS NOT VISIBLE TO RESPONDING PERSONNEL.
- WHERE HOISTWAY(S) AND ELEVATOR CONTROL ROOM ARE PROTECTED WITH SPRINKLERS, PROVIDE HEAT DETECTOR(S) WITHIN 24" OF EACH SPRINKLER HEAD. HEAT DETECTORS SHALL HAVE A LOWER TEMPERATURE RATING THAN THE SPRINKLERS IN THE AREA AND BE MONITORED FOR INTEGRITY.
- ADDRESSABLE RELAY MODULES (4) PROVIDED FOR THE ELEVATOR RECALL AND SHUT DOWN. TIE TO ELEVATOR EQUIPMENT ROOM DETECTOR(S), HOISTWAY DETECTOR(S) AND LOBBY DETECTOR(S) TO INITIATE RECALL AND SHUT DOWN. ADDRESSABLE MONITOR MODULE PROVIDED TO MONITOR THE CONTROL CIRCUIT TO THE ELEVATOR SHUNT TRIP BREAKER FOR THE PRESENCE OF OPERATING VOLTAGE. LOSS OF VOLTAGE SHALL CAUSE A SUPERVISORY SIGNAL AT THE CONTROL PANEL. FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS.
- (7) EXISTING DEVICES DESIGNATED TO REMAIN.
- ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR FIRE-SMOKE CURTAIN CONTROL. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- ADDRESSABLE RELAY MODULE(S) AND MULTI-VOLTAGE CONTROL RELAY(S) PROVIDED FOR DOOR HOLDER CONTROL. INSTALLING CONTRACTOR SHALL FIELD VERIFY EXACT MOUNTING, CIRCUITING AND PROGRAMMING REQUIREMENTS. FIELD VERIFY POWER SOURCE (24 VDC OR 120 VAC). USE MULTI-VOLTAGE CONTROL RELAY(S) IF REQUIRED. FIELD VERIFY EXACT QUANTITY AND LOCATION(S).
- DUCT DETECTOR LOCATED ON ROOFTOP.

SOUND PRESSURE LEVEL ANNOTATION:

AMBIENT SOUND PRESSURE LEVEL

MINIMUM SOUND PRESSURE LEVEL REQUIRED


DESIGNED SOUND PRESSURE LEVEL

NOTIFICATION APPLIANCE DECIBEL OUTPUT					
WATTAGE	UL REVERBERANT dBA @ 10 FT	WATTAGE	UL REVERBERANT dBA @ 10 FT		
CEILING SPEAKER/S	TROBE - SPSCWLED	SPEAKER/STROBE - SPWLED			
1/4 W	77	1/4 W	77		
1/2 W	80	1/2 W	80		
1 W	83	1 W	83		
2 W	86	2 W	86		

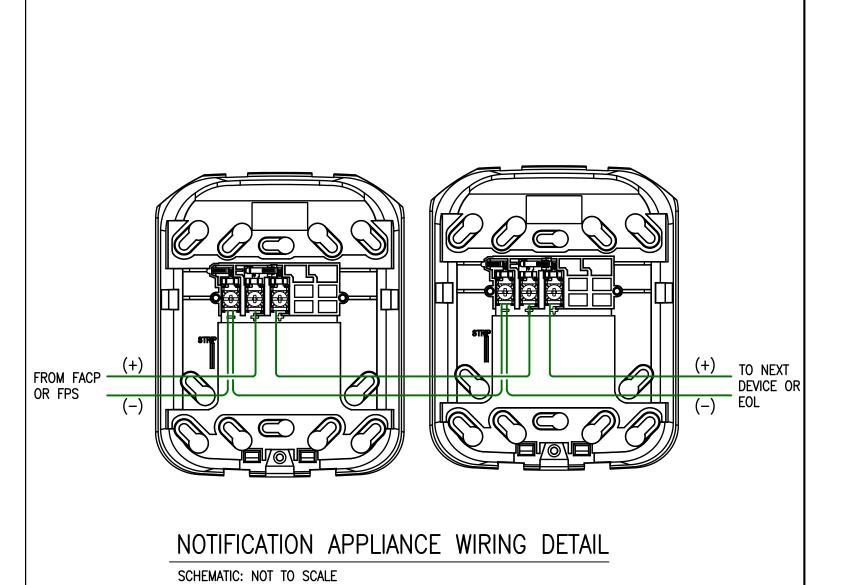
	<u>AVERAGE AMBIENT</u>	<u>DESIGN SOUND</u>
<u>LOCATION</u>	SOUND LEVEL (DBA)	<u>LEVEL (DBA)</u>
BUSINESS OCCUPANCIES	55	70
EDUCATIONAL OCCUPANCIES	45	60
INDUSTRIAL OCCUPANCIES	80	95
INSTITUTIONAL OCCUPANCIES	50	65
MERCANTILE OCCUPANCIES	40	55
MECHANICAL ROOMS	85	100
PIERS AND WATER-SURROUNDED STRUCTURES	40	55
PLACES OF ASSEMBLY	55	70
RESIDENTIAL OCCUPANCIES	35	50
STORAGE OCCUPANCIES	30	45
THOROUGHFARES, HIGH-DENSITY URBAN	70	85
THOROUGHFARES, MEDIUM-DENSITY URBAN	55	70
THOROUGHFARES, RURAL AND SUBURBAN	40	55
TOWER OCCUPANCIES	35	50
UNDERGROUND STRUCTURES AND WINDOWLESS BUILDINGS	40	55
VEHICLES AND VESSELS	50	65
* NOTE: DESIGN SOUND PRESSURE LEVELS ARE MEASURED	WITH A LOSS OF 10DE	3 THROUGH WALLS

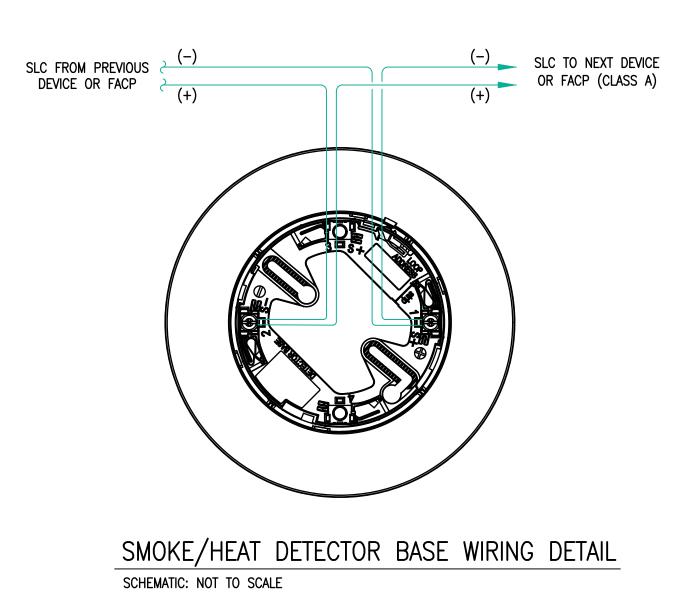
* NOTE: DESIGN SOUND PRESSURE LEVELS ARE MEASURED WITH A LOSS OF 10DB THROUGH WALLS AND CLOSED DOORS.

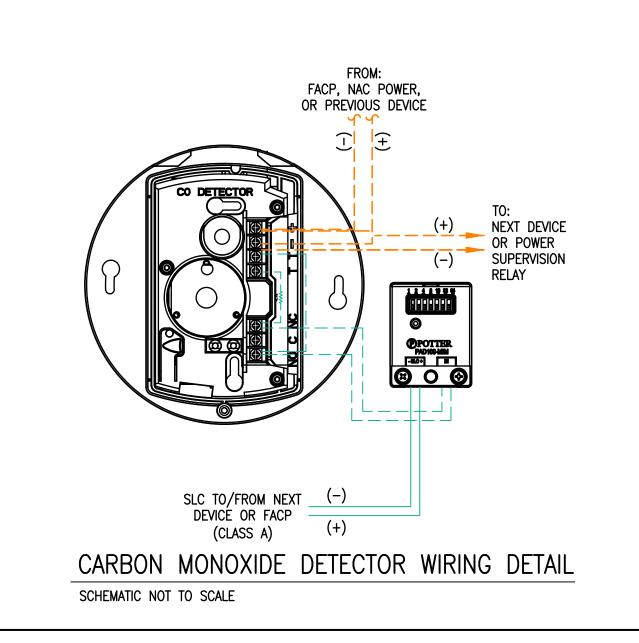
FRANKLIN MIDDLE SCHOOL 2271 E TERRY ST.

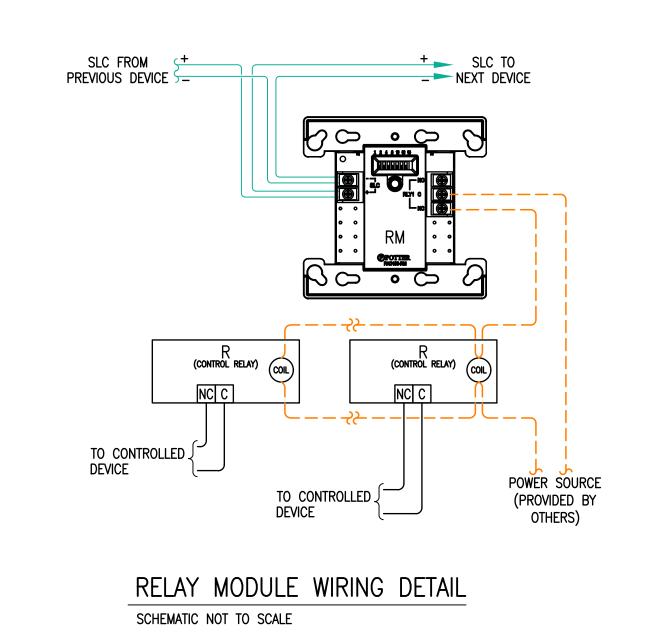
SIDE

DRAWN MD UNICAD JOB #24705

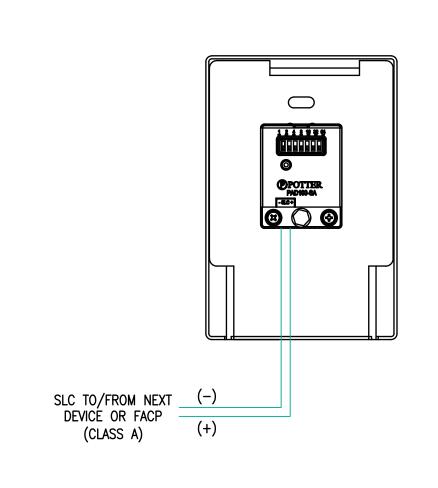

CHECKED BRADY B. HAWS, SET NICET IV FAS 138751

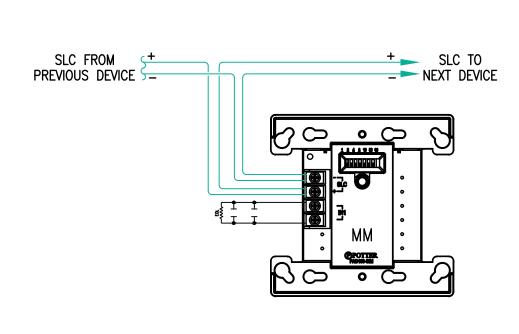

DATE 1/21/25

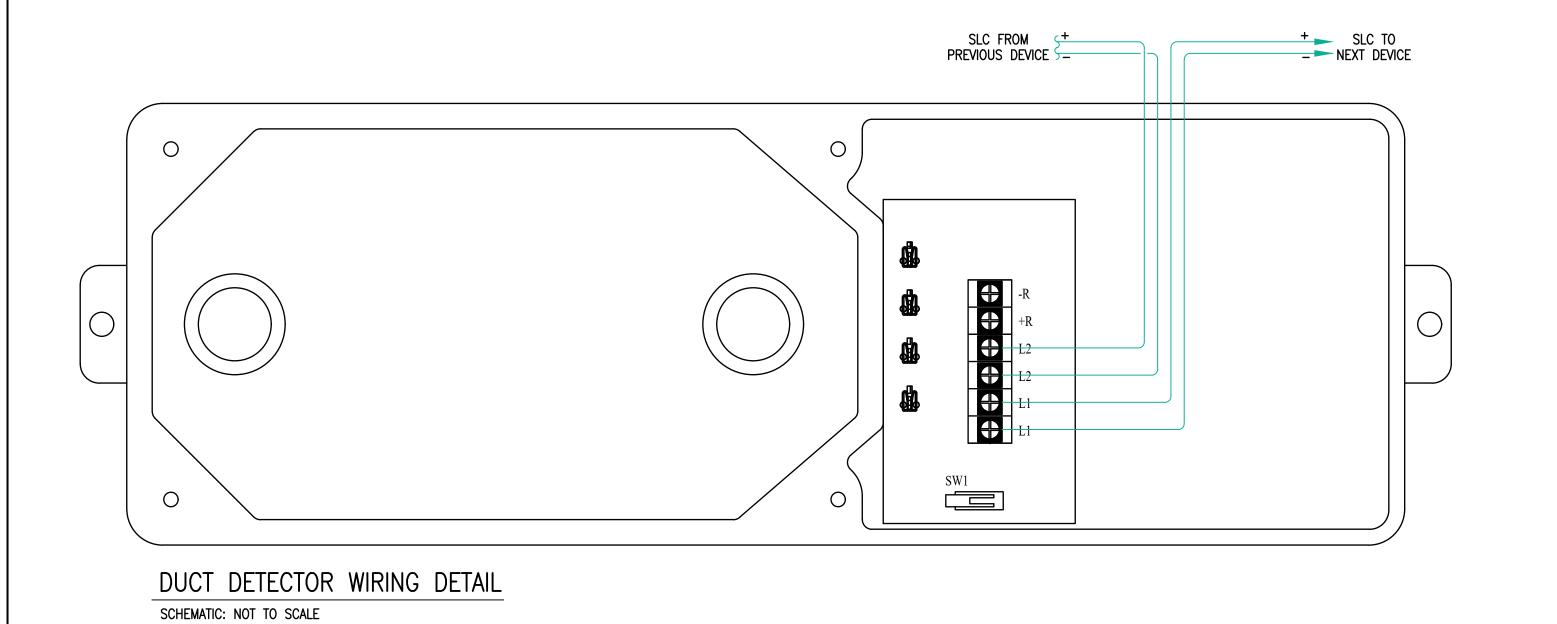

| REVISION 1


SCALE 1/8"=1'-

FA-9



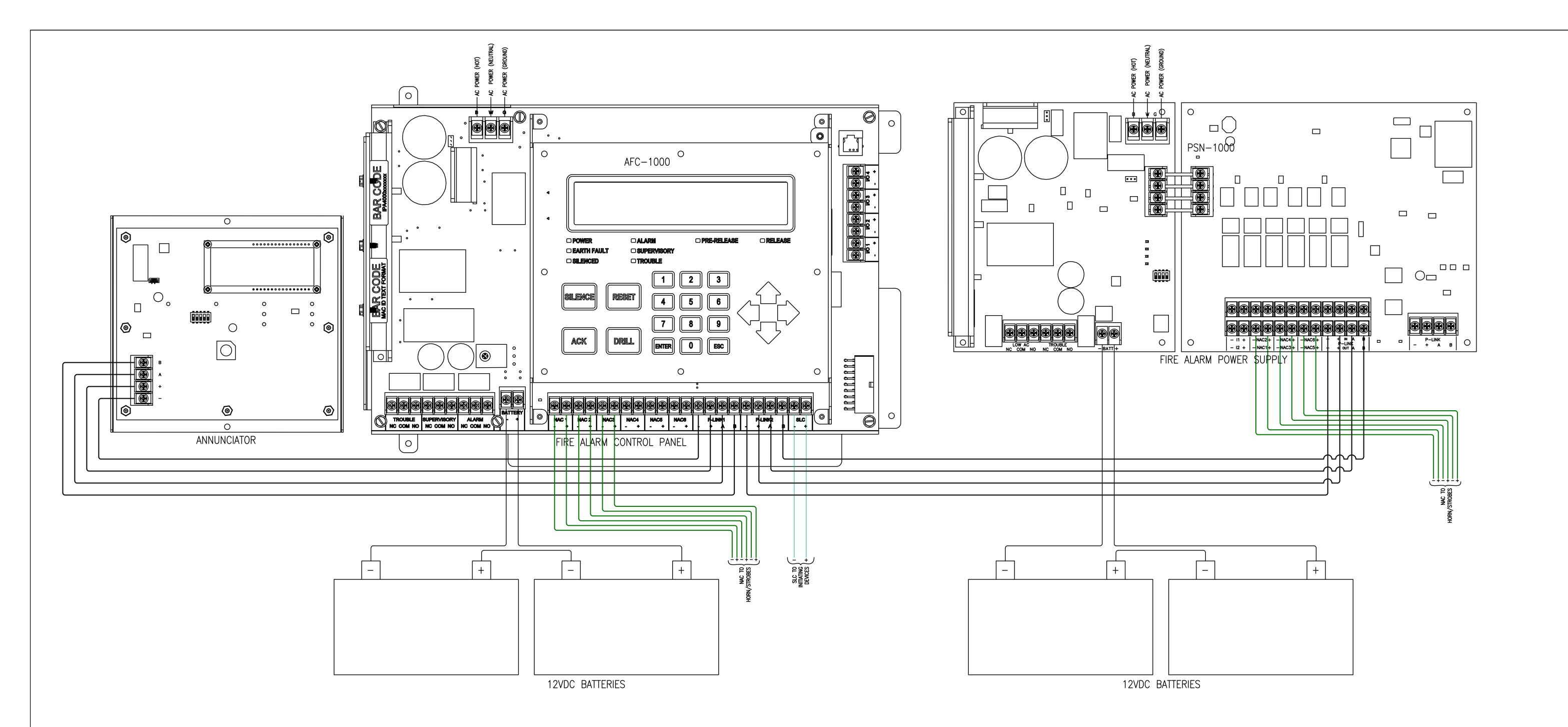




MONITOR MODULE WIRING DETAIL SCHEMATIC: NOT TO SCALE

FRANKLIN MIDDLE SCHOO

83201 TERRY ILLO, ID CONNECTION 2271 E **POCATE**


DETAILS

DRAWN MD UNICAD JOB #24705 CHECKED BRADY B. HAWS, SET NICET IV FAS 138751

 DATE
 1/21/25

 REVISION
 1

SCALE 1/8"=1'-0" FA-10

FRANKLIN MIDDLE SCHOOL 2271 E TERRY ST. POCATELLO, ID 83201

DETAIL

CONNECTION

DRAWN MD UNICAD JOB #24705

CHECKED BRADY B. HAWS, SET NICET IV FAS 138751

DATE 1/21/25

SCALE 1/8"=1'-0"

rawings ad by:
4600 So.
UT 84315
01.985.0410

| Carrier Alarm Design & Drafting Services | Carrier Alarm Design |