Concept-Development Practice Page

2-2

Free Fall Speed

1. Aunt Minnie gives you \$10 per second for 4 seconds. How much money do you have \$40 after 4 seconds?

2. A ball dropped from rest picks up speed at 10 m/s per second. After it falls for 4 seconds, how fast is it going?

40m/s

3. You have \$20, and Uncle Harry gives you \$10 each second for 3 seconds. How much money do you have after 3 seconds?

\$50

4. A ball is thrown straight down with an initial speed of 20 m/s. After 3 seconds, how fast is it going?

50m/s

5. You have \$50 and you pay Aunt Minnie \$10/second. When will your money run out?____

5s

6. You shoot an arrow straight up at 50 m/s. When will it run out of speed? __

55

7. So what will be the arrow's speed 5 seconds after you shoot it?

0 m/s

8. What will its speed be 6 seconds after you shoot it? 7 seconds?

10 m/s 20m/s

Free Fall Distance

1. Speed is one thing; distance another. *Where* is the arrow you shoot up at 50 m/s when it runs out of speed?

125m

2. How high will the arrow be 7 seconds after being shot up at 50 m/s?

105m

v=10t

d = 5t2

3 a. Aunt Minnie drops a penny into a wishing well and and it falls for 3 seconds before hitting the water. How fast is it going when it hits?

30m/s

b. What is the penny's average speed during its 3-second drop?

15m/s

c. How far down is the water surface?

45m

4. Aunt Minnie didn't get her wish, so she goes to a deeper wishing well and throws a penny straight down into it at 10 m/s. How far does this penny go in 3 seconds?

75m

Distinguish between "how fast, "how far," and "how long"!

Conceptual DHVSICS

Straight Up and Down

The sketch is similar to Figure 2.6 in the textbook. Assume negligible air resistance and $g = 10 \text{ m/s}^2$.

- Table 1 shows the velocity data of the figure for t = 0 to t = 8 seconds. Complete the table.

 Distances traveled are from the starting point (the *displacements*).
- Table 2 is for a greater initial velocity. Complete it.
- Table 3 doesn't specify an initial velocity. Choose your own and complete the table accordingly.

0	relocity - O
r	1
. 0	o
2 s	4 5
U = 10 m/s	15 = -10 m/s
0 10 11.7	1
	,
150	555
. 20 - 1-	5.5
U = 20 m/s	J=-20 m/s
1	1
	1
0 1	1,
0 s	6 s
11 = 20 m/c	11=-30 m/s

3 s valority = 0

With initial velocity v_o : $d = v_o t - \frac{1}{2}gt^2$ or $d = v_o t - (5\%)t^2$ Falling from rest when $v_o = 0$, $d = -(5\%)t^2$

/	of the second
	19
3.	1, 14

(3)	_
Y.	-
Time	1
in seconds	1
	=

Time n seconds	Velocity m/s	Distance m
0	30	0
1	20	25
2	10	40
3	0	45
4	-10	40
5	-20	25
6	-30	0
7	-40	-35
8	-50	-80

		The same of the same
Velocity m/s	Distance m	Vel
40	0	
30	35	
20	60	
10	75	
0	80	
-10	75	
-20	60	
-30	35	

-40

Velocity m/s	Distance m	
	0	7 s U=-40 m/s
		Notice g is constant; velocity changes by -10 m/s each second!
-		

Chapter 2 Linear Motion

Conceptual PHYSICS

©Addison-Wesley Publishing Company, Inc. All rights reserved.