B Newton's Laws wri	Name Date Period
F= ma $\mu s = F_s/F_n$ $\mu_k = F_k/F_n$ $d = v_{average}t$ $d = v_{constant}t$	
$d = v_i t + \frac{1}{2} a t^2$ $V_f^2 = V_i^2 + 2 a d$ $\Delta v = a t$ $g = 9.81 \text{ m/s}^2$	
Draw a diagram for each question (labeling all important numeric factors (ex velocity, forces, mass ect.) Write each numeric answer in the box to the right of the question, include units	
1.A block has a mass of 30. kg what is the weight of the block?Weight = \mathbb{Z} Y \mathbb{N}	3. A 15,000. kg car going +40. m/s along the road has a braking force of 2000 Newtons, what is the rate of acceleration of the car? $a = O_0 (3 \text{ m/s}^2)$
$\frac{30 \text{ kg}}{1}$	$\alpha = \frac{f}{m} = \frac{-2000N}{15,000K_{g}} = 0.13$
$V = 30 \text{ Kg} \cdot 9.8 \text{ Jm}/2$	V = 440m/s
- 294 2 N	
- 2 11.2 10	f' = -2000 N
2. Given a 200. Newton block on a 30. degree slope: a) What is the normal force? b) What is the force down the ramp? $f_{down} = 173 \text{ M}$ $F_{down} = 173 \text{ M}$ $F_{down} = 100 \text{ N}$	4. A 200. Newton block is moving at 10m/s. If the surfaces in contact have a coefficient of friction of 0.25, what is the frictional force acting on the block? V = +10 M/s f_{k} $f_{k} = M_{k}f_{n}$ $f_{k} = 0.25(200N)$ = 50 N
5. A 16.0 kg block, with a 4.0 kg rocket engine attached to it, has a frictional force of 10. Newtons to the right and while a model rocket engine pushes the block to the left with a force of 40. Newtons, what is the acceleration of the block? Frocket $\frac{1}{400}$ 4.0Ks	
[16.0Kg] = A A A A A A A A A A A A A A A A A A	
$\langle + \rangle$	= 1.3 m/52

Write each numeric answer in the box to the right of the question, include units 8. If a car is traveling at +50 m/s then 6...What net force is needed to Fnet= 10,000N distance = 250_{m} applies the brakes giving the car an accelerate a 4000 kg car at a rate of 2.5 m/s² $\alpha = +2,5 m/s^2$ acceleration of -5.0 m/s^2 , how far will the car travel down the road before it stops? $V_{1} = 50m/s$ $\alpha = -5.0m/s$ $V_{2} = 0m/s$ d= V2 - Vi2 = OW/2 - (50m/2)2 f=ma = 4000kg . 2.5 M/2 2a 2(-5,0 m/s2) = 10,000 N = 250 m 9. A car at rest accelerates at 5.0 m/s^2 , 7. A car has a frictional force of $V_{i} = 0 \times 1_{S} \qquad V_{f} = ? \qquad V_{final} = 75 \times 1_{S}$ $V_{f} = V_{i} + \alpha t$ $V_{f} = V_{i} + \alpha t$ Mass = + 16000 Kg how fast will a car be traveling after 2000. Newtons to the right while 15.0 seconds? its engine pushes it to the left with a force of 10,000. Newtons, if the cars acceleration is 0.50 m/s², what is the car's mass? $f_{engine} = 10,000N$ $f_{encine} = 2000N$ $f_{encine} = 2000N$ = Only + (5.04/2)(15.05) -= 75 m $M = \frac{f_{net}}{a} = \frac{10,000N + -2000N}{0.50m/2}$ = 16,000 Kg 10. A 20,000. kg car accelerates at 2.0 m/s², if the car's engine is providing a force of 46,000. Newtons, what is the frictional force acting on the car? Friction = 6000N frictia? fengine = +46,000N m = 20,000 kg $a = +2.0 \text{ m/s}^2$ D-Friction = ma - fengine $= 20,000 \text{ kg} \cdot 2.0 \text{ m/s} - 46,000 \text{ N}$ = -6,000 N

R