Physics spring practice final

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

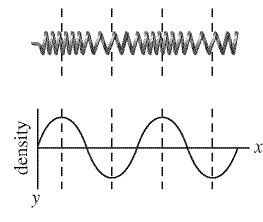
Impulse and momentum $ft = m\Delta v$

- A 0.20 kg baseball if pitched with a velocity of 20 m/s and is then batted to the pitcher with a velocity of 20 m/s. What is the magnitude of change in the ball's momentum?
 - A 4 kg•m/s
 - B 8 kg•m/s
 - C 2 kg•m/s
 - D 20 kg•m/s
- A force is applied to stop a moving shopping cart.

 Decreasing the time interval over which the force is applied
 - A requires a greater force.
 - B has no effect on the force needed.
 - C requires a smaller force.
 - D requires the same force.
- The change in an object's momentum is equal to
 - A the product of the mass of the object and the time interval.
 - B the product of the net force applied to the object and the time interval.
 - C the time interval divided by the net external force.
 - D the net external force divided by the time interval.
- What velocity must a 2000. kg truck have in order to have the same momentum as a 1000. kg car traveling at a velocity of 20. m/s to the west?
 - A 10 m/s to the west
 - B 20 m/s to the east
 - C 40 m/s to the west
 - D 5.0 m/s to the west

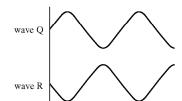
- 5 Which of the following has the greatest momentum?
 - A truck with a mass of 2000 kg moving at a velocity of 25 m/s
 - B car with a mass of 1000 kg moving at a velocity of 51 m/s
 - C truck with a mass of 3000 kg moving at a velocity of 10 m/s
 - D car with a mass of 1500 kg moving at a velocity of 40 m/s
- 6 Which of the following is the proper rearranged formula for impulse momentum equation solved for time?
 - A $t = fm\Delta v$
 - $B t = \frac{m\Delta v}{f}$
 - C $f = \frac{m\Delta v}{t}$
 - $D t = \frac{f}{m\Delta v}$
- 7 If an object has a change of momentum of 100 kgm/s, what is the impulse applied to that object?
 - A 100 Ns
 - B 200 Ns
 - C 50 Ns
 - D not enough information provided

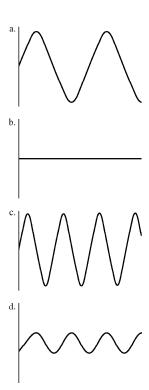
- 8 The law of conservation of momentum states that
 - A the total initial momentum of all objects interacting with one another usually equals the total final momentum.
 - B the total initial momentum of all objects interacting with one another does not equal the total final momentum.
 - C the total momentum of all objects interacting with one another is zero.
 - D the total momentum of all objects interacting with one another remains constant regardless of the nature of the forces between the objects.
- 9 Two skaters stand facing each other. One skater's mass is 60 kg, and the other's mass is 72 kg. If the skaters push away from each other without spinning,
 - A the 60 kg skater travels at a lower momentum.
 - B their momenta are equal but opposite.
 - C their total momentum doubles.
 - D their total momentum decreases.
- A swimmer with a mass of 100 kg dives off a raft with a mass of 500 kg. If the swimmer's speed is 5 m/s immediately after leaving the raft, what is the speed of the raft?
 - A 25 m/s
 - B 3.0 m/s
 - C = 1.0 m/s
 - D 5.0 m/s


Waves $v = f\lambda$

- carry energy from one place to another.
 - A Elfs
 - B Waves
 - C People
 - D Pulses
- Which of the following is the time it takes to complete a cycle of motion?
 - A amplitude
 - B period
 - C frequency
 - D revolution

- Which of the following is the number of cycles or vibrations per unit of time?
 - A amplitude
 - B period
 - C frequency
 - D revolution
- Which of the following is the proper unit for frequency?
 - A second
 - B hertz
 - C minute
 - D meter
- Which statement about sound waves is correct?
 - A They generally travel faster through solids than through gases.
 - B They generally travel faster through gases than through solids.
 - C They generally travel faster through gases than liquids.
 - D They generally travel faster than light.
- Which of the following will effect the speed of sound?
 - A frequency
 - B medium (substance it is traveling through)
 - C wavelength
 - D the speed at which the source is moving
- An amusement park ride has a frequency of 0.025 Hz. What is the ride's period?
 - A 5 s
 - B 10 s
 - C 20 s
 - D 40 s
- An amusement park ride takes 50 seconds to make one revolution. What is the ride's frquency?
 - A 0.02 Hz
 - B 50. Hz
 - C 0.10 Hz
 - $D = 0.20 \,\mathrm{Hz}$


- What type of waves are sound waves?
 - A longitudinal
 - B decompression
 - C transverse
 - D compression
- What type of waves are vibrate perpendicular to the direction of motion?
 - A longitudinal
 - B decompression
 - C transverse
 - D compression
- 21 What type of waves are vibrate in the direction of motion?
 - A longitudinal
 - B decompression
 - C transverse
 - D compression
- Which is not a part of the electromagnetic spectrum?
 - A infrared waves
 - B microwaves
 - C sound waves
 - D gamma waves
- Which of the following is the interference that results when individual displacements on the **same side** of the equilibrium position are added together to form the resultant wave?
 - A constructive
 - B destructive
 - C complete constructive
 - D complete destructive
- A periodic wave has a wavelength of 2 m and a speed of 10 m/s. What is the wave frequency?
 - A 0.5 Hz
 - B 5. Hz
 - C 20 Hz
 - D 12 Hz


- A musical tone sounded on a piano has a frequency of 200 Hz and a wavelength of 1.7 m. What is the speed of the sound wave?
 - A 117 m/s
 - B 340 m/s
 - C 230 m/s
 - D 0.0085 m/s
- A radio wave has a speed of 3.00×10^8 m/s and a frequency of 100. MHz. What is the wavelength? MHz = 10^6 Hz
 - A 3.00 m
 - B 400 m
 - C 300 m
 - D 0.30 m
- 27 If you hear the pitch of a siren become higher, you know that
 - A neither you nor the siren is moving.
 - B you are moving toward the siren or the siren is moving toward you.
 - C you are moving away from the siren or the siren is moving toward you.
 - D the source has just passed you or it is accelerating away from you.
- 28 Sound waves
 - A are a part of the electromagnetic spectrum.
 - B do not require a medium for transmission.
 - C are longitudinal waves.
 - D are transverse waves.

- In the waveform of the longitudinal wave shown above, the **decompressed** regions correspond to
 - A the wavelength.
 - B crests.
 - C troughs.
 - D the mass.

- 30 What type of wave is shown in the above spring?
 - A longitudinal
 - B decompression
 - C transverse
 - D compression
- If a force of 10. N stretches a spring 0.2 m, what is the spring constant? f = -xk
 - A 5 N/m
 - $B = 0.020 \; N/m$
 - C 50 N/m
 - D 2.0 N/m

- In the diagram above, use the superposition principle to find the resultant wave of waves Q and R.
 - A a
 - B b
 - C c
 - D d

- Dolphins can detect small objects, such as fish, that are approximately the size of one wavelength. If a dolphin emits a chirp at a frequency of 100. kHz and the speed of sound waves in air is 1500 m/s, what is the size of the smallest fish that the dolphin can detect?
 - A 15.0 mm
 - B 10.0 mm
 - C 6.67 mm
 - D 0.067 mm
- Which of the following types of interference will occur in the figure above?
 - A partial constructive
 - B partial destructive
 - C complete constructive
 - D complete destructive

Name: _____

ID: A

Electicity

Three resistors connected in parallel carry currents labeled I_1 , I_2 , and I_3 . Which of the following expresses the total current I_t in the combined system?

A $I_t = I_1 + I_2 + I_3$

B $I_t = (1I_1 + 1/I_2 + 1/I_3)$

C $I_t = I_1 = I_2 = I_3$

- D $I_t = (1I_1 + 1/I_2 + 1/I_3)^{-1}$
- Three resistors with values of 1.0 Ω , 3.0 Ω , and 6.0 Ω are connected in parallel. What is their equivalent resistance?

A 10.0Ω

B 0.67Ω

C 1.0Ω

D 1.5 Ω

Three resistors with values of 1.0Ω , 3.0Ω , and 6.0Ω are connected in series. What is their equivalent resistance?

A 10.0Ω

B 0.67Ω

C 1.0Ω

D 1.5Ω

Three resistors with values of 2.0 Ω , 4.0 Ω , and 8.0 Ω are connected in parallel. What is their equivalent resistance?

A 14.0Ω

B 0.88Ω

C 1.1Ω

D 1.5 Ω

Three resistors with values of 2.0Ω , 4.0Ω , and 8.0Ω are connected in series. What is their equivalent resistance?

A 14.0Ω

 $B = 0.88 \ \Omega$

C 1.1Ω

D 1.5 Ω

Three resistors connected in series carry currents labeled I_1 , I_2 , and I_3 , respectively. Which of the following expresses the total current, I_t , in the system made up of the three resistors in series?

A $I_t = I_1 + I_2 + I_3$

B $I_t = (1/I_1 + 1/I_2 + 1/I_3)$

C $I_t = I_1 = I_2 = I_3$

D $I_t = (1/I_1 + 1/I_2 + 1/I_3)^{-1}$

41 Which of the following resists transfers charge?

A nonconductors

B conductors

C semiconductors

D insulators

Which of the following transfers charge most easily?

A nonconductors

B conductors

C semiconductors

D insulators

Which of the following is NOT true for BOTH gravitational and electric forces?

A The inverse square distance law applies.

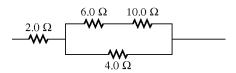
B Forces are conservative.

C Potential energy is a function of distance of separation.

D Forces are either attractive or repulsive.

Two point charges, initially 5 cm apart, are moved to a distance of 10 cm apart. By what factor do the resulting electric and gravitational forces between them change?

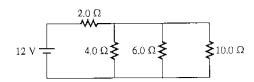
A 5


B 25

C -

 $D = \frac{1}{2}$

- If two point charges are separated by 0.10 m and have charge values of 2.0 μ C and -4.0 μ C, respectively, what is the value of the mutual force between them? ($k_c = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)
 - A 0.72 N
 - B 7.2 N
 - C $7.2 \times 10^{12} \,\mathrm{N}$
 - D $3.1 \times 10^{-3} \text{ N}$
- Consider a thundercloud that has an electric charge of 80.0 C near the top of the cloud and -80.0 C near the bottom of the cloud. These charges are separated by about 1.0 km. What is the magnitude of the electric force between these two sets of charges? ($k_c = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)
 - A $5.8 \times 10^{13} \,\text{N}$
 - B $5.8 \times 10^{10} \,\mathrm{N}$
 - $C \quad 3.6 \times 10^6 \, N$
 - D $5.8 \times 10^7 \,\text{N}$
- A repelling force occurs between two charged objects when
 - A charges are of unlike signs.
 - B charges are of like signs.
 - C charges are of equal magnitude.
 - D charges are of unequal magnitude.
- If the measured resistance of a lamp is 20. Ω when it operates at a power of 80.0 W, what is the current in the lamp?
 - A 16 A
 - B 0.50 A
 - C 2.0 A
 - D 4.0 A
- If a lamp has a resistance of 100. Ω when it operates at a power of 1.00 × 10² W, what is the potential difference across the lamp?
 - A 100. V
 - B 1000. V
 - C 10000 V
 - D 220 V


- If a 400. W heater has a current of 2.0 A, what is the resistance of the heating element?
 - Α 100. Ω
 - B 200Ω
 - C 800Ω
 - D 402Ω
- 51 Which of the following wires would have the *greatest* resistance?
 - A an aluminum wire 10 cm in length and 3 cm in diameter
 - B an aluminum wire 5 cm in length and 3 cm in diameter
 - C an aluminum wire 10 cm in length and 5 cm in diameter
 - D an aluminum wire 5 cm in length and 5 cm in diameter
- The amount of charge that moves through the filament of a lightbulb in 2.00 s is 4.00 C. What is the current in the lightbulb?
 - A 2.00 A
 - B 8.00 A
 - C 0.500 A
 - D 6.00 A
- A wire carries a steady current of 0.1 A over a period of 20 s. What total charge moves through the wire in this time interval?
 - A 200 C
 - B 20 C
 - C 2 C
 - D 0.005 C

- What is the equivalent resistance for the resistors in the figure above?
 - A 2.3Ω
 - B 5.2Ω
 - C 13Ω
 - D 22Ω

Name:

ID: A

- Three resistors connected in parallel have individual values of 4.0 Ω , 6.0 Ω , and 10.0 Ω , as shown above. If this combination is connected in series with a 12.0 V battery and a 2.0 Ω resistor, what is the current in the 2.0 Ω resistor?
 - A 0.59 A
 - B 6.2 A
 - C 6.0 A
 - D 24 A

Universal Gravity $G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ $Fg = G \frac{m_1 m_2}{r^2}$

Which of the following equations is the proper reaarangement of the universal gravity equation, solved for the distance between the two objects?

$$A r = \sqrt{\frac{m_1 m_2}{GF}}$$

$$\mathbf{B} \quad r = \sqrt{\frac{Gm_1m_2}{F}}$$

$$F = G \frac{m_1 m_2}{r^2}$$

- $G = \frac{Gm_1m_2}{m_1}$
- The constitution of Constitution of the Consti
- 57 The gravitational force between two masses is 54 N. What is the gravitational force if the distance between them is tripled?
 - A 162 N
 - B 9.0 N
 - C 6.0 N
 - D 18 N

- Two small masses that are 20.0 cm apart attract each other with a force of 10.0 N. When they are 5.0 cm apart, these masses will attract each other with what force?
 - A 5.0 N
 - B 0.63 N
 - C 160.N
 - D 40.0 N

Physics spring practice final Answer Section

MULTIPLE CHOICE

1	ANS:	В	PTS:	1
2	ANS:	A	PTS:	1
3	ANS:	В	PTS:	1
4	ANS:	A	PTS:	1
5	ANS:	D	PTS:	1
6	ANS:	В	PTS:	1
7	ANS:	A	PTS:	1
8	ANS:	D	PTS:	1
9	ANS:	В	PTS:	1
10	ANS:	C	PTS:	1
11	ANS:	В	PTS:	1
12	ANS:	В	PTS:	1
13	ANS:	C	PTS:	1
14	ANS:	В	PTS:	1
15	ANS:	A	PTS:	1
16	ANS:	В	PTS:	1
17	ANS:	D	PTS:	1
18	ANS:	A	PTS:	1
19	ANS:	A	PTS:	1
20	ANS:	C	PTS:	1
21	ANS:	A	PTS:	1
22	ANS:	C	PTS:	1
23	ANS:	A	PTS:	1
24	ANS:	В	PTS:	1
25	ANS:	В	PTS:	1
26	ANS:	A	PTS:	1
27	ANS:	В	PTS:	1
28	ANS:	C	PTS:	1
29	ANS:	C	PTS:	1
30	ANS:	A	PTS:	1
31	ANS:	C	PTS:	1
32	ANS:	В	PTS:	1
33	ANS:	A	PTS:	1
34	ANS:	A	PTS:	1

35	ANS:	A	PTS:	1
36	ANS:	В	PTS:	1
37	ANS:	A	PTS:	1
38	ANS:	C	PTS:	1
39	ANS:	A	PTS:	1
40	ANS:	C	PTS:	1
41	ANS:	D	PTS:	1
42	ANS:	В	PTS:	1
43	ANS:	D	PTS:	1
44	ANS:	C	PTS:	1
45	ANS:	В	PTS:	1
46	ANS:	D	PTS:	1
47	ANS:	В	PTS:	1
48	ANS:	C	PTS:	1
49	ANS:	A	PTS:	1
50	ANS:	A	PTS:	1
51	ANS:	A	PTS:	1
52	ANS:	A	PTS:	1
53	ANS:	C	PTS:	1
54	ANS:	В	PTS:	1
55	ANS:	В	PTS:	1
56	ANS:	В	PTS:	1
57	ANS:	C	PTS:	1
58	ANS:	C	PTS:	1