

Marietta City Schools

2024–2025 District Unit Planner

IB Chemistry P	LC	Subject Group and Course	Group 4 - Chemis	try	
Course Part and Topic	UNIT 3 - REACTION STOICHIOMETRY Structure 1.1 - Introduction to the particulate nature of matter Structure 1.4 - Counting particles by mass: The mole Structure 1.5 - Ideal gases Reactivity 2.1 - How much? The amount of chemical change	SL or HL / Year 1 or 2	SL Year 1	Dates	Semester 2 - Weeks 1 to 8
Unit Description and Texts		DP Assessment(s) for Unit			
Chemistry for the IB Diploma Third Edition, Hodder Education		• Unit 03 Summative Assessment - Paper 1 and 2 questions modeled after the real IB Exam Papers (2025 syllabus)			

INQUIRY: establishing the purpose of the unit

Transfer Goals

List here one to three big, overarching, long-term goals for this unit. Transfer goals are the major goals that ask students to "transfer" or apply their knowledge, skills, and concepts at the end of the unit under new/different circumstances, and on their own without scaffolding from the teacher.

<u>Phenomenon</u>: Precise control over reactant quantities dictates the size, shape, and properties of nanoparticles, contributing to advancements for applications ranging from drug delivery to catalysis.

<u>Statement of Inquiry</u>: The quantitative aspects of chemical transformations enable scientists to design and optimize chemical processes across a multitude of applications.

Goals:

- **1. Students can** model the particulate nature of matter.
- 2. Students can quantify matter on the atomic scale.
- 3. Students can use the model of ideal gas behaviour to predict the behaviour of real gases.
- 4. Students can use chemical equations to calculate reacting ratios.

ACTION: teaching and learning through inquiry

Published: 12, 2024 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

Content / Skills / Concepts - Essential Understandings	Learning Process		
	Check the boxes for any pedagogical approaches used during the unit. Aim for a variety of approaches to help facilitate learning.		
Structure 1.1.1 Elements are the primary constituents of matter, which cannot be chemically broken down into simpler substances. Compounds consist of atoms of different elements chemically bonded together in a fixed ratio. Mixtures contain more than one element or compound in no fixed ratio, which are not chemically bonded and so can be separated by physical methods. Distinguish between the properties of elements, compounds, and mixtures. • Solvation, filtration, recrystallization, evaporation, distillation, and paper chromatography should be covered. The differences between homogeneous and heterogeneous mixtures should	 Learning experiences and strategies/planning for self-supporting learning: Lecture Socratic seminar Small group/pair work 		
 be understood. Structure 1.1.2 The kinetic molecular theory is a model to explain physical properties of matter (solids, liquids, and gases) and changes of state. Distinguish the different states of matter. Use state symbols (s, l, g, and aq) in chemical equations. Names of changes of state should be covered: melting, freezing, vaporization (evaporation and boiling), condensation, sublimation, and deposition. 	 PowerPoint lecture/notes Individual presentations Group presentations Student lecture/leading 		
Structure 1.1.3 The temperature, T, in Kelvin (K) is a measure of average kinetic energy (E _k) of particles. Interpret observable changes in physical properties and temperature during changes of state. Convert between values in Celsius and Kelvin scales. • The kelvin (K) is the SI unit of temperature and has the same incremental value as the Celsius degree (°C). Structure 1.4.1 The mole (mol) is the SI unit of amount of substance. One mole contains exactly the number of elementary entities given by the Avogadro constant.	 Interdisciplinary learning Details: Students will learn through a combination of presentations, small group work, practice problems, and lab work. M Other(s): practice problems, lab work 		
 An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or a specified group of particles. The Avogadro constant (N_A) is given in the data booklet. It has the units mol⁻¹. <u>Structure 1.4.2</u> Masses of atoms are compared on a scale relative to ¹²C and are expressed as relative atomic mass (A_r) and relative formula masse (M_r). Determine relative formula masses (M_r) from relative atomic masses (A_r). 	Formative assessment(s): Short closer quizzes for each lesson Practice with Tools and Inquiries Daily formative checks		

 Relative atomic mass and relative formula mass have no units. The values of relative atomic masses given to two decimal places in the data booklet should be 	Summative assessments:	
used in calculations.	Content Exam - Items to gauge content mastery	
Structure 1.4.3 Molar mass (<i>M</i>) has the units g mol ⁻¹ . Solve problems involving the relationships between the number of particles, the amount of substance in	DP Assessment - Paper 1 and 2 questions modeled after the real IB Exam Papers (2025 syllabus)	
• The relationship $n = m/M$ is given in the data booklet.	Laboratory Assignment - <i>assessing Tools and Inquiries practiced in the Unit</i>	
Structure 1.4.4 The empirical formula of a compound gives the simplest ratio of atoms of each element present in that compound. The molecular formula gives the actual number of atoms of each element present in a molecule.	Differentiation:	
Interconvert the percentage composition by mass and the empirical formula. Determine the molecular formula of a compound from its empirical formula and molar mass.	Affirm identity - build self-esteem	
 Structure 1.4.5 The molar concentration is determined by the amount of solute and the volume of solution. Solve problems involving the molar concentration, amount of solute and volume of solution. The use of square brackets to represent molar concentration is required. Units of concentration should include g dm⁻³ and mol dm⁻³ and conversion between these. The relationship n = CV is given in the data booklet. 	 Value prior knowledge Scaffold learning Extend learning 	
Structure 1.4.6 Avogadro's law states that equal volumes of all gases measured under the same conditions of temperature and pressure contain equal numbers of molecules. Solve problems involving the mole ratio of reactants and/or products and the volume of gases. Structure 1.5.1 An ideal gas consists of moving particles with negligible volume and no intermolecular forces. All collisions between particles are considered whether	 Details: SWD/504 – Accommodations Provided ELL – Reading & Vocabulary Support Intervention Support Extensions – Enrichment Tasks and Project 	
Recognize the key assumptions in the ideal gas model.	Tools and Inquiries:	
 <u>Structure 1.5.2</u> Real gases deviate from the ideal gas model, particularly at low temperature and high pressure. <i>Explain the limitations of the ideal gas model.</i> No mathematical coverage is required. <u>Structure 1.5.3</u> 	 Structure 1.1.1 Tool 1—What factors are considered in choosing a method to separate the components of a mixture? Tool 1—How can the products of a reaction be purified? 	
 The molar volume of an ideal gas is a constant at a specific temperature and pressure. Investigate the relationship between temperature, pressure and volume for a fixed mass of an ideal gas and analyse graphs relating these variables. The names of specific gas laws will not be assessed. The value for the molar volume of an ideal gas under standard temperature and pressure (STP) 	 Structure 1.4.4 Tool 1—How can experimental data on mass changes in combustion reactions be used to derive empirical formulas? 	

The relationship between the pressure, volume, temperature and amount of an ideal gas is shown in the
ideal gas equation $PV = nRT$ and the combined gas law $P_1V_1/T_1 = P_2V_2/T_2$.
Solve problems relating to the ideal gas equation.
• Units of volume and pressure should be SI only. The value of the gas constant <i>R</i> , the ideal gas equation, and the combined gas law, are given in the data booklet.

is given in the data booklet.

Reactivity 2.1.1

Structure 1 5 4

Chemical equations show the ratio of reactants and products in a reaction. *Deduce chemical equations when reactants and products are specified.*

• Include the use of state symbols in chemical equations.

Reactivity 2.1.2

The mole ratio of an equation can be used to determine the masses and/or volumes of reactants and products; the concentrations of reactants and products for reactions occurring in solution. *Calculate reacting masses and/or volumes and concentrations of reactants and products.*

- Avogadro's law and definitions of molar concentration are covered in Structure 1.4.
- The values for Ar given in the data booklet to two decimal places should be used in calculations.

Reactivity 2.1.3

The limiting reactant determines the theoretical yield.

Identify the limiting and excess reactants from given data.

• Distinguish between the theoretical yield and the experimental yield.

Reactivity 2.1.4

Solve problems involving reacting quantities, limiting and excess reactants, theoretical, experimental and percentage yields.

Reactivity 2.1.5

The atom economy is a measure of efficiency in green chemistry.

Calculate the atom economy from the stoichiometry of a reaction.

- Include discussion of the inverse relationship between atom economy and wastage in industrial processes.
- The equation for calculation of the atom economy is given in the data booklet.

• Tool 3 — What is the importance of approximation in the determination of an empirical formula?

Structure 1.4.5

- Tool 1—What are the considerations in the choice of glassware used in preparing a standard solution and a serial dilution?
- Tool 1, Inquiry 2—How can a calibration curve be used to determine the concentration of a solution?

Structure 1.5.3

• Tools 2 and 3— Graphs can be presented as sketches or as accurately plotted data points. What are the advantages and limitations of each representation?

Structure 1.5.4

 Tool 1, Inquiry 2—How can the ideal gas law be used to calculate the molar mass of a gas from experimental data?

Reactivity 2.1.3

• Tool 1, Inquiry 1, 2, 3—What errors may cause the experimental yield to be i) higher and ii) lower than the theoretical yield?

Approaches to Learning (ATL)

Check the boxes for any explicit approaches to learning connections made during the unit. For more information on ATL, please see the guide.

⊠ Thinking

\boxtimes Social

⊠ Communication

⊠ Self-management

 \boxtimes Research

Details:

Students will be continuously challenged to develop higher-order thinking skills as they take prior knowledge, combine it with new content, and synthesize new understandings and connections.

Students will build social groups through group work and intentional reflection activities.

Students will communicate their findings to their peers in the form of small-group presentations.

Students will continue to work on self-management and organization skills.

Students will complete background research to develop and extend their learning.

Language and Learning	TOK Connections	CAS Connections
Check the boxes for any explicit language and learning connections made during the unit. For more information on the IB's approach to language and learning, please see <u>the guide.</u>	Check the boxes for any explicit TOK connections made during the unit	Check the boxes for any explicit CAS connections. If you check any of the boxes, provide a brief note in the "details" section explaining how students engaged in CAS for this unit.

Published: 12, 2024 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

⊠ Activating background knowledge	Personal and shared knowledge	⊠ Creativity	
⊠ Scaffolding for new learning	⊠ Ways of knowing	Activity	
⊠ Acquisition of new learning through practice	Areas of knowledge	□ Service	
⊠ Demonstrating proficiency	The knowledge framework	Details:	
Details:	Details:	Students will be encouraged to consider the	
Content and vocabulary introduced in previous science courses will be used in this unit.	TOK knowledge questions will be included as discussion options for each lesson.	Students can explore alternative ways (visual, for example) to express and explain this creativity to	
Students will use many of the concepts from this unit in future units throughout the two-year course.		others.	
Students will acquire new vocabulary.			
Students will continually demonstrate proficiency with chemistry vocabulary in class discussions and group work.			
Resources			
List and attach (if applicable) any resources used in this unit			
 Resources for 2025 Syllabus: Chemistry for the IB Diploma Third Edition, Hodder Education <u>IB Chemistry Guide First Assessment 2025</u> InThinking IB subject site for Chemistry IB Chemistry Schoology Course 			

REFLECTION: considering the planning, process, and impact of the inquiry

What worked well	What didn't work well	Notes / Changes / Suggestions
List the portions of the unit (content, assessment, planning) that were successful	List the portions of the unit (content, assessment, planning) that were not as successful as hoped	List any notes, suggestions, or considerations for the future teaching of this unit

Published: 12, 2024 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

