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Abstract Research Objectives Liquid TEMPO Samples

e Quasi-optical sample holders for Electron microwave * Design a sample holder that can switch between two samples e First sample is 10 mg TEMPO dissolved in
Paramagnetic Resonance (EPR) spectrometers ' within the probe in Onshape 1 mL toluene, 2.5 mM
currently measure one sample e 3D print and troubleshoot using fused deposition modeling printer Me N Me e Second sample is 10 mg TEMPO
e Coupling between sample and microwave varies e Implement 3D printed two-cell sample holder into HF-EPR Me | Me dissolved in 10 mL toluene, 0.25 mM
ith each sample exchange and decreases O L -
o Pie e J e Make quantitative comparisons between two liquid TEMPO ° * 1.6 pL of each solution inserted into 3 mm

efficiency of measurements e _ FIG. 10. TEMPO molecule [10]
samples with different concentrations long flat cell

sample holder

* We design, 3D print, and troubleshoot two-cell I
SH to exchange samples inside the probe

Two-Cell Sample Holder

® Our sample holder integrated into spectrometer
under temperatures of 1.6-300 K, frequency of

240 GHz, and magnetic fieldsup to 12 T

FIG. 1. Diagram of EPR * Two spaces 5 mm in diameter for each sample

[ ] [ ] . . . 2-
¢ Quantitative measurements made comparing  probenside the : :
L superconducting cryogen-free e Attached to end of 1 m long probe (microwave waveguide)
two ||qU|d TEMPO Samp|es magnet (adapted from [4])

* Mechanical feedthrough to switch samples

e Sample located 9 mm under a corrugated waveguide

EPR Signal (arb. u.)

o

e Magnet bore diameter of 60 mm

* Mirror with diameter of 7.01 mm and height of 2.13 mm placed

Zeeman Effect 2.478 mm under the sample -1 | | ; | | |
: - : 8.556 8.558 8.560 8.562 8.564 8.566
A * IkE)nergy dlﬁergnccjes lcreated bY mfceractlon I * Distance between sample and mirror must be a multiple of the Magnetic Field (T)
etween unpaired electron spins In externa
X X wavelength number (1.239 mm for 240 GHz) FIG. 11. EPR signal of 2.5 mM and 0.25 mM of TEMPO dissolved in toluene

magnetic field . . - .
* Ensures that sample sits on maximum oscillating magnetic

component of microwave radiation [8] * Hyperfine interactions cause three peaks for 0.25 mM sample

* For single unpaired electron spin (S = 1/2),

A% Y Ms= -¥2 or ms= +7> * Linewidth of 2.5 mM sample broader due to spin-spin relaxation
B, * lowest energy when aligned parallel (ms= -1%) Side View Top View time and hyperfine interactions
g(g}nfufﬁﬁiﬁgiﬁfggﬁf[i] e highest energy when aligned antiparallel microwave e Average distance (r) between two spins from the concentration (n)
(me= +12) [1] }vaveguide — endstop calculated using equation 2 [11]:
¥ feedthrough

g-Factor

e Characterizes magnetic moment and angular momentum of

(r) = [oo rw(r)dr = T(4/3)/(4z/3)'” = 0.55396n'7 (2
0

:| modulation

structures with unpaired electrons coil
* Remains constant regardless of microwave frequency, making it a 9 mm
reliable fingerprint for each measured system 2.478 mm endstop Linewidth Spin-spin Signal-to-
. ) . bicell sample plate . . .
* To calculate g-factor for quantitative EPR, the resonance condition mirror 5 mm distance Noise-Ratio
is used as given by equation 1 [2] : ) R 25 mM 11mT 4 nm 2500
60mm
AE = El — E2 — hf — gMBBR (1) FIG. 6. Proposed design for the 3D printed two-cell sample holder and modulation coil
° 0.25 mM 0.549 mT 10 nm 430
Derivative Spectra
) ) ) . E _ Ei1=+1/29usBo TABLE. 1. The observed linewidth, spin-spin distance, and SNR for the 2.5 mM and 0.25 mM samples
* Modulation coil generates oscillating A e -
. fiold B : KH e = 2112 AE = hf = E\ - Es . , , , .
magnetic Tield, Bmod, at a Tew KMz 1o \ = gunBo e Difference in SNR is 6 times compared to expected 10 times
K]

improve Signal-to-Noise-Ratio (SNR) /?;cro};;ave because concentration is 10 times smaller, errors may result mostly

e Converts weak signal into easily * Modulation coil calibrated using lithium from line shape but also from concentration and position variations

. ‘ m=-12 P~ Br=-12gusBy g phthalocyanine (LiPc) crystal N o
detectable modulated signal Bi=0 Bo>0 Bo-Bu | Coi iy Cu32 American Wi * Resonance condition changes due to splitting of energy levels
| ula igna o I woun rom merican 18
e At By = 0, the energy difference EPR Absorption signal %Nm()d S GZugeOLLJlsing c2300 reuvolutior?s - ) e Spin states split by exchange interaction, which alters position of
between spin states is degenerate = Bimea EPR signal
st derivative BB * Measured at 40 mW and 240 GHz . . .
* At Bo # 0, two energy states Eq and E; are , . o e When S1=S5,=1/2, energy levels split into singlet (5 = 0) and triplet
separated by AE FIG. 3. Diagram showing the interaction * Amplitude normalized by dividing (S = 1) states
_ . between an electron spin (S = 2) with measurements b |ar est Value FIG. 7. LiPc crystal [9]
° At hf = AE, abSOI’ptIOH Slgnal deteCted [3] an external magnetic fle|d, Bo, and the y g () At |OW Concentratlon (O 25 mM) TEM PO molecules S aced far a art
5 dul N < which | frequency (f) of an oscillating e Measured g-factor was 2.005 compared to actual 2.0024 [9] ‘ ’ P P
®* bhod Modulates the x-axis which results electromagnetic irradiation. When the i ) o . L ° i i i i
in the first derivative of the absorption microwave radiation matches the gap at ¢ Typlcal error is 18 G due to variation in main field H.yperﬂne interactions occur between unpalred electron ana
) P the absorption signal, the lower energy ) ' nltrogen nucleus (S = 1)
EPR S|gna| [4] levels flip to a higher energy level [4] e Modulation coil operated at 0.3 G/mA

* Nucleus has three spin states (-1, 0, +1)
—— 06mMA —— 20mA —— 50mA —— 75mA —— 93 mA

High-Frequency EPR 3

e Splits EPR signal into three peaks [12]

* At high concentration (2.5 mM), TEMPO molecules are spaced
closer together

e Electron-electron interactions occur

e High-Frequency EPR (HF-EPR)
increases spectrometer resolution
and sensitivity to enable the study
of high spin systems [5]

* Electron has two spin states (-1/2, +1/2)

* Three hyperfine peaks average out and broaden into single peak,
called exchange narrowing [13]

cw EPR signal

| 244 GHz

EPR Signal (arb. u.)

e Operates at high frequencies
above 100 GHz and magnetic 0

Magnetic field

FIG. 4. Enhanced signal detection via HF-EPR [5] fleldS above 35 T [é]

-1 i ; ; ; ;
8.575 8.576 8.577 8.578 8.579 8.580 8.581
Magnetic Field (T)

FIG. 8. The difference in linewidths of the LiPc crystal at five currents: 6, 20, 50, 75, and 93 mA

Findings and Impact

® Three peaks observed for 0.25 mM
TEMPO compared to 2.5 mM TEMPO

. , . , . due to Heisenberg interaction
* Focusing quasi-optics keep microwave N R B r . T .
beam within specitied path [y = 0.30x + -0.47} e Reduced downtime between
. . . | s measurements by five hours
* Enhanced field modulation amplitude G201 T e U ——
~ | | - e Improved SNR for higher accurac
and homogeneity on the sample v P 9 y
-g 15 """""""""""""""""""""""""""""""""""" ,z/ """"""""""""""""""""""""" """"""""""""""""""" FIG. 12. Two-cell sample holder printed from measu rements
* Rooftop and parabolic mirror improve modulation = e polylactic acid using the Original Prusa i3 ol o
: i MK3S+ 3D print ®* In Ntitative m remen
SNR by 6 to detect signal coll €10l 7 A printer ables quantitative measurements
. . . sample < e
e Functions in continuous-wave, pulsed, A Future Work
. rooftop T D S, L E P e
and rapid-scan EPR modes [7 - s | | | . . .
P 7] mirror o * Incorporate the two-cell sample holder into the quasi-optical
e 3D printed with exception of rooftop parabolic sample holder
mirror, parabolic mirror, and coil < . 20 *0 o 50
P ’ 60mm Current (mA) e Conduct quantitative AsLOV2 protein measurements
e | imitations due to abilitv to onl FIG. 5. Di £ th optical | FIG. 9. The modulation coil amplitude as a function of the current. The dashed line represents . L
4 : Y holder (aézgrtaerg ?mmeb?)uaSI R the linear fit * Enable sample loading within the probe
measure one sample at a time P
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