

Setting the Standard in Comprehensive Environmental Solutions

15 Park Avenue Gaithersburg, MD 20877 PHONE: 301-548-0382

FAX: 301-527-0248

Indoor Air Quality Assessment Report

at

Alexandria City High School

3330 King Street, Alexandria, VA 22302

Report Prepared for.

John Contreras

Alexandria City Public Schools

2601 Cameron Mills Rd, Alexandria, VA 22302

Dated: September 23, 2021

Toll Free: 877.457.TECI • www.totalenvironmental.net

TABLE OF CONTENTS

1	Execu	utive Summary	1
2	Asses	ssment Methods	2
3	Visua	l Observations	6
4	Cond	itions for Human Occupancy	6
	4.1	Temperature	7
	4.2	Relative Humidity	7
	4.3	Carbon Dioxide	7
	4.4	Carbon Monoxide	7
	4.5	Multi-Gas	7
5	Mold	Sampling Results	7
6	Rado	n Gas Sampling Results	8
7	Form	aldehyde Gas Sampling Results	8
8	TO+1	5 (VOCs) Sampling Results	9
9	4-pch	Sampling Results	9
10	Multi-	Gas detector (MSA Altair Multi-gas) Readings – Oxygen, VOCs, Hydro	ger
	Sulfid	le	9
11	Quali	ty Control Program	11

APPENDICES

Appendix A: Mold Analytical Results

Appendix B: Radon Analytical Results

Appendix C: VOCs (TO+15) Analytical Results

Appendix D: Formaldehyde Analytical Results

Appendix E: 4-PCH Analytical Results

Appendix F: Sampling Locations

Appendix G: Photographs

ABBREVIATIONS AND ACRONYMS

AHU Air-Handling Unit

AIHA American Industrial Hygiene Association

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning

Engineers

ASTM American Society for Testing and Materials

CO Carbon Monoxide CO2 Carbon Dioxide

EMLAP Environmental Microbiology Laboratory Accreditation Program

HVAC Heating, Ventilating, And Air-Conditioning

IAQ Indoor Air Quality

NIST National Institute for Standards and TechnologyNVLAP National Voluntary Laboratory Accreditation Program

RH Relative Humidity

Abbreviations involving scientific volume and measurements involving media or water sampling

Spores/m3 Mold spores per cubic meter of air

LPM Liters Per MinuteNTE Not to exceed°F degree FahrenheitPPM Parts Per Million

1. Executive Summary

Total Environmental Concepts (TEC) was contracted by Alexandria City Public Schools (ACPS) to perform Indoor Air Quality (IAQ) assessments at 19 schools. Douglas MacArthur Elementary was out of service and not assessed. The original list included:

- Alexandria City High School (AC)
- AC Satellie Campus, Central Offices (CO)
- Charles Barrett Elementary School (BC)
- Cora Kelly School for Math (CK)
- Frances C. Hammond Elementary School (FH)
- George Mason Elementary School (GM)
- George Mason Elementary School (GW)
- James Polk Elementary School (JP)
- John Adams Elementary School (JA)
- Lyles-Crouch Elementary School (LC)
- Minnie Howard High School (MH)
- Samuel Tucker Elementary School (ST)
- William Ramsey Elementary School (WR)
- Douglas MacAurthur Elementary School (Out of Service)
- Jefferson-Houston Elementary School (JH)
- Ferdinand T. Day Elementary School (FD)
- Patrick Henry Elementary School (PH)
- Mount Vernon Community School (MV)

This IAQ assessment was conducted at Alexandira City High School on Friday, August 17, 2021. ACPS required that the testing to be based on the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) guidelines. ACPS provided site plans and fifteen (15) sampling locations per school. Sampling locations were chosen by ACPS based on internal review of facilities maintenance records, and a review of facilities maintenance related issues. These sampling locations were selected to collect representative IAQ data in these specific areas and to document any areas of potential concern observed during the site assessment. Representative photographs of the sampling locations can be found in Appendix G. As such, ACPS required that TEC test for the following major indoor air pollutants:

- Radon
- Mold
- TO+15 (VOCs)
- 4-polycyclohexene (4-pch)
- Formaldehyde

In accordance with ASHRAE, TEC also took measurements of the following at each school:

- Carbon Monoxide
- Carbon Dioxide
- Humidity
- Temperature
- Oxygen

Summary of findings and recommendations during this limited IAQ investigation:

- Radon levels recorded in all locations were less than 4pCi/L, as recommended by EPA and HUD.
- **Mold** spore levels recorded in all locations were within acceptable ranges as compared to site-specific background mold spore counts.
 - TEC observed water stains on ceiling tiles in Classroom B333. No evidence of active water intrusion was observed. TEC would recommend that ACPS investigate the source of the water staining.
- **VOCs** The levels of volitile organic compounds (VOCs) recorded at each location were within acceptable ranges, when compared to EPA Regional Screening Levels (RSLs).
- **4-pch** levels recorded during this investigation were within the LEED (Leadership of Energy and Environmental Design) IAQ guideline of 6.5 ug/m3.
- **Formaldehyde** the levels of formaldehyde recorded at each location were within an acceptable range, compared to EPA Regional Screening Level (RSLs) of 1ug/m3.
- **Carbon monoxide** concentrations in all areas were less than the EPA and ASHRAE recommended limit of 9 ppm.
- **Carbon dioxide** concentrations in all tested spaces were less than the ASHRAE limit of 1,092 ppm.
- RH the relative humidity in all tested spaces was within the ASHRAE guidelines of ≤ 67%, and for the purposes of this investigation ≤ 65%. None of the tested locations had a relative humidity greater than 65%.
- **Temperature** none of the tested spaces had a temperatures greater than the ASHRAE recommended summer range of 75°F-80.5°F.

2. Assesment Methods

Under the direction of TEC Industrial Hygienist Nikki Satari; Margaret Stanger, Victoria Powers, and Channing Jackson, also of TEC, conducted IAQ inspections and air sampling on August 17, 2021. All air samples were collected three-six feet from floor level, the typical breathing zone for adults.

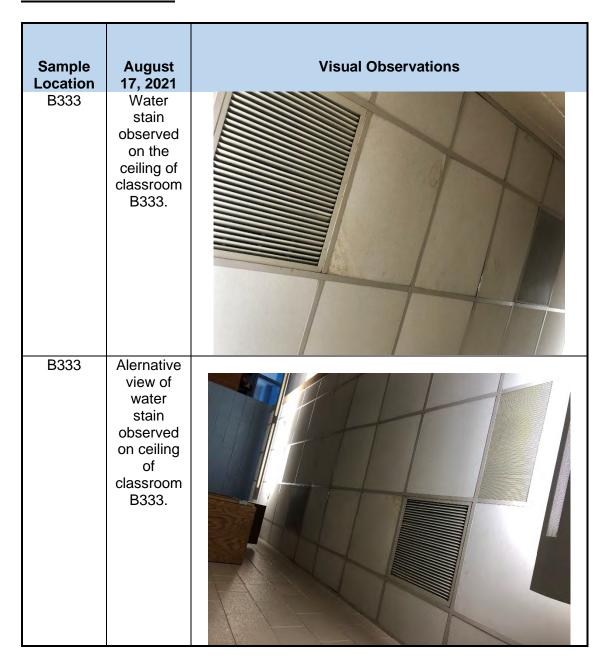

Mold air samples were collected with a field calibrated Environmental Monitoring Systems High Volume Sampling Pump on Allergenco-D Disposable IAQ Air Monitoring Cassettes at a flow rate of 10 liters per minute for a sample volume of 75 liters during the assessment (photograph below). The Hayes Microbial Consulting laboratory reports are included in Appendix A.

Radon gas samples were collected by securing Air Chek Radon Test Kits (photograph below). Samples were collected within the breathing zone (4-6ft from ground level) at each sample location. In accordance with Air Chek's Radon Test Kit Instructions, kits were secured to walls inside the building and away from, open windows, doors to the outside, or interior air ventilation systems. Sampling time was 72 hours. Radon analytical results can be found in Appendix B.

Formaldehyde gas air samples were collected using static Aldehyde TraceAir II Monitors (photograph below). Samples were secured to surrounding testing equipment to expose the full surface area of the sampling device for the full 4 hours of sampling time. Monitorss were collected after 4 hours and processed for shipment to Phase Separation Science located in Catonsville, MD. Formaldehyde analytical results can be found in Appendix D. Photograph Below.

The 4-polycyclohexene (4-PCH) samples were collected in SKC's Anasorb CSC sorbent tubes through Gilian GilAir3 Air Sampling Pumps (photograph below). Pumps were placed within the breathing zone (4-6ft from ground level). Run times were 8 hours or time weighted 4 hour runs. 4-PCH analytical results can be found in Appendix E.

TO+15 (VOCs) samples were collected using ENTECH Instruments 1.4L SUMMA canisters with an ENTECH regulator attachment (photograph below). Canisters were deployed at each location for a run time of 8 hours or a time weighted run time of 4 hours. Internal pressure readings were recorded at the start and end of each sample run time. TO+15 (VOCs) analytical results can be found in Appendix C.



The temperature and relative humidity were taken with the AcuRite Digital Indoor Temperature and Humidity Monitor in the lobby of each school. Teperature and relative humidity readings can be found in Section 5 Mold Sampling Results, below.

Real-time measurements for oxygen, carbon dioxide, carbon monoxide, VOC, hydrogen sulfides were taken with multi-gas detector. These measurements can be found in Section 10 Multi-gas Detector (MSA Altair Multi-gas) Readings. This information can be found in Table 1 below.

3. Visual Observations

4. Conditions for Human Occupancy

Conditions for Human Occupancy are addressed in ASHRAE Standard 55-2017. These standards are designed to provide comfort for an estimated 80% of occupants. The standard provides for a temperature range from between approximately 67 and 82 °F. A more specific range based on relative humidity, season, clothing worn, activity levels, and other factors can be determined. For example, the standard does not specify a lower humidity range, but notes that issues of comfort, skin irritation, dry mucous membranes, and static electricity may arise when

the relative humidity is less than 30%. ASHRAE Standard 62.1-2016 does recommend an upper limit of 67% humidity to avoid conditions conducive to microbial growth. For the purposes of this investigation, TEC used a conservative upper limit of 65%. The recommended ASHRAE temperature range for schools and office spaces in summer is 75°F-80.5°F.

4.1 Temperature

The recommended ASHRAE temperature range for schools and office spaces in summer is 75°F-80.5°F. The recorded relative humidity in all locations was below 65% and average indoor temperature can be found in Table 2.

4.2 Relative Humidity

ASHRAE Standard 62.1-2016 recommends a relative humidity no greater than 67% to avoid conditions conducive to microbial growth. The relative humidity observed by TEC during this investigation was observed to be below 65% in all locations. Average relative humidity can be found in Table 2.

4.3 Carbon Dioxide

Carbon dioxide (CO2) is a byproduct of combustion burning engines. Generators, furnaces, boilers, idling automobile engines. High CO2 measurements may indictae engine maintenance issues. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

4.4 Carbon Monoxide

Carbon monoxide (CO) is a byproduct of the combustion of fossil fuels. Generators, furnaces, boilers, idling automobile engines, may all produce CO. High CO measurements may indicate engine maintenance issues. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

4.5 Multi-gas Detector Readings

Multi-gas readings were taken at each location to document current conditions at the time of the sampling efforts and to monitor the environment between sampling locations. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

Mold Sampling Results

After collection in the field, mold samples were processed for shipment under strict chain of custody and shipped to Hayes Microbial Consulting, in Midlothian, Virginia.

Federal standards for the number of fungal spores that may be present in the indoor environment, don't exist. The widely accepted guideline in the indoor air quality field, requires that the numbers and types of spores that are present in the indoor environment not exceed those that are present outdoors at any given time.

There will always be some mold spores present in "normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination.

Mold is carried indoors through building entrances, open windows, loading docks, foot traffic into buildings and the HVAC system. To thrive indoors, mold requires a food source, proper temperature, and humidity to foster its growth.

There will also be mold spores present in "normal" outdoor environments. In any environment, excess mold growth may arise as a result of excess moisture. Indoors this may indicate water leaks or high indoor humidity.

TEC conducted site-specific mold sampling outside to obtain a baseline spore count. This baseline was compared to inside mold spore counts at the designated sampling locations.

Interior spore counts above baseline readings, may indicate internal sources of mold. This would indicate a requirement for further investigation and potential mitigation.

None of the other results from the fourteen sampling locations at Alexandira City High School were indicative of mold issues. Mold analytical results can be found in Appendix A.

5. Radon Gas Sampling Results

Radon forms as the result of the radioactive decay of uranium. Uranium is a naturally occurring radioactive by product that occurs when rock and soil breaks down. Some building materials, such as granite, may be a source of radon. Sampling areas were provided by ACPS. This did not allow for TEC to utilize the sampling protocol provided by Air Chek for performing a comprehensive survey. Air Chek Radon Test Kits collection times were a minimum of 72 hours. Test kits were then retrieved and shipped to Air Chek Inc. located in Mills River, NC. Air Chek laboratories are National Institute of Standards and Technology's (NIST) National Voluntary Laboratory Accreditation Program (NVLAP), and American Industrial Hygiene Association (AIHA) for Environmental Microbial Laboratory Accreditation Program (EMLAP) certified. Analytical results can be found in Appendix B.

6. Formaldehyde Gas Sampling Results

Sources of formaldehyde are similar to sources of carbon monoxide. They include gas-burning engines and space heaters. Other sources include smoking, household products, pressed wood products, and adhesives. Analytical results can be found in Appendix D.

7. TO+15 (VOC) Sampling Results

Volatile organic compounds (VOCs), are organic chemicals emitted as gases. Carpets, flooring materials, cleaning agents, disinfectants, air fresheners, and vinyl furnishings, may all be sources of VOCs in indoor air. Analytical results can be found in Appendix E.

8. 4-pch Sampling Results

4-polycyclohexene is a common indoor air contaminant most commonly associated with "new-carpet" smell complaints. 4-pch is a byproduct of carpet manufacturing and has been associated with adverse health effects. None of the areas investigated during this study indictated elevated levels of pch. Analytical results can be found in Appendix C.

9. Multi-Gas Detector (MSA Altair Multi-gas) Readings

Multi-gas readings were taken at each location to document current conditions at the time of the sampling efforts and to monitor the environment between sampling locations. There were no exceedances in real-time during the IAQ investigation. Multi-gas results can be found below in Table 1.

Table 1

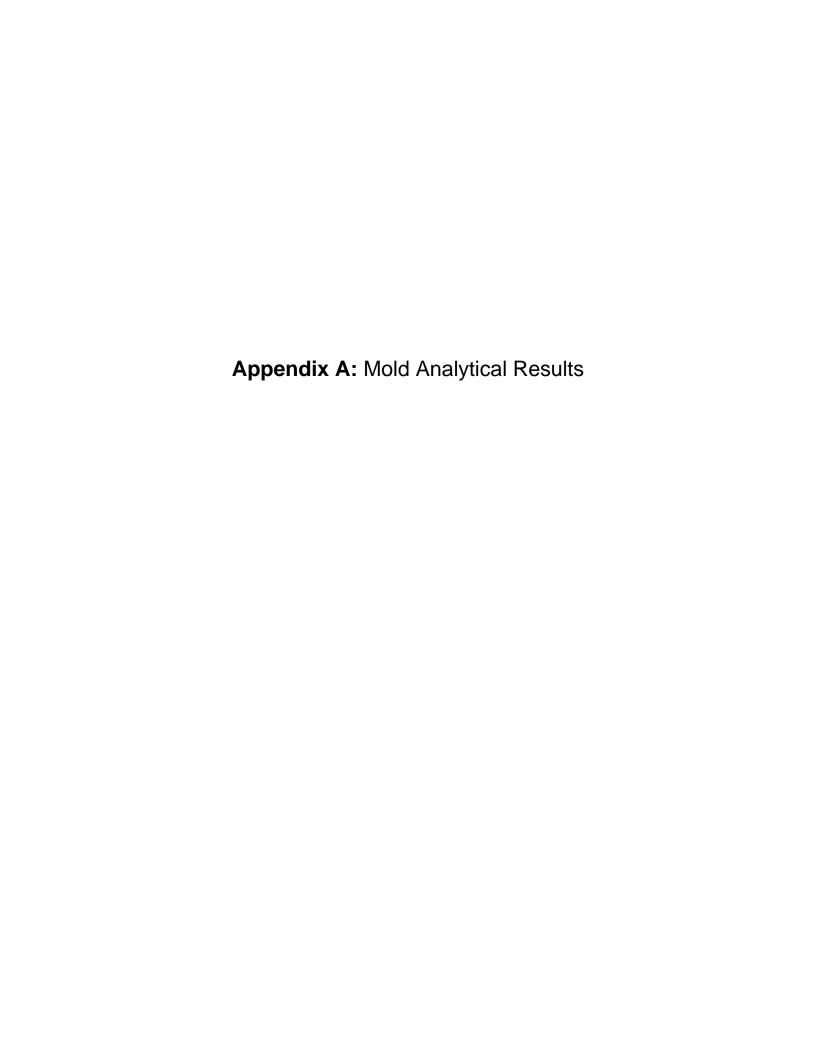

	Multi-Ga	as Detector Readings		
Location	VOC	СО	OXYGEN	H2S
Reception Office	0.0	0.0	20.9	0.0
Cafeteria	0.0	0.0	20.9	0.0
Auditorium	0.0	0.0	20.9	0.0
B105	0.0	0.0	20.9	0.0
Auxiliary Gym Hall	0.0	0.0	20.9	0.0
E117	0.0	0.0	20.9	0.0
Main Gym	0.0	0.0	20.9	0.0
Hall E136	0.0	0.0	20.9	0.0
B212	0.0	0.0	20.9	0.0
Media Center	0.0	0.0	20.9	0.0
A205	0.0	0.0	20.9	0.0
C214	0.0	0.0	20.9	0.0
B333	0.0	0.0	20.9	0.0
Hall C309	0.0	0.0	20.9	0.0
A328	0.0	0.0	20.9	0.0

Table 2

		Results of Analytes by Lo	ocation		
Location	Radon	Mold AVG: 77 F AVG: 60 %	TO+15 VOCs	4PCH	Formaldehyde
Reception Office	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Cafeteria	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Auditorium	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
B105	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Auxiliary Gym Hall	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
E117	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Main Gym	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Hall E136	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
B212	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Media Center	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
A205	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
C214	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
B333	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Hall C309	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
A328	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL

10. Quality Control Program

- TEC recognizes the importance of quality assurance (QA) and quality control (QC) measures as they relate to the performance of sample collection and processing.
- To ensure compliance with QA/QC measures, SOPs have been developed for field sample collection techniques, field sample screening procedures, multi-media sampling, and the accurate presentation of findings/reporting.
- All staff are provided these SOPs and are trained in these procedures before conducting work activities. TEC's Program Manager and the on-site PM/QCM will manage the quality control program.
- The PM will work closely with field technicians to ensure the success of the quality control program. All team members will receive copies of and abide by the quality control plan.
- Daily records will be kept of all operations, activities, and tests performed in the quality control program.
- All samples collected during this IAQ assessment were collected, processed, and shipped under the strictest chain of custody (CoC) guidelines.
- All samples were shipped for analysis by a National Voluntary Laboratory Accreditation Program (NVLAP) accredited laboratory.

Analysis Report prepared for

Total Environmental Concepts, Inc.

8382 Terminal Road Suite B Lorton, VA 22079

Phone: (571) 289-2173

3330 King St. Alexandria, VA 22302

Collected: August 17, 2021 Received: August 18, 2021 Reported: August 18, 2021 We would like to thank you for trusting Hayes Microbial for your analytical needs! We received 16 samples by FedEx in good condition for this project on August 18th, 2021.

The results in this analysis pertain only to this job, collected on the stated date, and should not be used in the interpretation of any other job. This report may not be duplicated, except in full, without the written consent of Hayes Microbial Consulting, LLC..

This laboratory bears no responsibility for sample collection activities, analytical method limitations, or your use of the test results. Interpretation and use of test results are your responsibility. Any reference to health effects or interpretation of mold levels is strictly the opinion of Hayes Microbial. In no event, shall Hayes Microbial or any of its employees be liable for lost profits or any special, incidental or consequential damages arising out of the use of these test results.

Steve Hayes, BSMT(ASCP) Laboratory Director

Hayes Microbial Consulting, LLC.

EPA Laboratory ID: VA01419

phon N. Hoyes

Lab ID: #188863

DPH License: #PH-0198

3330 King St. Alexandria, VA 22302 #21030464

Spore Trap

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173 SOP - HMC#101

Sample Number	1	TC431	15310	2	TC431	5293	3	TC431	5286	4	TC431	15291
Sample Name		TC Library			TC B212			TC C214			TC A205	
Sample Volume		75.00 liter										
Reporting Limit		13 spores/m ³	1		13 spores/m ³			13 spores/m ³			13 spores/m ³	ł
Background		2			2			2			2	
Fragments		ND			ND			ND			ND	
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total
Alternaria												
Ascospores	2	27	100.0%	3	40	60.0%	2	27	66.7%	1	13	100.0%
Aspergillus Penicillium												
Basidiospores				1	13	20.0%						
Bipolaris Drechslera												
Chaetomium												
Cladosporium				1	13	20.0%	1	13	33.3%			
Curvularia												
Epicoccum												
Fusarium												
Memnoniella												
Myxomycetes												
Pithomyces												
Stachybotrys												
Stemphylium												
Torula												
Ulocladium												
Cercospora												
Total	2	27	100%	5	66	100%	3	40	100%	1	13	100%

Water Damage Indicator

Common Allergen

Slightly Higher than Baseline

Significantly Higher than Baseline

Ratio Abnormality

Collected: Aug 17, 2021

Received: Aug 18, 2021

Reported: Aug 18, 2021

Project Analyst:

Ramesh Poluri, PhD

Date: 08 - 18 - 2021 Reviewed By:

Steve Hayes, BSMT

Date:

08 - 18 - 2021

Lorton, VA 22079 (571) 289-2173

3330 King St. Alexandria, VA 22302 #21030464

Spore Trap SOP - HMC#101

Sample Number	5	TC431	15285	6	TC431	15309	7	TC431	5287	8	TC431	5303
Sample Name	Т	C Cafeteria	l		TC B105		Т	C Reception	1	TO	Auditoriur	n
Sample Volume		75.00 liter										
Reporting Limit		13 spores/m ³	3		13 spores/m ³	1		13 spores/m ³			13 spores/m ³	1
Background		2			2			2			2	
Fragments		ND			ND			ND			ND	
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total
Alternaria												
Ascospores	1	13	100.0%	2	27	66.7%	2	27	66.7%	5	67	83.3%
Aspergillus Penicillium												
Basidiospores				1	13	33.3%	1	13	33.3%	1	13	16.7%
Bipolaris Drechslera												
Chaetomium												
Cladosporium												
Curvularia												
Epicoccum												
Fusarium												
Memnoniella												
Myxomycetes												
Pithomyces												
Stachybotrys												
Stemphylium												
Torula												
Ulocladium												
Cercospora												
Total	1	13	100%	3	40	100%	3	40	100%	6	80	100%

Water Damage Indicator

Common Allergen

Slightly Higher than Baseline

Significantly Higher than Baseline

Ratio Abnormality

Collected: Aug 17, 2021

Received: Aug 18, 2021

Reported: Aug 18, 2021

Project Analyst:

Ramesh Poluri, PhD

Date:

08 - 18 - 2021

Reviewed By:

Steve Hayes, BSMT

Date: 08 - 18 - 2021

contact@hayesmicrobial.com

8382 Terminal Road Suite B

Lorton, VA 22079 (571) 289-2173

3330 King St. Alexandria, VA 22302 #21030464

Spore Trap SOP - HMC#101

Sample Number	9	TC431	5289	10	TC431	15298	11	TC431	5292	12	TC431	5308
Sample Name	TC	Hallway E1	36	TC N	lain Gym E	103	TC	Hallway E1	12		TC E117	
Sample Volume		75.00 liter										
Reporting Limit		13 spores/m ³			13 spores/m ³	3		13 spores/m ³			13 spores/m ³	
Background		2			1			2			2	
Fragments		ND			ND			ND			ND	
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total
Alternaria												
Ascospores	1	13	50.0%	1	13	100.0%	2	27	50.0%	1	13	9.1%
Aspergillus Penicillium										10	133	90.9%
Basidiospores	1	13	50.0%				1	13	25.0%			
Bipolaris Drechslera												
Chaetomium												
Cladosporium							1	13	25.0%			
Curvularia												
Epicoccum												
Fusarium												
Memnoniella												
Myxomycetes												
Pithomyces												
Stachybotrys												
Stemphylium												
Torula												
Ulocladium												
Cercospora												
Total	2	26	100%	1	13	100%	4	53	100%	11	146	100%

Water Damage Indicator

Common Allergen

Slightly Higher than Baseline

Date:

Significantly Higher than Baseline

Ratio Abnormality

Collected: Aug 17, 2021

Received: Aug 18, 2021

Project Analyst:

Ramesh Poluri, PhD

08 - 18 - 2021

Reviewed By:

Steve Hayes, BSMT

Reported: Aug 18, 2021

Date:

08 - 18 - 2021

3330 King St. Alexandria, VA 22302 #21030464

Spore Trap SOP - HMC#101

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

Sample Number	13	TC431	5290	14	TC431	15314	15	TC43	15313	16	TC431	5315
Sample Name		TC Outside			TC B333		TC	Hallway 31	1		TC A38	
Sample Volume		75.00 liter			75.00 liter			75.00 liter			75.00 liter	
Reporting Limit		13 spores/m ³			13 spores/m ³	3		13 spores/m ³	ł		13 spores/m ³	
Background		2			2			2			2	
Fragments		ND			ND			ND			ND	
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total
Alternaria	naw Count	Count / III	% Of Total	naw count	Count / III	% Of Total	naw count	Count / III	76 OI 10tai	naw Count	Count / III	70 OI 10tai
Ascospores	1920	25600	71.3%	4	53	80.0%	2	27	100.0%	2	27	66.7%
Aspergillus Penicillium	3	40	<1%		33	00.0%		21	100.0%		21	00.7 %
Basidiospores	640	8533	23.8%	1	13	20.0%				1	13	33.3%
Bipolaris Drechslera	040	0000	20.0%	•	10	20.0%				·	10	33.370
Chaetomium												
Cladosporium	128	1707	4.8%									
Curvularia												
Epicoccum												
Fusarium												
Memnoniella												
Myxomycetes	2	27	<1%									
Pithomyces												
Stachybotrys												
Stemphylium												
Torula												
Ulocladium												
Cercospora	1	13	<1%									
Tala	2604	25000	100%		66	1000		07	100%		40	100%
Total	2694	35920	100%	5	66	100%	2	27	100%	3	40	100%
Water Damage Indicato	r	Commo	n Allergen		Slightly Higher	than Baseline	Signi	ficantly Higher	than Baseline		Ratio Abnormal	ity

Collected: Aug 17, 2021

Project Analyst:

Ramesh Poluri, PhD

Received: Aug 18, 2021

Date:

08 - 18 - 2021

Reported: Aug 18, 2021

Reviewed By:

Steve Hayes, BSMT

Date: 08 - 18 - 2021

3005 East Boundary Terrace, Suite F. Midlothian, VA. 23112

(804) 562-3435

contact@hayesmicrobial.com

Page: **5** of **7**

8382 Terminal Road Suite B

Lorton, VA 22079 (571) 289-2173

3330 King St. Alexandria, VA 22302 #21030464

Spore Trap Information

Reporting Limit	The Reporting Limit is the lowest number of spores that can be detected based on the total volume of the sample collected and the percentage of the slide that is counted. At Hayes Microbial, 100% of the slide is read so the LOD is based solely on the total volume. Raw spore counts that exceed 500 spores will be estimated.
Blanks	Results have not been corrected for field or laboratory blanks.
Background	The Background is the amount of debris that is present in the sample. This debris consists of skin cells, dirt, dust, pollen, drywall dust and other organic and non-organic matter. As the background density increases, the likelihood of spores, especially small spores such as those of Aspergillus and Penicillium may be obscured. The background is rated on a scale of 1 to 5 and each level is determined as follows:
	 NBD: No background detected due to possible pump or cassette malfunction. Recollect sample. (Field Blanks will display NBD) 1: <5% of field occluded. No spores will be uncountable. 2: 5-25% of field occluded. 3: 25-75% of field occluded. 4: 75-90% of field occluded. 5: >90% of field occluded. Suggested recollection of sample.
Fragments	Fragments are small pieces of fungal mycelium or spores. They are not identifiable as to type and when present in very large numbers, may indicate the presence of mold amplification.
Control Comparisons	There are no national standards for the numbers of fungal spores that may be present in the indoor environment. As a general rule and guideline that is widely accepted in the indoor air quality field, the numbers and types of spores that are present in the indoor environment should not exceed those that are present outdoors at any given time. There will always be some mold spores present in "normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination. Spore counts should not be used as the sole determining factor of mold contamination. There are many factors that can cause anomalies in the comparison of indoor and outdoor samples due to the dynamic nature of both of those environments.
Water Damage Indicator	Blue: These molds are commonly seen in conditions of prolonged water intrusion and usually indicate a problem.
Common Allergen	Green: Although all molds are potential allergens, these are the most common allergens that may be found indoors.
Slightly Higher than Baseline	Orange: The spore count is slightly higher than the outside count and may or may not indicate a source of contamination.
Significantly Higher than Baseline	Red: The spore count is significantly higher than the baseline count and probably indicates a source of contamination.
Ratio Abnormality	Violet: The types of spores found indoors should be similar to the ones that were identified in the baseline sample. Significant increases (more than 25%) in the ratio of a particular spore type may indicate the presence of abnormal levels of mold, even if the total number of spores of that type is lower in the indoor environment than it was outdoors.
Color Coding	Fungi that are present in indoor samples at levels lower than 200 per cubic meter are not color coded on the report, unless they are one of the water damage indicators.

Karl Ford **Total Environmental Concepts, Inc.**

3330 King St. Alexandria, VA 22302 #21030464

Organism Descriptions

_			
Asco	sp	or	es

Lorton, VA 22079

(571) 289-2173

A large group consisting of more than 3000 species of fungi. Common plant pathogens and outdoor numbers become very high following rain. Most of the genera are indistinguishable by spore trap analysis and are combined on the report.

Health affects are poorly studied, but many are likely to be allergenic. Effects:

Aspergillus | Penicillium

8382 Terminal Road Suite B

The most common fungi isolated from the environment. Very common in soil and on decaying plant material. Are able to grow well indoors on

a wide variety of substrates.

Effects: This group contains common allergens and many can cause hypersensitivity pneumonitis. They may cause extrinsic asthma, and many are opportunistic pathogens. Many species produce mycotoxins which may be associated with disease in humans and other animals. Toxin

production is dependent on the species, the food source, competition with other organisms, and other environmental conditions.

Basidiospores

Habitat: A common group of Fungi that includes the mushrooms and bracket fungi. They are saprophytes and plant pathogens. In wet conditions they

can cause structural damage to buildings.

Common allergens and are also associated with hypersensitivity pneumonitis. Effects:

Cercospora

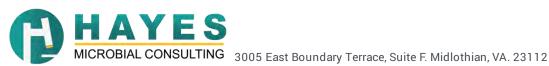
Found on wood and decaying plant matter. Habitat:

Effects: Health effects are poorly studied.

Cladosporium

Habitat: One of the most common genera worldwide. Found in soil and plant debris and on the leaf surfaces of living plants. The outdoor numbers are

lower in the winter and often relatively high in the summer, especially in high humidity. The outdoor numbers often spike in the late afternoon


and evening. Indoors, it can be found growing on textiles, wood, sheetrock, moist window sills and in HVAC supply ducts.

Effects: A common allergen, producing more than 10 allergenic antigens and a common cause of hypersensitivity pneumonitis.

Myxomycetes

Habitat: Found on decaying plant material and as a plant pathogen.

Effects: Some allergenic properties reported, but generally pose no health concerns to humans.

To williams HS

TCH345310 TC 0000000000000000000000000000000000	Total Environmental Concepts, Inc.	Placement Tech Placement Date Address	335 0 King	St Alexande	K Forch @tect.pro
3 TC B217 1 1C A205 11 1C A205 11 1C A205 11 1C A205 11 1C CAFETRIC 11 1	310 TC CONTROLLIBRARY	J.S.L	Pumo Start Time	Pump End Time	
11 C AZOS 11 C A	3 TC B212		1050	1057	
1 C AZOS 1749 1749 1726 1726 1726 1726 1726 1727 1749 1726 1726 1726 1726 1726 1726 1726 1727 1726 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1729 1729 1729 1729 1729 1729 1729 1729 1729 1726 1738 1726 1738 1726 1738 1726 1738 1726 1738 1738 1726 1738 173	TC 4315286 IC CZ14)214	1221	
5 TC Cureteria 1109 1110 172 172 172 173	10		1237	1244	
1 TC Blos 1119 1126 1110 reception 11230 1237 112 auditorium 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1215 11208 1220 11208 1230 11208 1230 11208 1230 11208 1230 11208 1230 11208 1230 11208 1230	TC 4315285 TC Cafeteria		1109	9116	
7 TC reception 1230 1237 3 TC Auditorium 1228 1228 9 TC hallway E136 1268 9 TC hallway E136 1268 9 TC hallway E112 1133 1291 9 TC ballway E112 11247 1247 9 TC hallway 311 1126 1133	TC 4315301 TC BIOS		1119	1126	
3 TC auditorium 1728 1727 1726 1727 1726 1728 1728 1728 1729 17208 17208 17208 17201 17208 17201 17208 17201	TC 43 SZ87 TC reception		1230	1237	
TC hallway E136 TC mainsymeto3 TC hallway E103 TC ballway E112 TC D333 TC hallway 311 TC hallway 311 TC hallway 311 TC h33	370		1220	1227	
8 TC mailway E112 1138 1201 11 TC hallway E112 1143 1149 11 TC DUTSIDE 11249 1249 11 TC DUTSIDE 11249 1249 1249 1249 1249 1126 1133	7		1208	1215	
1 C hallway E112 1135 1149 8 TC E117 1143 1149 6 TC bytaide 11247 1249 5 TC hallway 311 1106 1133 5 TC H33 1126 1133	H		1153	1201	
5 TC hallway 311 1242 1249 5 TC hallway 311 1126 1133	TC4315292 TC hallway E112		11.50	XSV	1
1 TC 13333 1045 5 TC hallway 311 1066 5 TC 1437 1126	1000		Choi	200	Cumb Car
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77		Shol	165)	
1 1126	TC 43/53/3 TC hallway 311		1106	113	
	104315315 TC 438		1126	1133	

Appendix B: Radon Analytical Results

Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS

Kit #: 9723588 Result: < 0.3 pCi/l

Location: (MSS, ble) Hall E136

9723808

Tk W

Kit #: 9723589 Result: < 0.3 pCi/l

Location: Audi6 -2

Tk W

Kit #: 9723590 Result: < 0.3 pCi/l

Location: care -2

Tk W

Kit #: 9723591 Result: < 0.3 pCi/l

Location: B212

Tk W

Kit #: 9723592 Result: < 0.3 pCi/l

Location: B 333

Tk W

Kit #: 9723593 Result: < 0.3 pCi/l

Location: Hall-C311 - C369

Tk W

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am Started: 2021-08-17 at 11:00 am

Ended: 2021-08-20 at 12:00 pm

Hours/MST%: 73 hours 8.8% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 1:00 pm Ended: 2021-08-20 at 1:00 pm

Hours/MST%: 72 hours 10.8% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 12:00 pm

Ended: 2021-08-20 at 1:00 pm

Hours/MST%: 73 hours 10.6% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 11:00 am

Ended: 2021-08-20 at 12:00 pm

Hours/MST%: 73 hours 11.5% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 11:00 am

Ended: 2021-08-20 at 12:00 pm

Hours/MST%: 73 hours 12.6% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 11:00 am

Ended: 2021-08-20 at 12:00 pm

Hours/MST%: 73 hours 10.9% 70°F

Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS

Kit #: 9723594 Result: < 0.3 pCi/l

Location: C214

Tk W

Kit #: 9723595 Result: < 0.3 pCi/l

Location: Reception

Tk W

Kit #: 9723596 Result: < 0.3 pCi/l

Location: B165

Tk W

Kit #: 9723597 Result: < 0.3 pCi/l

Location: Library -2

Tk W

Kit #: 9723598 Result: < 0.3 pCi/l

Location: Trave 1 Blank

Tk W

Kit #: 9723599 Result: < 0.3 pCi/l

Location: Library -1

Tk W

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 11:00 am Ended: 2021-08-20 at 12:00 pm

Hours/MST%: 73 hours 9.6% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am Started: 2021-08-17 at 1:00 pm

Ended: 2021-08-20 at 11:00 am

Hours/MST%: 70 hours 10.9% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 11:00 am Ended: 2021-08-20 at 1:00 pm

Hours/MST%: 74 hours 10.1% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 10:00 am Ended: 2021-08-20 at 1:00 pm Hours/MST%: 75 hours 11.5% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 10:00 am Ended: 2021-08-20 at 12:00 pm

Hours/MST%: 74 hours 10.7% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 10:00 am Ended: 2021-08-20 at 12:00 pm

Hours/MST%: 74 hours 10.9% 70°F

Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS

Kit #: 9723600 Result: < 0.3 pCi/l Analysis Note:

Location: Library -B Analyzed: 2021-08-23 at 11:00 am

Tk W Started: 2021-08-17 at 10:00 am Ended: 2021-08-20 at 1:00 pm

Hours/MST%: 75 hours 5.9% 70°F

Kit #: 9723801 Result: < 0.3 pCi/l Analysis Note:

Location: Cafe -1 Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-17 at 12:00 pm Tk W Ended: 2021-08-20 at 11:00 am

Hours/MST%: 71 hours 11.8% 70°F

Kit #: 9723802 Result: < 0.3 pCi/l Analysis Note:

Location: main G4m-E103-1 Analyzed: 2021-08-23 at 11:00 am

Tk W Started : 2021-08-17 at 11:00 am Ended : 2021-08-20 at 11:00 am

Hours/MST%: 72 hours 14.5% 70°F

Kit #: 9723803 Result: < 0.3 pCi/l Analysis Note:

Location: Main GrM - E103 - 2 Analyzed: 2021-08-23 at 11:00 am

Tk W Started: 2021-08-17 at 11:00 am Ended: 2021-08-20 at 11:00 am

Hours/MST%: 72 hours 13.9% 70°F

Kit #: 9723804 Result: 0.7 ± 0.3 pCi/l Analysis Note:

Location: Paycare E117 Analyzed: 2021-08-23 at 11:00 am

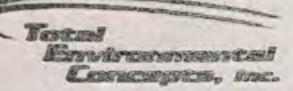
Tk W Started: 2021-08-17 at 11:00 am
Ended: 2021-08-20 at 12:00 pm

Hours/MST%: 73 hours 10.3% 70°F

Kit #: 9723806 Result: < 0.3 pCi/l Analysis Note:

Location: Peception -p Analyzed: 2021-08-23 at 11:00 am

Tk W Ended: 2021-08-17 at 1:00 pm


Ended: 2021-08-20 at 12:00 pm

Hours/MST%: 71 hours 11.1% 70°F

** LABORATORY ANALYSIS REPORT **

Attention: P8184 / LEILA DEAN / TOTAL ENVIRON	MENTAL CONCEPTS
Kit #: 9723582 Result: < 0.3 pCi/l	Analysis Note:
Location: Audio-1	Analyzed: 2021-08-23 at 11:00 am
	Started: 2021-08-17 at 1:00 pm
Γk W	Ended: 2021-08-20 at 12:00 pm
	Hours/MST%: 71 hours 13.2% 70°F
Kit #: 9723585 Result: < 0.3 pCi/l	Analysis Note:
Location: A 205	Analyzed: 2021-08-23 at 11:00 am
Boundary, 1999	Started: 2021-08-17 at 11:00 am
Tk W	Ended: 2021-08-20 at 12:00 pm
,	Hours/MST%: 73 hours 10.9% 70°F
Kit #: 9723586 Result: < 0.3 pCi/l	Analysis Note:
Location: Hall - 512 - GYM	Analyzed: 2021-08-23 at 11:00 am
Location. 14th Die	Started: 2021-08-17 at 11:00 am
Tk W	Ended: 2021-08-20 at 11:00 am
,	Hours/MST%: 72 hours 10.1% 70°F
Kit #: 9723587 Result: < 0.3 pCi/l	Analysis Note:
Location: Library -D	Analyzed: 2021-08-23 at 11:00 am
Location. Storet	Started: 2021-08-17 at 11:00 am
Tk W	Ended: 2021-08-20 at 12:00 pm
14 11	Hours/MST%: 73 hours 11.4% 70°F

Air Chek 1936 Butler Bridge Rd, Mills River, NC 28759-3892 Phone: (828) 684-0893 Fax: (828) 684-8498

Placement Tech	Magg: e 5	Sample Type RodoM	Pleheir Fach	Magne s	
Placement Date	8/17/21	Sample Media	Pictor Date	8/20/21	
Address			Examil	Kford @ feci.pro	

	Constant mars	SOFT>2000	MACAIN	WO son Vin	1 1914	1000	Assault.	Comment
TC9723599	TC Library-1		Y	1	N	10:17	12',33	
TC9723597	TCLibrary-2			1	N	10:17	13:02	
TC9723 587 D	To Library - D			1	N	10:17	12:15	
Te 9723600B	TCLIbrary-B			4	N	10:17	1300	
TC 9723571	TC B 212			Y	N	10:37	12:05	
TC 9723 594	TC C 214			1	N	10:45	12:00	
TC9723585	TCA205			4	N	10:50	12:10	
TC 9723 592	TC 8 333	The second		4	N	11:00	12:15	
TC9723593	TCHA1163116309	700		N	N	11:11	12:20	
TC 9723 596	TCB165			1	N	11: 55	13:00	
TC9723801	TC Cafeteria-1			N	N	11:50	11:35	
TC 9723586	TC Hall E12 GYM			Y	N	11:30	11:53	
rc 9723 802	TCMain GYM E103-1			4	N	11:37	1150	
rc 9723 8 04	TC Daycare £117			N	N	11:20	12:06	
c 9723 803	TCMain GYM 6103-2			Y	N	11:39	11:50	
rc 9723 598	TCHAIICHO E136			N	N	11:44	12:00	
c 9723 590	TC Cateteria -2			N	N	12:35	1300	
TC 9773 588	TC Auditorium-1			N	N	12:42	+ 12:00	
rc 1723 588	TC Auditorium - 2			N	N	12: 44	13 60	
rc 9723 595	TC reception			N	N	12:50	111:55	
C 9723 806 D	TCReceptionD		V	N	N	12:50	14:50	
TC	TCTVavel Blank					1900	17.00	
And the forestern								
					(1)			
					-			
					1			
					-	1		
		-				1		

Appendix C: VOCs (TO+15) Analytical Results

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081829

August 26, 2021

Karl Ford
Total Environmental Concepts - Lorton
8382 Terminal Road, Suite B
Lorton, VA 22079

Reference: PSS Project No: 21081829

Project Name: ACPS IAQ Testing Project Location: T. C. Williams School

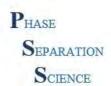
Project ID.: 4920002

Dear Karl Ford:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21081829**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 22, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.


This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

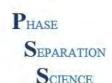
Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081829

Project ID: 4920002


The following samples were received under chain of custody by Phase Separation Science (PSS) on 08/18/2021 at 03:00 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
21081829-001	TC - Class E117	AIR	08/17/21 18:36	_
21081829-002	TC - Hall E112	AIR	08/17/21 18:40	
21081829-003	TC - Gym	AIR	08/17/21 18:24	
21081829-004	TC - Auditorium	AIR	08/17/21 18:50	
21081829-005	TC - Office A110	AIR	08/17/21 19:08	
21081829-006	TC - Cafeteria	AIR	08/17/21 18:55	
21081829-007	TC - Class B105	AIR	08/17/21 19:03	
21081829-008	TC - Media Center	AIR	08/17/21 17:40	
21081829-009	TC - Class A205	AIR	08/17/21 18:09	
21081829-010	TC - Class C214	AIR	08/17/21 18:15	
21081829-011	TC - Class B212	AIR	08/17/21 18:21	
21081829-012	TC - Class B333	AIR	08/17/21 17:52	
21081829-013	TC - Hall C309	AIR	08/17/21 17:59	
21081829-014	TC - Class A328	AIR	08/17/21 18:02	
21081829-015	TC - Outdoor	AIR	08/17/21 19:14	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081829

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

26 August 2021

Amber Confer

Phase Separation Science, Inc.

6630 Baltimore National Pike, Route 40 West

Baltimore, MD 21228

RE: T.C. Williams School

Enclosed are the results of analyses for samples received by the laboratory on 08/19/21 13:25.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rabecka Koons

Quality Assurance Officer

lakecka Koms

Analytical Results

1500 Caton Center Dr Suite Baltimore MD 21227 410-247-7600 www.mdspectral.com

> Reported: 08/26/21 11:07

•		
ject Number:	4920002	

Project: T.C. Williams School

Pro Project Manager: Amber Confer

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TC-CLASS E117	21081829-001	1081917-01	Vapor	08/17/21 18:36	08/19/21 13:25
TC-HALL E112	21081829-002	1081917-02	Vapor	08/17/21 18:40	08/19/21 13:25
TC-GYM	21081829-003	1081917-03	Vapor	08/17/21 18:24	08/19/21 13:25
TC-AUDITORIUM	21081829-004	1081917-04	Vapor	08/17/21 18:50	08/19/21 13:25
TC-OFFICE A110	21081829-005	1081917-05	Vapor	08/17/21 19:08	08/19/21 13:25
TC-CAFETERIA	21081829-006	1081917-06	Vapor	08/17/21 18:55	08/19/21 13:25
TC-CLASS B105	21081829-007	1081917-07	Vapor	08/17/21 19:03	08/19/21 13:25
TC-MEDIA CENTER	21081829-008	1081917-08	Vapor	08/17/21 17:40	08/19/21 13:25
TC-CLASS A205	21081829-009	1081917-09	Vapor	08/17/21 18:09	08/19/21 13:25
TC-CLASS C214	21081829-010	1081917-10	Vapor	08/17/21 18:15	08/19/21 13:25
TC-CLASS B212	21081829-011	1081917-11	Vapor	08/17/21 18:21	08/19/21 13:25
TC-CLASS B333	21081829-012	1081917-12	Vapor	08/17/21 17:52	08/19/21 13:25
TC-HALL C309	21081829-013	1081917-13	Vapor	08/17/21 17:59	08/19/21 13:25
TC-CLASS A328	21081829-014	1081917-14	Vapor	08/17/21 18:02	08/19/21 13:25
TC-OUTDOOR	21081829-015	1081917-15	Vapor	08/17/21 19:14	08/19/21 13:25

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

> TC-CLASS E117 21081829-001 1081917-01 (Vapor) Sample Date: 08/17/21

Benzele 0.29 J wgm² 0.64 0.16 1 08/19/21 08/19/21/17/28 WB Benzyl chloride ND ugm² 1.00 0.25 1 08/19/21 08/19/21/17/28 WB Bromodichloromethane ND ugm² 2.10 0.53 1 08/19/21 08/19/21/17/28 WB Bromomethane ND ugm² 0.78 0.20 1 08/19/21 08/19/21/17/28 WB Bromomethane ND ugm² 0.78 0.20 1 08/19/21 08/19/21/17/28 WB L3.3-Butadiene ND ugm² 1.56 1.56 1 08/19/21 08/19/21/17/28 WB Carbon tetrachloride 0.44 J ugm² 0.53 0.27 1 08/19/21 08/19/21/17/28 WB Chloromethane ND ugm² 0.53 0.27 1 08/19/21 08/19/21/17/28 WB Chloromethane ND ugm² 0.41 0.10					Sample Date. 0					
Notatile Organies by EPA TO-15 (GC/MS) Prepared by TO-15 Prepare										
Macteone 15.8						Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Benzele 0.29 J wgm² 0.64 0.16 1 08/19/21 08/19/21/17/28 WB Benzyl chloride ND ugm² 1.00 0.25 1 08/19/21 08/19/21/17/28 WB Bromodichloromethane ND ugm² 2.10 0.53 1 08/19/21 08/19/21/17/28 WB Bromomethane ND ugm² 0.78 0.20 1 08/19/21 08/19/21/17/28 WB Bromomethane ND ugm² 0.78 0.20 1 08/19/21 08/19/21/17/28 WB L3.3-Butadiene ND ugm² 1.56 1.56 1 08/19/21 08/19/21/17/28 WB Carbon tetrachloride 0.44 J ugm² 0.53 0.27 1 08/19/21 08/19/21/17/28 WB Chloromethane ND ugm² 0.53 0.27 1 08/19/21 08/19/21/17/28 WB Chloromethane ND ugm² 0.41 0.10	Volatile Organics by EPA TO-	15 (GC/MS) Pi	repared by	y TO-15 P	rep					
Bernyl chloride	Acetone	25.8		ug/m^3	2.40	2.40	1	08/19/21	08/19/21 17:28	
Bromodichloromethane	Benzene		J	_						
Bromoform ND	Benzyl chloride			-			1			
Bromomethane ND	Bromodichloromethane	ND		ug/m³	1.30	0.33	1	08/19/21	08/19/21 17:28	WB
1,3-Butadiene ND	Bromoform	ND		ug/m³	2.10	0.53	1	08/19/21	08/19/21 17:28	WB
Carbon disulfide ND ug/m³ 1.56 1.56 1 08/19/21 08/19/21 17:28 WB Carbon tetrachloride 0.44 J ug/m³ 1.30 0.33 1 08/19/21 08/19/21 17:28 WB Chlorobenzene ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB Chlorobethane ND ug/m³ 0.93 0.27 1 08/19/21 08/19/21 17:28 WB Chloroform 0.34 J ug/m³ 0.97 0.24 1 08/19/21 08/19/21 17:28 WB Chloroform 0.33 ug/m³ 0.41 0.10 1 08/19/21 08/19/21 17:28 WB Chloropopene ND ug/m³ 0.63 0.16 1 08/19/21 08/19/21 17:28 WB Ocyclohexane ND ug/m³ 1.30 0.33 1 08/19/21 08/19/21 17:28 WB 1,2-Diblromothane ND ug/m³ 1.40 0.35<	Bromomethane	ND		ug/m^3	0.78	0.20	1	08/19/21	08/19/21 17:28	WB
Carbon tetrachloride 0.44 J ug/m² 1.30 0.33 1 08/19/21 08/19/21 17:28 WB Chlorobenzene ND ug/m² 0.92 0.23 1 08/19/21 08/19/21 17:28 WB Chloroctenae ND ug/m² 0.53 0.27 1 08/19/21 08/19/21 17:28 WB Chloroffer 0.34 J ug/m² 0.63 0.10 1 08/19/21 08/19/21 17:28 WB Chloropropene ND ug/m² 0.63 0.16 1 08/19/21 08/19/21 17:28 WB Cyclockane ND ug/m² 0.69 0.17 1 08/19/21 08/19/21 17:28 WB 1,2-Dichlorobendendenthane ND ug/m² 1.40 0.33 1 08/19/21 08/19/21 17:28 WB 1,2-Dichlorobenzene ND ug/m² 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m² 1.20	1,3-Butadiene	ND		ug/m^3	0.44	0.44	1	08/19/21	08/19/21 17:28	WB
Chlorobenzene ND	Carbon disulfide	ND		ug/m^3	1.56	1.56	1	08/19/21	08/19/21 17:28	WB
Chlorocthane ND ug/m² 0.53 0.27 1 08/19/21 08/19/21 17:28 WB Chloroform 0.34 J ug/m² 0.97 0.24 1 08/19/21 08/19/21 17:28 WB Chloromethane 3.35 ug/m³ 0.41 0.10 1 08/19/21 08/19/21 17:28 WB Chloropropene ND ug/m³ 0.63 0.16 1 08/19/21 08/19/21 17:28 WB Cyclohexane ND ug/m³ 0.69 0.17 1 08/19/21 08/19/21 17:28 WB Cyclohexane ND ug/m³ 0.69 0.17 1 08/19/21 08/19/21 17:28 WB 1.2-Dibromochloromethane (EDB) ND ug/m³ 1.30 0.33 1 08/19/21 08/19/21 17:28 WB 1.2-Dibromochloromethane (EDB) ND ug/m³ 1.40 0.35 1 08/19/21 08/19/21 17:28 WB 1.3-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1.3-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1.3-Dichlorodifluoromethane ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1.3-Dichlorodifluoromethane ND ug/m³ 0.99 0.99 1 08/19/21 08/19/21 17:28 WB 1.1-Dichlorodifluoromethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1.1-Dichlorotehane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1.1-Dichlorotehane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1.1-Dichlorotehane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1.1-Dichlorotehane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1.1-Dichlorotehane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.1-Dichlorotehane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.1-Dichlorotehane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichlorotehane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichlorotehane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichlorotehane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichlorotehane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichloropropene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichloropropene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichloropropene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichloropropene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichloropropene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichloropropene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1.2-Dichl	Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	08/19/21	08/19/21 17:28	WB
Chloroform 0.34 J ug/m³ 0.97 0.24 1 08/19/21 08/19/21 17:28 WB Chloromethane 3.35 ug/m³ 0.41 0.10 1 08/19/21 08/19/21 17:28 WB 3-Chloropropene ND ug/m³ 0.63 0.16 1 08/19/21 08/19/21 17:28 WB Cyclohexane ND ug/m³ 0.69 0.17 1 08/19/21 08/19/21 17:28 WB Dibromochloromethane ND ug/m³ 1.30 0.33 1 08/19/21 08/19/21 17:28 WB 1,2-Dibrlorobenzene ND ug/m³ 1.40 0.35 1 08/19/21 08/19/21 17:28 WB 1,3-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB Dichlorodifluoromethane 2.27 ug/m³ 0.99 <t< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>ug/m^3</td><td>0.92</td><td>0.23</td><td>1</td><td>08/19/21</td><td>08/19/21 17:28</td><td>WB</td></t<>	Chlorobenzene	ND		ug/m^3	0.92	0.23	1	08/19/21	08/19/21 17:28	WB
Chloromethane 3,35 ug/m² 0,41 0,10 1 08/19/21 08/19/21 17:28 WB 3-Chloropropene ND ug/m² 0,63 0,16 1 08/19/21 08/19/21 17:28 WB Cyclohexane ND ug/m² 0,69 0,17 1 08/19/21 08/19/21 17:28 WB Dibromochloromethane ND ug/m² 1,30 0,33 1 08/19/21 08/19/21 17:28 WB 1,2-Dibromochloromethane ND ug/m² 1,40 0,35 1 08/19/21 08/19/21 17:28 WB 1,2-Dichlorobenzene ND ug/m² 1,20 0,30 1 08/19/21 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m² 1,20 0,30 1 08/19/21 08/19/21 17:28 WB Dichlorodifluoromethane 2,27 ug/m² 0,99 0,99 1 08/19/21 08/19/21 17:28 WB 1,1-Dichlorocthane ND ug/m² 0,81 0,20 </td <td>Chloroethane</td> <td>ND</td> <td></td> <td>ug/m^3</td> <td>0.53</td> <td>0.27</td> <td>1</td> <td>08/19/21</td> <td>08/19/21 17:28</td> <td>WB</td>	Chloroethane	ND		ug/m^3	0.53	0.27	1	08/19/21	08/19/21 17:28	WB
Second Comments Second Com	Chloroform	0.34	J	ug/m³	0.97	0.24	1	08/19/21	08/19/21 17:28	WB
Cyclohexane ND ug/m³ 0.69 0.17 1 08/19/21 08/19/21 17:28 WB Dibromochloromethane (EDB) ND ug/m³ 1.30 0.33 1 08/19/21 08/19/21 17:28 WB 1,2-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,3-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,3-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m³ 0.99 0.99 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroptopane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroptopane ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,3-Dichloroptopene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,3-Dichloroptopene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.79 0.20 1 08/19/21 0	Chloromethane	3.35		ug/m^3	0.41	0.10	1	08/19/21	08/19/21 17:28	
Dibromochloromethane ND ug/m³ 1.30 0.33 1 08/19/21 08/19/21 17:28 WB 1,2-Dibromochlane (EDB) ND ug/m³ 1.40 0.35 1 08/19/21 08/19/21 17:28 WB 1,2-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,3-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m³ 0.99 0.99 1 08/19/21 08/19/21 17:28 WB 1,1-Dichlorothane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichlorothane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichlorothane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichlorothane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichlorothene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichlorothene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichlorothene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloropropane ND ug/m³ 0.99 0.23 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloropropane ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.70 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 1,4-Diox	3-Chloropropene	ND		ug/m³	0.63	0.16	1	08/19/21	08/19/21 17:28	WB
1,2-Dibromoethane (EDB) ND ug/m³ 1,40 0,35 1 08/19/21 17:28 WB 1,2-Dichlorobenzene ND ug/m³ 1,20 0,30 1 08/19/21 17:28 WB 1,3-Dichlorobenzene ND ug/m³ 1,20 0,30 1 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m³ 1,20 0,30 1 08/19/21 17:28 WB 1,4-Dichlorodifluoromethane 2,27 ug/m³ 0,99 0,99 1 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0,81 0,20 1 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0,81 0,20 1 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0,81 0,20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0,81 0,20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0,79 0,20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0,79 0,20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0,79 0,20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0,79 0,20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloropropane ND ug/m³ 0,79 0,20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloropropane ND ug/m³ 0,92 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91 0,23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0,91	Cyclohexane	ND		ug/m^3	0.69	0.17	1	08/19/21	08/19/21 17:28	WB
1,2-Dichlorobenzene ND ug/m³ 1,20 0.30 1 08/19/21 08/19/21 17:28 WB 1,3-Dichlorobenzene ND ug/m³ 1,20 0.30 1 08/19/21 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m³ 1,20 0.30 1 08/19/21 08/19/21 17:28 WB Dichlorodifluoromethane 2.27 ug/m³ 0.99 0.99 1 08/19/21 08/19/21 71:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 71:28 WB 1,2-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 71:28 WB 1,1-Dichloroethane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 71:28 WB 1,1-Dichloroethane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 71:28 WB </td <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>ug/m^3</td> <td>1.30</td> <td>0.33</td> <td>1</td> <td>08/19/21</td> <td>08/19/21 17:28</td> <td>WB</td>	Dibromochloromethane	ND		ug/m^3	1.30	0.33	1	08/19/21	08/19/21 17:28	WB
1,3-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,4-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,1-Dichlorodifluoromethane 2.27 ug/m³ 0.99 0.99 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroptopene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroptopene ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB 1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.87 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND 0.84 J ug/m³ 0.99 0.99 0.99 0.99 0.25 1 08/19/21 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND 0.84 J ug/m³ 0.99 0.99 0.25 1 08/19/21 08/19/21 08/19/21 17:28 WB 1,4-Diox	1,2-Dibromoethane (EDB)	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 17:28	WB
1,4-Dichlorobenzene ND ug/m³ 1.20 0.30 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB cis-1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB trans-1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroptopane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB cis-1,3-Dichloropropane ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB cis-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB Ethyl benzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB Ethyl benzene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 17:28	WB
Dichlorodifluoromethane 2.27 ug/m³ 0.99 0.99 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB cis-1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroptopene ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB cis-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB ttrans-1,3-Dichloropropene ND ug/m³ 0.91 <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/m^3</td> <td>1.20</td> <td>0.30</td> <td>1</td> <td>08/19/21</td> <td>08/19/21 17:28</td> <td>WB</td>	1,3-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 17:28	WB
1,1-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 17:28 WB 1,2-Dichloroethane ND ug/m³ 0.79 0.20 1 08/19/21 17:28 WB 1,1-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 17:28 WB 1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 17:28 WB 1,2-Dichloropropane ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 3.60 3.60 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB WB Ethylboluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 17:28	WB
1,2-Dichloroethane ND ug/m³ 0.81 0.20 1 08/19/21 08/19/21 17:28 WB 1,1-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB trans-1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB trans-1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloropropane ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB cis-1,3-Dichloropropane ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB trans-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB trans-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 0.67 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	Dichlorodifluoromethane	2.27		ug/m³	0.99	0.99	1	08/19/21	08/19/21 17:28	WB
1,1-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB trans-1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB trans-1,2-Dichloroptopene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroptopene ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB trans-1,3-Dichloroptopene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB trans-1,3-Dichloroptopene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB WB Ethyl acetate 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB WB Ethyl benzene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 17:28	WB
cis-1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB trans-1,2-Dichloroethene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloropropane ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB cis-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB trans-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 3.60 3.60 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	1,2-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/19/21	08/19/21 17:28	WB
trans-1,2-Dichloroptopene ND ug/m³ 0.79 0.20 1 08/19/21 08/19/21 17:28 WB 1,2-Dichloroptopene ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB cis-1,3-Dichloroptopene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB trans-1,3-Dichloroptopene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 3.60 3.60 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 17:28	WB
1,2-Dichloropropane ND ug/m³ 0.92 0.23 1 08/19/21 08/19/21 17:28 WB cis-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB trans-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 3.60 3.60 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 17:28	WB
cis-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB trans-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 3.60 3.60 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 17:28	WB
trans-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 3.60 3.60 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	08/19/21	08/19/21 17:28	WB
trans-1,3-Dichloropropene ND ug/m³ 0.91 0.23 1 08/19/21 08/19/21 17:28 WB 1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 3.60 3.60 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 17:28	WB
1,4-Dioxane ND ug/m³ 0.72 0.18 1 08/19/21 08/19/21 17:28 WB Ethyl acetate ND ug/m³ 3.60 3.60 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 17:28	WB
Ethyl acetate ND ug/m³ 3.60 3.60 1 08/19/21 08/19/21 17:28 WB Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	1,4-Dioxane			ug/m³			1	08/19/21	08/19/21 17:28	WB
Ethylbenzene 0.26 J ug/m³ 0.87 0.22 1 08/19/21 08/19/21 17:28 WB 4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB				Ü			1	08/19/21	08/19/21 17:28	WB
4-Ethyltoluene 0.84 J ug/m³ 0.98 0.25 1 08/19/21 08/19/21 17:28 WB	•		J	-						
	•			_						
	Freon 113		J	_			1	08/19/21	08/19/21 17:28	WB

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-CLASS E117 21081829-001 1081917-01 (Vapor) Sample Date: 08/17/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared by	<u>y TO-15 F</u>	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	08/19/21	08/19/21 17:28	WB
n-Heptane	0.66	J	ug/m³	0.82	0.21	1	08/19/21	08/19/21 17:28	WB
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	08/19/21	08/19/21 17:28	WB
Hexane	ND		ug/m³	14.0	14.0	1	08/19/21	08/19/21 17:28	WB
2-Hexanone	0.33	J	ug/m^3	0.82	0.15	1	08/19/21	08/19/21 17:28	WB
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	08/19/21	08/19/21 17:28	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m^3	0.72	0.21	1	08/19/21	08/19/21 17:28	WB
Methylene chloride	ND		ug/m^3	18.0	18.0	1	08/19/21	08/19/21 17:28	WB
Methyl ethyl ketone (2-Butanone)	3.60		ug/m^3	0.59	0.34	1	08/19/21	08/19/21 17:28	WB
Methyl isobutyl ketone	1.31		ug/m^3	0.82	0.82	1	08/19/21	08/19/21 17:28	WB
Naphthalene	ND		ug/m³	1.10	0.70	1	08/19/21	08/19/21 17:28	WB
Propene	ND		ug/m^3	0.34	0.34	1	08/19/21	08/19/21 17:28	WB
n-Propylbenzene	ND		ug/m^3	0.98	0.40	1	08/19/21	08/19/21 17:28	WB
Styrene	0.30	J	ug/m^3	0.85	0.15	1	08/19/21	08/19/21 17:28	WB
1,1,2,2-Tetrachloroethane	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 17:28	WB
Tetrachloroethene	ND		ug/m^3	1.40	0.70	1	08/19/21	08/19/21 17:28	WB
Tetrahydrofuran	3.75		ug/m^3	0.59	0.15	1	08/19/21	08/19/21 17:28	WB
Toluene	1.62		ug/m^3	0.75	0.35	1	08/19/21	08/19/21 17:28	WB
1,2,4-Trichlorobenzene	ND		ug/m^3	1.50	0.38	1	08/19/21	08/19/21 17:28	WB
1,1,1-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 17:28	WB
1,1,2-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 17:28	WB
Trichloroethene	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 17:28	WB
Trichlorofluoromethane (Freon 11)	1.46		ug/m³	1.10	0.28	1	08/19/21	08/19/21 17:28	WB
1,2,4-Trimethylbenzene	0.93	J	ug/m^3	0.98	0.25	1	08/19/21	08/19/21 17:28	WB
1,3,5-Trimethylbenzene	0.29	J	ug/m^3	0.98	0.25	1	08/19/21	08/19/21 17:28	WB
2,2,4-Trimethylpentane	0.42	J	ug/m^3	0.93	0.23	1	08/19/21	08/19/21 17:28	WB
Vinyl acetate	ND		ug/m³	0.70	0.70	1	08/19/21	08/19/21 17:28	WB
Vinyl bromide	ND		ug/m^3	0.87	0.22	1	08/19/21	08/19/21 17:28	WB
Vinyl chloride	ND		ug/m^3	0.51	0.13	1	08/19/21	08/19/21 17:28	WB
o-Xylene	0.48	J	ug/m^3	0.87	0.22	1	08/19/21	08/19/21 17:28	WB
m- & p-Xylenes	1.00	J	ug/m³	1.70	0.43	1	08/19/21	08/19/21 17:28	WB
Surrogate: 4-Bromofluorobenzene		73	B-115	98 %	08/19/21		08/19/21 17:28		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project Number: 4920002 Project Manager: Amber Confer

Project: T.C. Williams School

TC-HALL E112 21081829-002 1081917-02 (Vapor) Sample Date: 08/17/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (GO	C/MS) Pi	repared by	y TO-15 P	rep					
Acetone	15.6		ug/m³	2.40	2.40	1	08/19/21	08/19/21 18:02	WB
Benzene	0.22	J	ug/m^3	0.64	0.16	1	08/19/21	08/19/21 18:02	WB
Benzyl chloride	ND		ug/m³	1.00	0.25	1	08/19/21	08/19/21 18:02	WB
Bromodichloromethane	ND		ug/m^3	1.30	0.33	1	08/19/21	08/19/21 18:02	WB
Bromoform	ND		ug/m^3	2.10	0.53	1	08/19/21	08/19/21 18:02	WB
Bromomethane	ND		ug/m³	0.78	0.20	1	08/19/21	08/19/21 18:02	WB
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	08/19/21	08/19/21 18:02	WB
Carbon disulfide	ND		ug/m³	1.56	1.56	1	08/19/21	08/19/21 18:02	WB
Carbon tetrachloride	0.38	J	ug/m³	1.30	0.33	1	08/19/21	08/19/21 18:02	WB
Chlorobenzene	ND		ug/m^3	0.92	0.23	1	08/19/21	08/19/21 18:02	WB
Chloroethane	ND		ug/m³	0.53	0.27	1	08/19/21	08/19/21 18:02	WB
Chloroform	ND		ug/m³	0.97	0.24	1	08/19/21	08/19/21 18:02	WB
Chloromethane	1.30		ug/m³	0.41	0.10	1	08/19/21	08/19/21 18:02	WB
3-Chloropropene	ND		ug/m³	0.63	0.16	1	08/19/21	08/19/21 18:02	WB
Cyclohexane	ND		ug/m³	0.69	0.17	1	08/19/21	08/19/21 18:02	WB
Dibromochloromethane	ND		ug/m^3	1.30	0.33	1	08/19/21	08/19/21 18:02	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	08/19/21	08/19/21 18:02	WB
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 18:02	WB
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 18:02	WB
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 18:02	WB
Dichlorodifluoromethane	2.18		ug/m³	0.99	0.99	1	08/19/21	08/19/21 18:02	WB
1,1-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/19/21	08/19/21 18:02	WB
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 18:02	WB
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 18:02	WB
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 18:02	WB
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 18:02	WB
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	08/19/21	08/19/21 18:02	WB
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 18:02	WB
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 18:02	WB
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	08/19/21	08/19/21 18:02	WB
Ethyl acetate	ND		ug/m³	3.60	3.60	1	08/19/21	08/19/21 18:02	WB
Ethylbenzene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 18:02	WB
4-Ethyltoluene	0.64	J	ug/m³	0.98	0.25	1	08/19/21	08/19/21 18:02	WB
Freon 113	0.46	J	ug/m³	1.50	0.38	1	08/19/21	08/19/21 18:02	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-HALL E112 21081829-002 1081917-02 (Vapor)

Sample Date: 08/17/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 F	rep (continued)					
Freon 114	ND		ug/m^3	1.40	1.40	1	08/19/21	08/19/21 18:02	WB
n-Heptane	0.37	J	ug/m^3	0.82	0.21	1	08/19/21	08/19/21 18:02	WB
Hexachlorobutadiene	ND		ug/m^3	2.10	2.10	1	08/19/21	08/19/21 18:02	WB
Hexane	ND		ug/m^3	14.0	14.0	1	08/19/21	08/19/21 18:02	WB
2-Hexanone	ND		ug/m^3	0.82	0.15	1	08/19/21	08/19/21 18:02	WB
Isopropylbenzene (Cumene)	ND		ug/m^3	1.10	0.40	1	08/19/21	08/19/21 18:02	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m^3	0.72	0.21	1	08/19/21	08/19/21 18:02	WB
Methylene chloride	ND		ug/m^3	18.0	18.0	1	08/19/21	08/19/21 18:02	WB
Methyl ethyl ketone (2-Butanone)	1.65		ug/m^3	0.59	0.34	1	08/19/21	08/19/21 18:02	WB
Methyl isobutyl ketone	ND		ug/m^3	0.82	0.82	1	08/19/21	08/19/21 18:02	WB
Naphthalene	ND		ug/m^3	1.10	0.70	1	08/19/21	08/19/21 18:02	WB
Propene	ND		ug/m^3	0.34	0.34	1	08/19/21	08/19/21 18:02	WB
n-Propylbenzene	ND		ug/m^3	0.98	0.40	1	08/19/21	08/19/21 18:02	WB
Styrene	0.21	J	ug/m³	0.85	0.15	1	08/19/21	08/19/21 18:02	WB
1,1,2,2-Tetrachloroethane	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 18:02	WB
Tetrachloroethene	ND		ug/m^3	1.40	0.70	1	08/19/21	08/19/21 18:02	WB
Tetrahydrofuran	2.06		ug/m^3	0.59	0.15	1	08/19/21	08/19/21 18:02	WB
Toluene	1.28		ug/m^3	0.75	0.35	1	08/19/21	08/19/21 18:02	WB
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	08/19/21	08/19/21 18:02	WB
1,1,1-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 18:02	WB
1,1,2-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 18:02	WB
Trichloroethene	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 18:02	WB
Trichlorofluoromethane (Freon 11)	1.35		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 18:02	WB
1,2,4-Trimethylbenzene	0.69	J	ug/m^3	0.98	0.25	1	08/19/21	08/19/21 18:02	WB
1,3,5-Trimethylbenzene	0.25	J	ug/m³	0.98	0.25	1	08/19/21	08/19/21 18:02	WB
2,2,4-Trimethylpentane	0.33	J	ug/m³	0.93	0.23	1	08/19/21	08/19/21 18:02	WB
Vinyl acetate	ND		ug/m³	0.70	0.70	1	08/19/21	08/19/21 18:02	WB
Vinyl bromide	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 18:02	WB
Vinyl chloride	ND		ug/m³	0.51	0.13	1	08/19/21	08/19/21 18:02	WB
o-Xylene	0.30	J	ug/m³	0.87	0.22	1	08/19/21	08/19/21 18:02	WB
m- & p-Xylenes	0.78	J	ug/m³	1.70	0.43	1	08/19/21	08/19/21 18:02	WB
Surrogate: 4-Bromofluorobenzene		7.	B-115	99 %	08/19/21	!	08/19/21 18:02		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-GYM 21081829-003 1081917-03 (Vapor)

Sample Date: 08/17/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15	(GC/MS) Pro	epared b	y TO-15 I	Prep					
Acetone	16.8		ug/m³	2.40	2.40	1	08/19/21	08/19/21 18:36	WB
Benzene	0.22	J	ug/m³	0.64	0.16	1	08/19/21	08/19/21 18:36	WB
Benzyl chloride	ND		ug/m³	1.00	0.25	1	08/19/21	08/19/21 18:36	WB
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	08/19/21	08/19/21 18:36	WB
Bromoform	ND		ug/m³	2.10	0.53	1	08/19/21	08/19/21 18:36	WB
Bromomethane	ND		ug/m³	0.78	0.20	1	08/19/21	08/19/21 18:36	WB
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	08/19/21	08/19/21 18:36	WB
Carbon disulfide	ND		ug/m³	1.56	1.56	1	08/19/21	08/19/21 18:36	WB
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	08/19/21	08/19/21 18:36	WB
Chlorobenzene	ND		ug/m³	0.92	0.23	1	08/19/21	08/19/21 18:36	WB
Chloroethane	ND		ug/m³	0.53	0.27	1	08/19/21	08/19/21 18:36	WB
Chloroform	ND		ug/m³	0.97	0.24	1	08/19/21	08/19/21 18:36	WB
Chloromethane	1.22		ug/m³	0.41	0.10	1	08/19/21	08/19/21 18:36	WB
3-Chloropropene	ND		ug/m³	0.63	0.16	1	08/19/21	08/19/21 18:36	WB
Cyclohexane	ND		ug/m³	0.69	0.17	1	08/19/21	08/19/21 18:36	WB
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	08/19/21	08/19/21 18:36	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	08/19/21	08/19/21 18:36	WB
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 18:36	WB
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 18:36	WB
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 18:36	WB
Dichlorodifluoromethane	2.08		ug/m³	0.99	0.99	1	08/19/21	08/19/21 18:36	WB
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 18:36	WB
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 18:36	WB
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 18:36	WB
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 18:36	WB
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 18:36	WB
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	08/19/21	08/19/21 18:36	WB
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 18:36	WB
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 18:36	WB
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	08/19/21	08/19/21 18:36	WB
Ethyl acetate	ND		ug/m³	3.60	3.60	1	08/19/21	08/19/21 18:36	WB
Ethylbenzene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 18:36	WB
4-Ethyltoluene	0.29	J	ug/m³	0.98	0.25	1	08/19/21	08/19/21 18:36	WB
Freon 113	0.46	J	ug/m³	1.50	0.38	1	08/19/21	08/19/21 18:36	WB

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

> TC-GYM 21081829-003 1081917-03 (Vapor) Sample Date: 08/17/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 F	rep (continued)					
Freon 114	ND		ug/m^3	1.40	1.40	1	08/19/21	08/19/21 18:36	WB
n-Heptane	0.45	J	ug/m³	0.82	0.21	1	08/19/21	08/19/21 18:36	WB
Hexachlorobutadiene	ND		ug/m^3	2.10	2.10	1	08/19/21	08/19/21 18:36	WB
Hexane	ND		ug/m^3	14.0	14.0	1	08/19/21	08/19/21 18:36	WB
2-Hexanone	ND		ug/m³	0.82	0.15	1	08/19/21	08/19/21 18:36	WB
Isopropylbenzene (Cumene)	ND		ug/m^3	1.10	0.40	1	08/19/21	08/19/21 18:36	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	08/19/21	08/19/21 18:36	WB
Methylene chloride	35.3	L	ug/m³	18.0	18.0	1	08/19/21	08/19/21 18:36	WB
Methyl ethyl ketone (2-Butanone)	2.42		ug/m³	0.59	0.34	1	08/19/21	08/19/21 18:36	WB
Methyl isobutyl ketone	ND		ug/m^3	0.82	0.82	1	08/19/21	08/19/21 18:36	WB
Naphthalene	ND		ug/m^3	1.10	0.70	1	08/19/21	08/19/21 18:36	WB
Propene	ND		ug/m³	0.34	0.34	1	08/19/21	08/19/21 18:36	WB
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	08/19/21	08/19/21 18:36	WB
Styrene	0.21	J	ug/m³	0.85	0.15	1	08/19/21	08/19/21 18:36	WB
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	08/19/21	08/19/21 18:36	WB
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	08/19/21	08/19/21 18:36	WB
Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	08/19/21	08/19/21 18:36	WB
Toluene	1.02		ug/m³	0.75	0.35	1	08/19/21	08/19/21 18:36	WB
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	08/19/21	08/19/21 18:36	WB
1,1,1-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 18:36	WB
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	08/19/21	08/19/21 18:36	WB
Trichloroethene	ND		ug/m³	1.10	0.28	1	08/19/21	08/19/21 18:36	WB
Trichlorofluoromethane (Freon 11)	1.18		ug/m³	1.10	0.28	1	08/19/21	08/19/21 18:36	WB
1,2,4-Trimethylbenzene	0.29	J	ug/m³	0.98	0.25	1	08/19/21	08/19/21 18:36	WB
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	08/19/21	08/19/21 18:36	WB
2,2,4-Trimethylpentane	0.23	J	ug/m^3	0.93	0.23	1	08/19/21	08/19/21 18:36	WB
Vinyl acetate	ND		ug/m³	0.70	0.70	1	08/19/21	08/19/21 18:36	WB
Vinyl bromide	ND		ug/m^3	0.87	0.22	1	08/19/21	08/19/21 18:36	WB
Vinyl chloride	ND		ug/m³	0.51	0.13	1	08/19/21	08/19/21 18:36	WB
o-Xylene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 18:36	WB
m- & p-Xylenes	0.52	J	ug/m³	1.70	0.43	1	08/19/21	08/19/21 18:36	WB
G 4 D 7 1		_	115	100.0/	00/10/2		00/10/21 10 26		

 $Surrogate: \ 4\hbox{-}Bromofluorobenzene$

73-115

100 %

08/19/21

08/19/21 18:36

lakecha Korns

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-AUDITORIUM 21081829-004 1081917-04 (Vapor)

Sample Date: 08/17/21

			Sample Date: 0	0/1//21				
			Reporting	Detection				
Analyte	Result Notes	s Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-1	5 (GC/MS) Prepare	ed by TO-15 l	Prep					
Acetone	8.55	ug/m³	2.40	2.40	1	08/19/21	08/19/21 19:11	WB
Benzene	ND	ug/m³	0.64	0.16	1	08/19/21	08/19/21 19:11	WB
Benzyl chloride	ND	ug/m³	1.00	0.25	1	08/19/21	08/19/21 19:11	WB
Bromodichloromethane	ND	ug/m³	1.30	0.33	1	08/19/21	08/19/21 19:11	WB
Bromoform	ND	ug/m^3	2.10	0.53	1	08/19/21	08/19/21 19:11	WB
Bromomethane	ND	ug/m³	0.78	0.20	1	08/19/21	08/19/21 19:11	WB
1,3-Butadiene	ND	ug/m³	0.44	0.44	1	08/19/21	08/19/21 19:11	WB
Carbon disulfide	ND	ug/m³	1.56	1.56	1	08/19/21	08/19/21 19:11	WB
Carbon tetrachloride	0.38	J ug/m³	1.30	0.33	1	08/19/21	08/19/21 19:11	WB
Chlorobenzene	ND	ug/m³	0.92	0.23	1	08/19/21	08/19/21 19:11	WB
Chloroethane	ND	ug/m³	0.53	0.27	1	08/19/21	08/19/21 19:11	WB
Chloroform	ND	ug/m^3	0.97	0.24	1	08/19/21	08/19/21 19:11	WB
Chloromethane	1.03	ug/m^3	0.41	0.10	1	08/19/21	08/19/21 19:11	WB
3-Chloropropene	ND	ug/m³	0.63	0.16	1	08/19/21	08/19/21 19:11	WB
Cyclohexane	ND	ug/m³	0.69	0.17	1	08/19/21	08/19/21 19:11	WB
Dibromochloromethane	ND	ug/m³	1.30	0.33	1	08/19/21	08/19/21 19:11	WB
1,2-Dibromoethane (EDB)	ND	ug/m³	1.40	0.35	1	08/19/21	08/19/21 19:11	WB
1,2-Dichlorobenzene	ND	ug/m³	1.20	0.30	1	08/19/21	08/19/21 19:11	WB
1,3-Dichlorobenzene	ND	ug/m^3	1.20	0.30	1	08/19/21	08/19/21 19:11	WB
1,4-Dichlorobenzene	ND	ug/m^3	1.20	0.30	1	08/19/21	08/19/21 19:11	WB
Dichlorodifluoromethane	2.13	ug/m³	0.99	0.99	1	08/19/21	08/19/21 19:11	WB
1,1-Dichloroethane	ND	ug/m³	0.81	0.20	1	08/19/21	08/19/21 19:11	WB
1,2-Dichloroethane	ND	ug/m³	0.81	0.20	1	08/19/21	08/19/21 19:11	WB
1,1-Dichloroethene	ND	ug/m³	0.79	0.20	1	08/19/21	08/19/21 19:11	WB
cis-1,2-Dichloroethene	ND	ug/m³	0.79	0.20	1	08/19/21	08/19/21 19:11	WB
rans-1,2-Dichloroethene	ND	ug/m^3	0.79	0.20	1	08/19/21	08/19/21 19:11	WB
1,2-Dichloropropane	ND	ug/m^3	0.92	0.23	1	08/19/21	08/19/21 19:11	WB
eis-1,3-Dichloropropene	ND	ug/m³	0.91	0.23	1	08/19/21	08/19/21 19:11	WB
rans-1,3-Dichloropropene	ND	ug/m³	0.91	0.23	1	08/19/21	08/19/21 19:11	WB
,4-Dioxane	ND	ug/m³	0.72	0.18	1	08/19/21	08/19/21 19:11	WB
Ethyl acetate	ND	ug/m³	3.60	3.60	1	08/19/21	08/19/21 19:11	WB
Ethylbenzene	ND	ug/m³	0.87	0.22	1	08/19/21	08/19/21 19:11	WB
4-Ethyltoluene	ND	ug/m³	0.98	0.25	1	08/19/21	08/19/21 19:11	WB

la Korns

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

TC-AUDITORIUM 21081829-004 1081917-04 (Vapor) Sample Date: 08/17/21

				Sample Date: 0					
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	<u>y TO-15 I</u>	Prep (continued)					
Freon 113	0.54	J	ug/m³	1.50	0.38	1	08/19/21	08/19/21 19:11	WB
Freon 114	ND		ug/m³	1.40	1.40	1	08/19/21	08/19/21 19:11	WB
n-Heptane	ND		ug/m³	0.82	0.21	1	08/19/21	08/19/21 19:11	WB
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	08/19/21	08/19/21 19:11	WB
Hexane	ND		ug/m³	14.0	14.0	1	08/19/21	08/19/21 19:11	WB
2-Hexanone	ND		ug/m³	0.82	0.15	1	08/19/21	08/19/21 19:11	WB
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	08/19/21	08/19/21 19:11	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	08/19/21	08/19/21 19:11	WB
Methylene chloride	ND		ug/m³	18.0	18.0	1	08/19/21	08/19/21 19:11	WB
Methyl ethyl ketone (2-Butanone)	0.77		ug/m³	0.59	0.34	1	08/19/21	08/19/21 19:11	WB
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	08/19/21	08/19/21 19:11	WB
Naphthalene	ND		ug/m³	1.10	0.70	1	08/19/21	08/19/21 19:11	WB
Propene	ND		ug/m³	0.34	0.34	1	08/19/21	08/19/21 19:11	WB
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	08/19/21	08/19/21 19:11	WB
Styrene	ND		ug/m³	0.85	0.15	1	08/19/21	08/19/21 19:11	WB
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	08/19/21	08/19/21 19:11	WB
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	08/19/21	08/19/21 19:11	WB
Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	08/19/21	08/19/21 19:11	WB
Toluene	0.60	J	ug/m³	0.75	0.35	1	08/19/21	08/19/21 19:11	WB
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	08/19/21	08/19/21 19:11	WB
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	08/19/21	08/19/21 19:11	WB
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	08/19/21	08/19/21 19:11	WB
Trichloroethene	ND		ug/m³	1.10	0.28	1	08/19/21	08/19/21 19:11	WB
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	08/19/21	08/19/21 19:11	WB
1,2,4-Trimethylbenzene	0.29	J	ug/m³	0.98	0.25	1	08/19/21	08/19/21 19:11	WB
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	08/19/21	08/19/21 19:11	WB
2,2,4-Trimethylpentane	ND		ug/m^3	0.93	0.23	1	08/19/21	08/19/21 19:11	WB
Vinyl acetate	ND		ug/m³	0.70	0.70	1	08/19/21	08/19/21 19:11	WB
Vinyl bromide	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 19:11	WB
Vinyl chloride	ND		ug/m³	0.51	0.13	1	08/19/21	08/19/21 19:11	WB
o-Xylene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 19:11	WB
m- & p-Xylenes	0.43	J	ug/m³	1.70	0.43	1	08/19/21	08/19/21 19:11	WB
Surrogate: 4-Bromofluorobenzene		7.	3-115	98 %	08/19/21	!	08/19/21 19:11		

Pakecka Kons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

> TC-OFFICE A110 21081829-005 1081917-05 (Vapor) Sample Date: 08/17/21

				Sample Date: 0	0/1//21				
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-1	15 (GC/MS) Pi	repared b	y TO-15 P	Prep					
Acetone	17.4		ug/m^3	2.40	2.40	1	08/19/21	08/19/21 19:45	WB
Benzene	0.19	J	ug/m^3	0.64	0.16	1	08/19/21	08/19/21 19:45	WB
Benzyl chloride	ND		ug/m³	1.00	0.25	1	08/19/21	08/19/21 19:45	WB
Bromodichloromethane	ND		ug/m^3	1.30	0.33	1	08/19/21	08/19/21 19:45	WB
Bromoform	ND		ug/m^3	2.10	0.53	1	08/19/21	08/19/21 19:45	WB
Bromomethane	ND		ug/m^3	0.78	0.20	1	08/19/21	08/19/21 19:45	WB
1,3-Butadiene	ND		ug/m^3	0.44	0.44	1	08/19/21	08/19/21 19:45	WB
Carbon disulfide	ND		ug/m^3	1.56	1.56	1	08/19/21	08/19/21 19:45	WB
Carbon tetrachloride	0.50	J	ug/m³	1.30	0.33	1	08/19/21	08/19/21 19:45	WB
Chlorobenzene	ND		ug/m^3	0.92	0.23	1	08/19/21	08/19/21 19:45	WB
Chloroethane	ND		ug/m^3	0.53	0.27	1	08/19/21	08/19/21 19:45	WB
Chloroform	0.34	J	ug/m^3	0.97	0.24	1	08/19/21	08/19/21 19:45	WB
Chloromethane	1.34		ug/m^3	0.41	0.10	1	08/19/21	08/19/21 19:45	WB
3-Chloropropene	ND		ug/m^3	0.63	0.16	1	08/19/21	08/19/21 19:45	WB
Cyclohexane	ND		ug/m^3	0.69	0.17	1	08/19/21	08/19/21 19:45	WB
Dibromochloromethane	ND		ug/m^3	1.30	0.33	1	08/19/21	08/19/21 19:45	WB
,2-Dibromoethane (EDB)	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 19:45	WB
,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 19:45	WB
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 19:45	WB
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 19:45	WB
Dichlorodifluoromethane	2.03		ug/m³	0.99	0.99	1	08/19/21	08/19/21 19:45	WB
1,1-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/19/21	08/19/21 19:45	WB
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 19:45	WB
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 19:45	WB
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 19:45	WB
rans-1,2-Dichloroethene	0.36	J	ug/m³	0.79	0.20	1	08/19/21	08/19/21 19:45	WB
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	08/19/21	08/19/21 19:45	WB
eis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 19:45	WB
rans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 19:45	WB
,4-Dioxane	ND		ug/m³	0.72	0.18	1	08/19/21	08/19/21 19:45	WB
Ethyl acetate	ND		ug/m³	3.60	3.60	1	08/19/21	08/19/21 19:45	WB
Ethylbenzene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 19:45	WB
4-Ethyltoluene	0.25	J	ug/m³	0.98	0.25	1	08/19/21	08/19/21 19:45	WB
Freon 113	0.54	J	ug/m³	1.50	0.38	1	08/19/21	08/19/21 19:45	WB

Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-OFFICE A110 21081829-005 1081917-05 (Vapor)

Sample Date: 08/17/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 I	Prep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	08/19/21	08/19/21 19:45	WB
n-Heptane	0.41	J	ug/m³	0.82	0.21	1	08/19/21	08/19/21 19:45	WB
Hexachlorobutadiene	ND		ug/m^3	2.10	2.10	1	08/19/21	08/19/21 19:45	WB
Hexane	ND		ug/m^3	14.0	14.0	1	08/19/21	08/19/21 19:45	WB
2-Hexanone	ND		ug/m^3	0.82	0.15	1	08/19/21	08/19/21 19:45	WB
sopropylbenzene (Cumene)	ND		ug/m^3	1.10	0.40	1	08/19/21	08/19/21 19:45	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	08/19/21	08/19/21 19:45	WB
Methylene chloride	ND		ug/m³	18.0	18.0	1	08/19/21	08/19/21 19:45	WB
Methyl ethyl ketone (2-Butanone)	1.27		ug/m³	0.59	0.34	1	08/19/21	08/19/21 19:45	WB
Methyl isobutyl ketone	ND		ug/m^3	0.82	0.82	1	08/19/21	08/19/21 19:45	WB
Naphthalene	ND		ug/m^3	1.10	0.70	1	08/19/21	08/19/21 19:45	WB
Propene	ND		ug/m³	0.34	0.34	1	08/19/21	08/19/21 19:45	WB
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	08/19/21	08/19/21 19:45	WB
Styrene	0.21	J	ug/m³	0.85	0.15	1	08/19/21	08/19/21 19:45	WB
,1,2,2-Tetrachloroethane	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 19:45	WB
Tetrachloroethene	2.78		ug/m^3	1.40	0.70	1	08/19/21	08/19/21 19:45	WB
Tetrahydrofuran	ND		ug/m^3	0.59	0.15	1	08/19/21	08/19/21 19:45	WB
Toluene	0.98		ug/m^3	0.75	0.35	1	08/19/21	08/19/21 19:45	WB
,2,4-Trichlorobenzene	ND		ug/m^3	1.50	0.38	1	08/19/21	08/19/21 19:45	WB
,1,1-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 19:45	WB
,1,2-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 19:45	WB
Trichloroethene	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 19:45	WB
Trichlorofluoromethane (Freon 11)	1.18		ug/m³	1.10	0.28	1	08/19/21	08/19/21 19:45	WB
,2,4-Trimethylbenzene	0.25	J	ug/m^3	0.98	0.25	1	08/19/21	08/19/21 19:45	WB
,3,5-Trimethylbenzene	ND		ug/m^3	0.98	0.25	1	08/19/21	08/19/21 19:45	WB
2,2,4-Trimethylpentane	ND		ug/m^3	0.93	0.23	1	08/19/21	08/19/21 19:45	WB
/inyl acetate	ND		ug/m^3	0.70	0.70	1	08/19/21	08/19/21 19:45	WB
Vinyl bromide	ND		ug/m^3	0.87	0.22	1	08/19/21	08/19/21 19:45	WB
Vinyl chloride	ND		ug/m³	0.51	0.13	1	08/19/21	08/19/21 19:45	WB
o-Xylene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 19:45	WB
n- & p-Xylenes	0.52	J	ug/m³	1.70	0.43	1	08/19/21	08/19/21 19:45	WB

 Surrogate: 4-Bromofluorobenzene
 73-115
 98 %
 08/19/21
 08/19/21 19:45

Pakecha Kons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

> TC-CAFETERIA 21081829-006 1081917-06 (Vapor) Sample Date: 08/17/21

				Sample Date: 00					
	D 1	NT 4	TT ''	Reporting	Detection	D'1 4'	D 1		A 1 /
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (GO		repared b					00455	00/40/0	**
Acetone	15.9		ug/m³	2.40	2.40	1	08/19/21	08/19/21 20:19	WB WB
Benzene	ND		ug/m³	0.64	0.16	1	08/19/21	08/19/21 20:19	
Benzyl chloride	ND		ug/m³	1.00	0.25	1	08/19/21	08/19/21 20:19	WB
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	08/19/21	08/19/21 20:19	WB
Bromoform	ND		ug/m³	2.10	0.53	1	08/19/21	08/19/21 20:19	WB
Bromomethane	ND		ug/m³	0.78	0.20	1	08/19/21	08/19/21 20:19	WB
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	08/19/21	08/19/21 20:19	WB
Carbon disulfide	ND		ug/m³	1.56	1.56	1	08/19/21	08/19/21 20:19	WB
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	08/19/21	08/19/21 20:19	WB
Chlorobenzene	ND		ug/m³	0.92	0.23	1	08/19/21	08/19/21 20:19	WB
Chloroethane	ND		ug/m³	0.53	0.27	1	08/19/21	08/19/21 20:19	WB
Chloroform	ND		ug/m³	0.97	0.24	1	08/19/21	08/19/21 20:19	WB
Chloromethane	1.69		ug/m³	0.41	0.10	1	08/19/21	08/19/21 20:19	WB
3-Chloropropene	ND		ug/m³	0.63	0.16	1	08/19/21	08/19/21 20:19	WB
Cyclohexane	ND		ug/m³	0.69	0.17	1	08/19/21	08/19/21 20:19	WB
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	08/19/21	08/19/21 20:19	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	08/19/21	08/19/21 20:19	WB
1,2-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 20:19	WB
1,3-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 20:19	WB
1,4-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 20:19	WB
Dichlorodifluoromethane	1.98		ug/m^3	0.99	0.99	1	08/19/21	08/19/21 20:19	WB
1,1-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/19/21	08/19/21 20:19	WB
1,2-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/19/21	08/19/21 20:19	WB
1,1-Dichloroethene	ND		ug/m^3	0.79	0.20	1	08/19/21	08/19/21 20:19	WB
cis-1,2-Dichloroethene	ND		ug/m^3	0.79	0.20	1	08/19/21	08/19/21 20:19	WB
trans-1,2-Dichloroethene	0.24	J	ug/m^3	0.79	0.20	1	08/19/21	08/19/21 20:19	WB
1,2-Dichloropropane	ND		ug/m^3	0.92	0.23	1	08/19/21	08/19/21 20:19	WB
cis-1,3-Dichloropropene	ND		ug/m^3	0.91	0.23	1	08/19/21	08/19/21 20:19	WB
trans-1,3-Dichloropropene	ND		ug/m^3	0.91	0.23	1	08/19/21	08/19/21 20:19	WB
1,4-Dioxane	ND		ug/m^3	0.72	0.18	1	08/19/21	08/19/21 20:19	WB
Ethyl acetate	ND		ug/m^3	3.60	3.60	1	08/19/21	08/19/21 20:19	WB
Ethylbenzene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 20:19	WB
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	08/19/21	08/19/21 20:19	WB
Freon 113	0.54	J	ug/m³	1.50	0.38	1	08/19/21	08/19/21 20:19	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

> TC-CAFETERIA 21081829-006 1081917-06 (Vapor) Sample Date: 08/17/21

Valatile Organics by EPA TO-15 (GC/MS) Prepared by TO-15 Prep (continued)					Reporting	Detection				
Frenon 114 ND ug/m² 1.40 1.40 1.40 1.40 08/19/21 08/19/21 20:19 Will not helptate 0.25 J ug/m² 0.82 0.21 1 08/19/21 08/19/21 20:19 Will not helptate ND ug/m² 2.10 2.10 1 08/19/21 08/19/21 20:19 Will Hexanlor ND ug/m² 1.40 1.40 1.40 1 08/19/21 08/19/21 20:19 Will Hexanne ND ug/m² 0.82 0.15 1 08/19/21 08/19/21 20:19 Will Sopropylbenzene (Cumene) ND ug/m² 0.82 0.15 1 08/19/21 08/19/21 20:19 Will Sopropylbenzene (Cumene) ND ug/m² 0.82 0.15 1 08/19/21 08/19/21 20:19 Will Sopropylbenzene (Cumene) ND ug/m² 0.72 0.21 1 08/19/21 08/19/21 20:19 Will Methyl tert-buryl ether (MTBE) ND ug/m² 0.72 0.21 1 08/19/21 08/19/21 20:19 Will Methyl tert-buryl ether (MTBE) ND ug/m² 0.59 0.34 1 08/19/21 08/19/21 20:19 Will Methyl tertone (2-Butanone) 0.94 ug/m² 0.59 0.34 1 08/19/21 08/19/21 20:19 Will Methyl tertone (2-Butanone) ND ug/m² 0.82 0.82 1 08/19/21 08/19/21 20:19 Will Methyl tertone (2-Butanone) ND ug/m² 0.83 0.82 0.82 1 08/19/21 08/19/21 20:19 Will Methyl tertone (3.00 ND ug/m² 0.34 0.34 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.34 0.34 0.34 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.34 0.34 0.34 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.34 0.34 0.34 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.34 0.34 0.34 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.34 0.34 0.34 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.34 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.34 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.34 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will ND ug/m² 0.36 0.35 1 08/19/21 08/19/21 20:19 Will N	Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
### 1.0	Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 P	rep (continued)					
Hexachlorobutadiene ND	Freon 114	ND		ug/m³	1.40	1.40	1	08/19/21	08/19/21 20:19	WB
Hexane ND ug/m³ 14.0 14.0 1 08/19/21 08/19/21 09/19 NVI 2-Hexanone ND ug/m³ 0.82 0.15 1 08/19/21 08/19/21 20:19 NVI 1sopropylbenzene (Cumene) ND ug/m³ 0.82 0.15 1 08/19/21 08/19/21 20:19 NVI 1sopropylbenzene (Cumene) ND ug/m³ 0.72 0.21 1 08/19/21 08/19/21 20:19 NVI Methyl tert-butyl ether (MTBE) ND ug/m³ 18.0 18.0 1 08/19/21 08/19/21 20:19 NVI Methyl tert-butyl ketone ND ug/m³ 0.59 0.34 1 08/19/21 08/19/21 20:19 NVI Methyl terthyl ketone (2-Butanone) 0.94 ug/m³ 0.82 0.82 1 08/19/21 08/19/21 20:19 NVI Methyl tisobutyl ketone ND ug/m³ 0.82 0.82 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.34 0.34 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.34 0.34 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.34 0.34 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.34 0.34 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.38 0.40 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.98 0.40 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.85 0.15 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.85 0.15 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.85 0.15 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.85 0.15 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.85 0.15 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 NVI Naphthalene ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21	n-Heptane	0.25	J	ug/m^3	0.82	0.21	1	08/19/21	08/19/21 20:19	WB
2-Hexanone ND ug/m³ 0.82 0.15 1 08/19/21 08/19/21 20:19 Will sopropylbenzene (Cumene) ND ug/m³ 1.10 0.40 1 08/19/21 08/19/21 20:19 Will sopropylbenzene (Cumene) ND ug/m³ 0.72 0.21 1 08/19/21 08/19/21 20:19 Will Methyl tert-butyl ether (MTBE) ND ug/m³ 0.72 0.21 1 08/19/21 08/19/21 20:19 Will Methylene chloride ND ug/m³ 0.59 0.34 1 08/19/21 08/19/21 20:19 Will Methyl ketone (2-Butanone) 0.94 ug/m³ 0.59 0.34 1 08/19/21 08/19/21 20:19 Will Methyl isobutyl ketone ND ug/m³ 0.82 0.82 1 08/19/21 08/19/21 20:19 Will Methyl isobutyl ketone ND ug/m³ 0.84 0.82 0.82 1 08/19/21 08/19/21 20:19 Will Methyl isobutyl ketone ND ug/m³ 0.34 0.34 1 08/19/21 08/19/21 20:19 Will Methyl isobutyl ketone ND ug/m³ 0.34 0.34 0.34 08/19/21 08/19/21 20:19 Will Methyl isobutyl ketone ND ug/m³ 0.98 0.40 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.98 0.40 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.98 0.40 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.85 0.15 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.40 0.35 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.40 0.35 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 Will Note the ND ug/m³ 0.75 0.35 1 08/19/21 08	Hexachlorobutadiene	ND		ug/m^3	2.10	2.10	1	08/19/21	08/19/21 20:19	WB
Septopsylbenzene (Cumene) ND	Hexane	ND		ug/m^3	14.0	14.0	1	08/19/21	08/19/21 20:19	WB
Methyl tert-butyl ether (MTBE) ND ug/m² 0.72 0.21 1 08/19/21 08/19/21 20:19 Will Methyl eechloride ND ug/m² 18.0 18.0 1 08/19/21 08/19/21 20:19 Will Methyl tethyl ketone (2-Butanone) 0.94 ug/m² 0.59 0.34 1 08/19/21 08/19/21 20:19 Will Methyl isobutyl ketone ND ug/m² 0.82 0.82 1 08/19/21 08/19/21 20:19 Will Maphthalene ND ug/m² 0.34 0.34 1 08/19/21 08/19/21 20:19 Will Propene ND ug/m² 0.34 0.34 1 08/19/21 08/19/21 20:19 Will Propene ND ug/m² 0.98 0.40 1 08/19/21 08/19/21 20:19 Will Propene ND ug/m² 0.85 0.15 1 08/19/21 08/19/21 20:19 Will Styrene 0.30 J ug/m² 0.85	2-Hexanone	ND		ug/m^3	0.82	0.15	1	08/19/21	08/19/21 20:19	WB
Methylene chloride ND ug/m² 18.0 18.0 1 08/19/21 08/19/21 20:19 Will Methyl ethyl ketone (2-Butanone) 0.94 ug/m² 0.59 0.34 1 08/19/21 08/19/21 20:19 Will Methyl isobutyl ketone ND ug/m² 0.82 0.82 1 08/19/21 08/19/21 20:19 Will Naphthalene ND ug/m² 0.34 0.34 1 08/19/21 08/19/21 20:19 Will Propene ND ug/m² 0.98 0.40 1 08/19/21 08/19/21 20:19 Will Styrene 0.30 J ug/m² 0.85 0.15 1 08/19/21 08/19/21 20:19 Will Styrene 0.30 J ug/m² 0.85 0.15 1 08/19/21 08/19/21 20:19 Will Styrene 0.30 J ug/m² 1.40 0.35 1 08/19/21 08/19/21 20:19 Will Tetrachloroethene ND ug/m² <td>Isopropylbenzene (Cumene)</td> <td>ND</td> <td></td> <td>ug/m^3</td> <td>1.10</td> <td>0.40</td> <td>1</td> <td>08/19/21</td> <td>08/19/21 20:19</td> <td>WB</td>	Isopropylbenzene (Cumene)	ND		ug/m^3	1.10	0.40	1	08/19/21	08/19/21 20:19	WB
Methyl ethyl ketone (2-Butanone) 0.94 ug/m² 0.59 0.34 1 08/19/21 08/19/21 co.19 Will Methyl isobutyl ketone ND ug/m² 0.82 0.82 1 08/19/21 08/19/21 co.19 Will Naphthalene ND ug/m² 1.10 0.70 1 08/19/21 08/19/21 co.19 Will Propene ND ug/m² 0.34 0.34 1 08/19/21 08/19/21 co.19 Will Propene ND ug/m² 0.34 0.34 1 08/19/21 08/19/21 co.19 Will Styrene 0.30 J ug/m² 0.85 0.15 1 08/19/21 08/19/21 co.19 Will Styrene 0.30 J ug/m² 0.85 0.15 1 08/19/21 08/19/21 co.19 Will Styrene 0.30 J ug/m² 0.85 0.15 1 08/19/21 08/19/21 co.19 Will Styrene ND ug/m² 0.59 </td <td>Methyl tert-butyl ether (MTBE)</td> <td>ND</td> <td></td> <td>ug/m^3</td> <td>0.72</td> <td>0.21</td> <td>1</td> <td>08/19/21</td> <td>08/19/21 20:19</td> <td>WB</td>	Methyl tert-butyl ether (MTBE)	ND		ug/m^3	0.72	0.21	1	08/19/21	08/19/21 20:19	WB
Methyl isobutyl ketone ND ug/m² 0.82 0.82 1 08/19/21 08/19/21 20:19 Will Naphthalene ND ug/m² 1.10 0.70 1 08/19/21 08/19/21 20:19 Will Propene ND ug/m² 0.34 0.34 1 08/19/21 08/19/21 20:19 Will n-Propylbenzene ND ug/m² 0.98 0.40 1 08/19/21 08/19/21 20:19 Will Styrene 0.30 J ug/m² 0.85 0.15 1 08/19/21 08/19/21 20:19 Will Tetrachloroethane ND ug/m² 1.40 0.35 1 08/19/21 08/19/21 20:19 Will Tetrachloroethane ND ug/m² 1.40 0.70 1 08/19/21 08/19/21 20:19 Will Toluene 0.90 ug/m² 0.75 0.35 1 08/19/21 08/19/21 20:19 Will Toluene 0.90 ug/m² 1.50 0.38 <td< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/m³</td><td>18.0</td><td>18.0</td><td>1</td><td>08/19/21</td><td>08/19/21 20:19</td><td>WB</td></td<>	Methylene chloride	ND		ug/m³	18.0	18.0	1	08/19/21	08/19/21 20:19	WB
Naphthalene ND ug/m³ 1.10 0.70 1 08/19/21 08/19/21 20:19 Will Propene ND ug/m³ 0.34 0.34 1 08/19/21 08/19/21 20:19 Will n-Propylbenzene ND ug/m³ 0.98 0.40 1 08/19/21 08/19/21 20:19 Will Styrene 0.30 J ug/m³ 0.85 0.15 1 08/19/21 08/19/21 20:19 Will 1,1,2,2-Tetrachloroethane ND ug/m³ 1.40 0.35 1 08/19/21 08/19/21 20:19 Will Tetrachloroethane ND ug/m³ 1.40 0.70 1 08/19/21 08/19/21 20:19 Will Tetrachloroethene ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will 1,2,4-Trichloroethane ND ug/m³ 1.50 0.38 1 08/19/21 08/19/21 20:19 Will 1,1,1-Trichloroethane ND ug/m³ 1.10 0.28	Methyl ethyl ketone (2-Butanone)	0.94		ug/m³	0.59	0.34	1	08/19/21	08/19/21 20:19	WB
Propene ND ug/m³ 0.34 0.34 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.40 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.85 0.15 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.85 0.15 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 1.40 0.35 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 1.40 0.35 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Win-Propylbenzene ND ug/m³ 0.98 0.25 1 0	Methyl isobutyl ketone	ND		ug/m^3	0.82	0.82	1	08/19/21	08/19/21 20:19	WB
NP	Naphthalene	ND		ug/m^3	1.10	0.70	1	08/19/21	08/19/21 20:19	WB
Styrene 0.30 J ug/m² 0.85 0.15 1 08/19/21 08/19/21 20:19 Will 1,1,2,2-Tetrachloroethane ND ug/m² 1.40 0.35 1 08/19/21 08/19/21 20:19 Will Tetrachloroethene ND ug/m² 1.40 0.70 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuran ND ug/m² 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Toluene 0.90 ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 Will 1,2,4-Trichloroebnzene ND ug/m³ 1.50 0.38 1 08/19/21 08/19/21 20:19 Will 1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 00:19 Will Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 00:19 Will Trichlorofluoromethane (Freon 11) 1.29 ug/m³	Propene	ND		ug/m^3	0.34	0.34	1	08/19/21	08/19/21 20:19	WB
1,1,2,2-Tetrachloroethane	n-Propylbenzene	ND		ug/m^3	0.98	0.40	1	08/19/21	08/19/21 20:19	WB
Tetrachloroethene ND ug/m³ 1.40 0.70 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuran ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuran ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuran ND ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuran ND ug/m³ 1.50 0.38 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuran ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuran ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Will Tetrahydroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuromethane (Freon 11) 1.29 ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuromethane (Freon 11) 1.29 ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuromethane ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuromethane ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuromethane ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuromethane ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 Will Tetrahydrofuromethane ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.70 0.70 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 Will Detrahydrofuromethane ND ug/m³ 0.88 0.25 1 0.43 1	Styrene	0.30	J	ug/m³	0.85	0.15	1	08/19/21	08/19/21 20:19	WB
Tetrahydrofuran ND ug/m³ 0.59 0.15 1 08/19/21 08/19/21 20:19 WH Toluene 0.90 ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 WH 1,2,4-Trichlorobenzene ND ug/m³ 1.50 0.38 1 08/19/21 08/19/21 20:19 WH 1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WH 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WH Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WH Trichloroethane (Freon 11) 1.29 ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WH Trichlorofluoromethane (Freon 11) 1.29 ug/m³ 1.10 0.28 1 08/19/21 08/19/21 08/19/21 20:19 WH T,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WH 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WH 2,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH Toluene ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WH	1,1,2,2-Tetrachloroethane	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 20:19	WB
Toluene 0.90 ug/m³ 0.75 0.35 1 08/19/21 08/19/21 20:19 WI 1,2,4-Trichlorobenzene ND ug/m³ 1.50 0.38 1 08/19/21 08/19/21 20:19 WI 1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichloroethane ND ug/m³ 0.98 0.25 1<	Tetrachloroethene	ND		ug/m^3	1.40	0.70	1	08/19/21	08/19/21 20:19	WB
1,2,4-Trichlorobenzene ND ug/m³ 1.50 0.38 1 08/19/21 08/19/21 02:19 WI 1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 02:19 WI 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 02:19 WI Trichloroethene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 02:19 WI Trichlorofluoromethane (Freon 11) 1.29 ug/m³ 1.10 0.28 1 08/19/21 08/19/21 08/19/21 02:19 WI 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 02:19 WI 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 08/19/21 02:19 WI Vinyl acetate ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 08/19/21 08/19/21 02:19 WI Viny	Tetrahydrofuran	ND		ug/m^3	0.59	0.15	1	08/19/21	08/19/21 20:19	WB
1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichlorofluoromethane (Freon 11) 1.29 ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WI Vinyl acetate ND ug/m³ 0.70 0.70 1 08/19/21 08/19/21 20:19 WI Vinyl chloride ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI vin	Toluene	0.90		ug/m^3	0.75	0.35	1	08/19/21	08/19/21 20:19	WB
1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichloroethane ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichlorofluoromethane (Freon 11) 1.29 ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WI Vinyl acetate ND ug/m³ 0.70 0.70 1 08/19/21 08/19/21 20:19 WI Vinyl bromide ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI Vinyl chloride ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WI o-Xylene <td>1,2,4-Trichlorobenzene</td> <td>ND</td> <td></td> <td>ug/m^3</td> <td>1.50</td> <td>0.38</td> <td>1</td> <td>08/19/21</td> <td>08/19/21 20:19</td> <td>WB</td>	1,2,4-Trichlorobenzene	ND		ug/m^3	1.50	0.38	1	08/19/21	08/19/21 20:19	WB
Trichloroethene ND ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI Trichlorofluoromethane (Freon 11) 1.29 ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WI Vinyl acetate ND ug/m³ 0.70 0.70 1 08/19/21 08/19/21 20:19 WI Vinyl bromide ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI Vinyl chloride ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WI o-Xylene ND ug/m³ 0.87 0.22 <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/m^3</td> <td>1.10</td> <td>0.28</td> <td>1</td> <td>08/19/21</td> <td>08/19/21 20:19</td> <td>WB</td>	1,1,1-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 20:19	WB
Trichlorofluoromethane (Freon 11) 1.29 ug/m³ 1.10 0.28 1 08/19/21 08/19/21 20:19 WI 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WI Vinyl acetate ND ug/m³ 0.70 0.70 1 08/19/21 08/19/21 20:19 WI Vinyl bromide ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI Vinyl chloride ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WI o-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI m-& p-Xylenes 0.43 J ug/m³ 1.70	1,1,2-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 20:19	WB
1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WI Vinyl acetate ND ug/m³ 0.70 0.70 1 08/19/21 08/19/21 20:19 WI Vinyl bromide ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI Vinyl chloride ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 20:19 WI 0-Xylene ND ug/m³ 0.87 0.23 1 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21	Trichloroethene	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 20:19	WB
1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/19/21 08/19/21 20:19 WI 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WI Vinyl acetate ND ug/m³ 0.70 0.70 1 08/19/21 08/19/21 20:19 WI Vinyl bromide ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI Vinyl chloride ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WI o-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI m- & p-Xylenes 0.43 J ug/m³ 1.70 0.43 1 08/19/21 08/19/21 20:19 WI	Trichlorofluoromethane (Freon 11)	1.29		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 20:19	WB
2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/19/21 08/19/21 20:19 WI Vinyl acetate ND ug/m³ 0.70 0.70 1 08/19/21 08/19/21 20:19 WI Vinyl bromide ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI Vinyl chloride ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WI o-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI m-& p-Xylenes 0.43 J ug/m³ 1.70 0.43 1 08/19/21 08/19/21 20:19 WI	1,2,4-Trimethylbenzene	ND		ug/m^3	0.98	0.25	1	08/19/21	08/19/21 20:19	WB
Vinyl acetate ND ug/m³ 0.70 0.70 1 08/19/21 08/19/21 20:19 WI Vinyl bromide ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI Vinyl chloride ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WI o-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI m- & p-Xylenes 0.43 J ug/m³ 1.70 0.43 1 08/19/21 08/19/21 20:19 WI	1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	08/19/21	08/19/21 20:19	WB
Vinyl bromide ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI Vinyl chloride ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WI o-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI m- & p-Xylenes 0.43 J ug/m³ 1.70 0.43 1 08/19/21 08/19/21 20:19 WI	2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	08/19/21	08/19/21 20:19	WB
Vinyl chloride ND ug/m³ 0.51 0.13 1 08/19/21 08/19/21 20:19 WI o-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI m- & p-Xylenes 0.43 J ug/m³ 1.70 0.43 1 08/19/21 08/19/21 20:19 WI	Vinyl acetate	ND		ug/m³	0.70	0.70	1	08/19/21	08/19/21 20:19	WB
o-Xylene ND ug/m³ 0.87 0.22 1 08/19/21 08/19/21 20:19 WI m-& p-Xylenes 0.43 J ug/m³ 1.70 0.43 1 08/19/21 08/19/21 20:19 WI	Vinyl bromide	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 20:19	WB
m-&p-Xylenes 0.43 J ug/m³ 1.70 0.43 1 08/19/21 08/19/21 20:19 Wi	Vinyl chloride	ND		ug/m³	0.51	0.13	1	08/19/21	08/19/21 20:19	WB
m- & p-Xylenes 0.43 J ug/m³ 1.70 0.43 1 08/19/21 08/19/21 20:19 WI	o-Xylene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 20:19	WB
Surrogate: 4-Bromofluorobenzene 73-115 99 % 08/19/21 08/19/21 20:19		0.43	J	ug/m³	1.70	0.43	1	08/19/21	08/19/21 20:19	WB
	Surrogate: 4-Bromofluorobenzene		7.	3-115	99 %	08/19/21	!	08/19/21 20:19		

lakecha Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-CLASS B105 21081829-007 1081917-07 (Vapor) Sample Date: 08/17/21

				Sample Date: 03	8/17/21				
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (GC/MS) Pi	repared by	y TO-15 I	Prep					
Acetone	17.3		ug/m³	2.40	2.40	1	08/19/21	08/19/21 20:53	WB
Benzene	0.19	J	ug/m^3	0.64	0.16	1	08/19/21	08/19/21 20:53	WB
Benzyl chloride	ND		ug/m^3	1.00	0.25	1	08/19/21	08/19/21 20:53	WB
Bromodichloromethane	ND		ug/m^3	1.30	0.33	1	08/19/21	08/19/21 20:53	WB
Bromoform	ND		ug/m^3	2.10	0.53	1	08/19/21	08/19/21 20:53	WB
Bromomethane	ND		ug/m^3	0.78	0.20	1	08/19/21	08/19/21 20:53	WB
1,3-Butadiene	ND		ug/m^3	0.44	0.44	1	08/19/21	08/19/21 20:53	WB
Carbon disulfide	ND		ug/m^3	1.56	1.56	1	08/19/21	08/19/21 20:53	WB
Carbon tetrachloride	0.50	J	ug/m^3	1.30	0.33	1	08/19/21	08/19/21 20:53	WB
Chlorobenzene	ND		ug/m^3	0.92	0.23	1	08/19/21	08/19/21 20:53	WB
Chloroethane	ND		ug/m^3	0.53	0.27	1	08/19/21	08/19/21 20:53	WB
Chloroform	ND		ug/m^3	0.97	0.24	1	08/19/21	08/19/21 20:53	WB
Chloromethane	1.20		ug/m^3	0.41	0.10	1	08/19/21	08/19/21 20:53	WB
3-Chloropropene	ND		ug/m³	0.63	0.16	1	08/19/21	08/19/21 20:53	WB
Cyclohexane	ND		ug/m³	0.69	0.17	1	08/19/21	08/19/21 20:53	WB
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	08/19/21	08/19/21 20:53	WB
1,2-Dibromoethane (EDB)	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 20:53	WB
1,2-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 20:53	WB
1,3-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 20:53	WB
1,4-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 20:53	WB
Dichlorodifluoromethane	2.18		ug/m^3	0.99	0.99	1	08/19/21	08/19/21 20:53	WB
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 20:53	WB
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 20:53	WB
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 20:53	WB
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 20:53	WB
trans-1,2-Dichloroethene	0.59	J	ug/m^3	0.79	0.20	1	08/19/21	08/19/21 20:53	WB
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	08/19/21	08/19/21 20:53	WB
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 20:53	WB
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 20:53	WB
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	08/19/21	08/19/21 20:53	WB
Ethyl acetate	ND		ug/m^3	3.60	3.60	1	08/19/21	08/19/21 20:53	WB
Ethylbenzene	ND		ug/m^3	0.87	0.22	1	08/19/21	08/19/21 20:53	WB
4-Ethyltoluene	ND		ug/m^3	0.98	0.25	1	08/19/21	08/19/21 20:53	WB
Freon 113	0.54	J	ug/m^3	1.50	0.38	1	08/19/21	08/19/21 20:53	WB

Pakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School
Project Number: 4920002
Project Manager: Amber Confer

TC-CLASS B105 21081829-007 1081917-07 (Vapor) Sample Date: 08/17/21

				Sample Date: 0	5/1//21				
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 F	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	08/19/21	08/19/21 20:53	WB
n-Heptane	0.33	J	ug/m^3	0.82	0.21	1	08/19/21	08/19/21 20:53	WB
Hexachlorobutadiene	ND		ug/m^3	2.10	2.10	1	08/19/21	08/19/21 20:53	WB
Hexane	ND		ug/m^3	14.0	14.0	1	08/19/21	08/19/21 20:53	WB
2-Hexanone	ND		ug/m^3	0.82	0.15	1	08/19/21	08/19/21 20:53	WB
sopropylbenzene (Cumene)	ND		ug/m^3	1.10	0.40	1	08/19/21	08/19/21 20:53	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m^3	0.72	0.21	1	08/19/21	08/19/21 20:53	WB
Methylene chloride	ND		ug/m^3	18.0	18.0	1	08/19/21	08/19/21 20:53	WB
Methyl ethyl ketone (2-Butanone)	1.12		ug/m^3	0.59	0.34	1	08/19/21	08/19/21 20:53	WB
Methyl isobutyl ketone	ND		ug/m^3	0.82	0.82	1	08/19/21	08/19/21 20:53	WB
Naphthalene	ND		ug/m^3	1.10	0.70	1	08/19/21	08/19/21 20:53	WB
Propene	ND		ug/m^3	0.34	0.34	1	08/19/21	08/19/21 20:53	WB
n-Propylbenzene	ND		ug/m^3	0.98	0.40	1	08/19/21	08/19/21 20:53	WB
Styrene	0.30	J	ug/m^3	0.85	0.15	1	08/19/21	08/19/21 20:53	WB
,1,2,2-Tetrachloroethane	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 20:53	WB
Tetrachloroethene	ND		ug/m^3	1.40	0.70	1	08/19/21	08/19/21 20:53	WB
Tetrahydrofuran	ND		ug/m^3	0.59	0.15	1	08/19/21	08/19/21 20:53	WB
Toluene	1.02		ug/m^3	0.75	0.35	1	08/19/21	08/19/21 20:53	WB
,2,4-Trichlorobenzene	ND		ug/m^3	1.50	0.38	1	08/19/21	08/19/21 20:53	WB
,1,1-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 20:53	WB
,1,2-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 20:53	WB
Trichloroethene	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 20:53	WB
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	08/19/21	08/19/21 20:53	WB
,2,4-Trimethylbenzene	ND		ug/m^3	0.98	0.25	1	08/19/21	08/19/21 20:53	WB
,3,5-Trimethylbenzene	ND		ug/m^3	0.98	0.25	1	08/19/21	08/19/21 20:53	WB
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	08/19/21	08/19/21 20:53	WB
Vinyl acetate	ND		ug/m³	0.70	0.70	1	08/19/21	08/19/21 20:53	WB
/inyl bromide	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 20:53	WB
Vinyl chloride	ND		ug/m³	0.51	0.13	1	08/19/21	08/19/21 20:53	WB
o-Xylene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 20:53	WB
n- & p-Xylenes	0.48	J	ug/m³	1.70	0.43	1	08/19/21	08/19/21 20:53	WB
Surrogate: 4-Bromofluorobenzene		7	3-115	99 %	08/19/21	!	08/19/21 20:53		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

TC-MEDIA CENTER 21081829-008 1081917-08 (Vapor) Sample Date: 08/17/21

			8/17/21						
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-1:	5 (GC/MS) P	repared b	y TO-15 I	Prep					
Acetone	14.4		ug/m³	2.40	2.40	1	08/19/21	08/19/21 21:28	WB
Benzene	ND		ug/m³	0.64	0.16	1	08/19/21	08/19/21 21:28	WB
Benzyl chloride	ND		ug/m^3	1.00	0.25	1	08/19/21	08/19/21 21:28	WB
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	08/19/21	08/19/21 21:28	WB
Bromoform	ND		ug/m³	2.10	0.53	1	08/19/21	08/19/21 21:28	WB
Bromomethane	ND		ug/m³	0.78	0.20	1	08/19/21	08/19/21 21:28	WB
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	08/19/21	08/19/21 21:28	WB
Carbon disulfide	ND		ug/m³	1.56	1.56	1	08/19/21	08/19/21 21:28	WB
Carbon tetrachloride	0.38	J	ug/m³	1.30	0.33	1	08/19/21	08/19/21 21:28	WB
Chlorobenzene	ND		ug/m^3	0.92	0.23	1	08/19/21	08/19/21 21:28	WB
Chloroethane	ND		ug/m³	0.53	0.27	1	08/19/21	08/19/21 21:28	WB
Chloroform	ND		ug/m³	0.97	0.24	1	08/19/21	08/19/21 21:28	WB
Chloromethane	1.09		ug/m³	0.41	0.10	1	08/19/21	08/19/21 21:28	WB
3-Chloropropene	ND		ug/m³	0.63	0.16	1	08/19/21	08/19/21 21:28	WB
Cyclohexane	ND		ug/m^3	0.69	0.17	1	08/19/21	08/19/21 21:28	WB
Dibromochloromethane	ND		ug/m^3	1.30	0.33	1	08/19/21	08/19/21 21:28	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	08/19/21	08/19/21 21:28	WB
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 21:28	WB
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 21:28	WB
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 21:28	WB
Dichlorodifluoromethane	2.13		ug/m³	0.99	0.99	1	08/19/21	08/19/21 21:28	WB
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 21:28	WB
1,2-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/19/21	08/19/21 21:28	WB
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 21:28	WB
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 21:28	WB
trans-1,2-Dichloroethene	0.28	J	ug/m³	0.79	0.20	1	08/19/21	08/19/21 21:28	WB
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	08/19/21	08/19/21 21:28	WB
cis-1,3-Dichloropropene	ND		ug/m^3	0.91	0.23	1	08/19/21	08/19/21 21:28	WB
trans-1,3-Dichloropropene	ND		ug/m^3	0.91	0.23	1	08/19/21	08/19/21 21:28	WB
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	08/19/21	08/19/21 21:28	WB
Ethyl acetate	ND		ug/m³	3.60	3.60	1	08/19/21	08/19/21 21:28	WB
Ethylbenzene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 21:28	WB
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	08/19/21	08/19/21 21:28	WB
Freon 113	0.46	J	ug/m³	1.50	0.38	1	08/19/21	08/19/21 21:28	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project Number: 4920002 Project Manager: Amber Confer

Project: T.C. Williams School

TC-MEDIA CENTER 21081829-008 1081917-08 (Vapor) Sample Date: 08/17/21

			Sample Date: 0	0/1//21				
			Reporting	Detection				
Analyte	Result 1	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Prej	pared by TO-15 l	Prep (continued)					
Freon 114	ND	ug/m³	1.40	1.40	1	08/19/21	08/19/21 21:28	WB
n-Heptane	ND	ug/m³	0.82	0.21	1	08/19/21	08/19/21 21:28	WB
Hexachlorobutadiene	ND	ug/m³	2.10	2.10	1	08/19/21	08/19/21 21:28	WB
Hexane	ND	ug/m³	14.0	14.0	1	08/19/21	08/19/21 21:28	WB
2-Hexanone	ND	ug/m³	0.82	0.15	1	08/19/21	08/19/21 21:28	WB
Isopropylbenzene (Cumene)	ND	ug/m³	1.10	0.40	1	08/19/21	08/19/21 21:28	WB
Methyl tert-butyl ether (MTBE)	ND	ug/m³	0.72	0.21	1	08/19/21	08/19/21 21:28	WB
Methylene chloride	ND	ug/m³	18.0	18.0	1	08/19/21	08/19/21 21:28	WB
Methyl ethyl ketone (2-Butanone)	1.47	ug/m³	0.59	0.34	1	08/19/21	08/19/21 21:28	WB
Methyl isobutyl ketone	ND	ug/m³	0.82	0.82	1	08/19/21	08/19/21 21:28	WB
Naphthalene	ND	ug/m³	1.10	0.70	1	08/19/21	08/19/21 21:28	WB
Propene	ND	ug/m³	0.34	0.34	1	08/19/21	08/19/21 21:28	WB
n-Propylbenzene	ND	ug/m³	0.98	0.40	1	08/19/21	08/19/21 21:28	WB
Styrene	ND	ug/m³	0.85	0.15	1	08/19/21	08/19/21 21:28	WB
1,1,2,2-Tetrachloroethane	ND	ug/m³	1.40	0.35	1	08/19/21	08/19/21 21:28	WB
Tetrachloroethene	ND	ug/m³	1.40	0.70	1	08/19/21	08/19/21 21:28	WB
Tetrahydrofuran	ND	ug/m³	0.59	0.15	1	08/19/21	08/19/21 21:28	WB
Toluene	0.60	J ug/m³	0.75	0.35	1	08/19/21	08/19/21 21:28	WB
1,2,4-Trichlorobenzene	ND	ug/m³	1.50	0.38	1	08/19/21	08/19/21 21:28	WB
1,1,1-Trichloroethane	ND	ug/m³	1.10	0.28	1	08/19/21	08/19/21 21:28	WB
1,1,2-Trichloroethane	ND	ug/m³	1.10	0.28	1	08/19/21	08/19/21 21:28	WB
Trichloroethene	ND	ug/m³	1.10	0.28	1	08/19/21	08/19/21 21:28	WB
Trichlorofluoromethane (Freon 11)	1.18	ug/m³	1.10	0.28	1	08/19/21	08/19/21 21:28	WB
1,2,4-Trimethylbenzene	ND	ug/m³	0.98	0.25	1	08/19/21	08/19/21 21:28	WB
1,3,5-Trimethylbenzene	ND	ug/m³	0.98	0.25	1	08/19/21	08/19/21 21:28	WB
2,2,4-Trimethylpentane	ND	ug/m^3	0.93	0.23	1	08/19/21	08/19/21 21:28	WB
Vinyl acetate	ND	ug/m³	0.70	0.70	1	08/19/21	08/19/21 21:28	WB
Vinyl bromide	ND	ug/m³	0.87	0.22	1	08/19/21	08/19/21 21:28	WB
Vinyl chloride	ND	ug/m³	0.51	0.13	1	08/19/21	08/19/21 21:28	WB
o-Xylene	ND	ug/m³	0.87	0.22	1	08/19/21	08/19/21 21:28	WB
m- & p-Xylenes	ND	ug/m³	1.70	0.43	1	08/19/21	08/19/21 21:28	WB
Surrogate: 4-Bromofluorobenzene		73-115	98 %	08/19/21		08/19/21 21:28		

lakecha Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

> TC-CLASS A205 21081829-009 1081917-09 (Vapor) Sample Date: 08/17/21

				Sample Date: 00					
Austra	D!	Nister	T I : 4	Reporting	Detection	Dilectic	D 1	A1 J	A
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (GC		repared b							
Acetone	12.8		ug/m³	2.40	2.40	1	08/19/21	08/19/21 22:02	WB WB
Benzene	ND		ug/m³	0.64	0.16	1	08/19/21	08/19/21 22:02	
Benzyl chloride	ND		ug/m³	1.00	0.25	1	08/19/21	08/19/21 22:02	WB
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	08/19/21	08/19/21 22:02	WB
Bromoform	ND		ug/m³	2.10	0.53	1	08/19/21	08/19/21 22:02	WB
Bromomethane	ND		ug/m³	0.78	0.20	1	08/19/21	08/19/21 22:02	WB
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	08/19/21	08/19/21 22:02	WB
Carbon disulfide	ND		ug/m³	1.56	1.56	1	08/19/21	08/19/21 22:02	WB
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	08/19/21	08/19/21 22:02	WB
Chlorobenzene	ND		ug/m³	0.92	0.23	1	08/19/21	08/19/21 22:02	WB
Chloroethane	ND		ug/m³	0.53	0.27	1	08/19/21	08/19/21 22:02	WB
Chloroform	2.05		ug/m³	0.97	0.24	1	08/19/21	08/19/21 22:02	WB
Chloromethane	1.01		ug/m³	0.41	0.10	1	08/19/21	08/19/21 22:02	WB
3-Chloropropene	ND		ug/m³	0.63	0.16	1	08/19/21	08/19/21 22:02	WB
Cyclohexane	ND		ug/m³	0.69	0.17	1	08/19/21	08/19/21 22:02	WB
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	08/19/21	08/19/21 22:02	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	08/19/21	08/19/21 22:02	WB
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 22:02	WB
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 22:02	WB
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/19/21	08/19/21 22:02	WB
Dichlorodifluoromethane	2.08		ug/m³	0.99	0.99	1	08/19/21	08/19/21 22:02	WB
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 22:02	WB
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/19/21	08/19/21 22:02	WB
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 22:02	WB
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 22:02	WB
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/19/21	08/19/21 22:02	WB
1,2-Dichloropropane	ND		ug/m^3	0.92	0.23	1	08/19/21	08/19/21 22:02	WB
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 22:02	WB
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 22:02	WB
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	08/19/21	08/19/21 22:02	WB
Ethyl acetate	ND		ug/m³	3.60	3.60	1	08/19/21	08/19/21 22:02	WB
Ethylbenzene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 22:02	WB
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	08/19/21	08/19/21 22:02	WB
Freon 113	0.46	J	ug/m³	1.50	0.38	1	08/19/21	08/19/21 22:02	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-CLASS A205 21081829-009 1081917-09 (Vapor)

Sample Date: 08/17/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared by TO-15	Prep (continued)				
Freon 114	ND	ug/m³	1.40	1.40	1	08/19/21	08/19/21 22:02	WB
n-Heptane	ND	ug/m³	0.82	0.21	1	08/19/21	08/19/21 22:02	WB
Hexachlorobutadiene	ND	ug/m³	2.10	2.10	1	08/19/21	08/19/21 22:02	WB
Hexane	ND	ug/m³	14.0	14.0	1	08/19/21	08/19/21 22:02	WB
2-Hexanone	ND	ug/m³	0.82	0.15	1	08/19/21	08/19/21 22:02	WB
Isopropylbenzene (Cumene)	ND	ug/m³	1.10	0.40	1	08/19/21	08/19/21 22:02	WB
Methyl tert-butyl ether (MTBE)	ND	ug/m³	0.72	0.21	1	08/19/21	08/19/21 22:02	WB
Methylene chloride	ND	ug/m³	18.0	18.0	1	08/19/21	08/19/21 22:02	WB
Methyl ethyl ketone (2-Butanone)	0.77	ug/m³	0.59	0.34	1	08/19/21	08/19/21 22:02	WB
Methyl isobutyl ketone	ND	ug/m³	0.82	0.82	1	08/19/21	08/19/21 22:02	WB
Naphthalene	ND	ug/m³	1.10	0.70	1	08/19/21	08/19/21 22:02	WB
Propene	ND	ug/m³	0.34	0.34	1	08/19/21	08/19/21 22:02	WB
n-Propylbenzene	ND	ug/m³	0.98	0.40	1	08/19/21	08/19/21 22:02	WB
Styrene	ND	ug/m³	0.85	0.15	1	08/19/21	08/19/21 22:02	WB
1,1,2,2-Tetrachloroethane	ND	ug/m³	1.40	0.35	1	08/19/21	08/19/21 22:02	WB
Tetrachloroethene	6.51	ug/m³	1.40	0.70	1	08/19/21	08/19/21 22:02	WB
Tetrahydrofuran	ND	ug/m³	0.59	0.15	1	08/19/21	08/19/21 22:02	WB
Toluene	0.49	J ug/m³	0.75	0.35	1	08/19/21	08/19/21 22:02	WB
1,2,4-Trichlorobenzene	ND	ug/m³	1.50	0.38	1	08/19/21	08/19/21 22:02	WB
1,1,1-Trichloroethane	ND	ug/m³	1.10	0.28	1	08/19/21	08/19/21 22:02	WB
1,1,2-Trichloroethane	ND	ug/m³	1.10	0.28	1	08/19/21	08/19/21 22:02	WB
Trichloroethene	ND	ug/m³	1.10	0.28	1	08/19/21	08/19/21 22:02	WB
Trichlorofluoromethane (Freon 11)	1.18	ug/m³	1.10	0.28	1	08/19/21	08/19/21 22:02	WB
1,2,4-Trimethylbenzene	ND	ug/m³	0.98	0.25	1	08/19/21	08/19/21 22:02	WB
1,3,5-Trimethylbenzene	ND	ug/m³	0.98	0.25	1	08/19/21	08/19/21 22:02	WB
2,2,4-Trimethylpentane	ND	ug/m³	0.93	0.23	1	08/19/21	08/19/21 22:02	WB
Vinyl acetate	ND	ug/m³	0.70	0.70	1	08/19/21	08/19/21 22:02	WB
Vinyl bromide	ND	ug/m³	0.87	0.22	1	08/19/21	08/19/21 22:02	WB
Vinyl chloride	ND	ug/m³	0.51	0.13	1	08/19/21	08/19/21 22:02	WB
o-Xylene	ND	ug/m³	0.87	0.22	1	08/19/21	08/19/21 22:02	WB
m- & p-Xylenes	ND	ug/m³	1.70	0.43	1	08/19/21	08/19/21 22:02	WB
Surrogate: 4-Bromofluorobenzene		73-115	99 %	08/19/2	1	08/19/21 22:02	,	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-CLASS C214 21081829-010 1081917-10 (Vapor)

Sample Date: 08/17/21

Reporting Detection Analyte Result Notes Units Limit (MRL) Limit (LOD) Dilution Prepared Analyzed Analyst Volatile Organics by EPA TO-15 (GC/MS) Prepared by TO-15 Prep 2.40 2.40 1 08/19/21 08/19/21 22:36 WB 16.0 ug/m³ Acetone WB 1 08/19/21 08/19/21 22:36 Benzene ND ug/m³ 0.64 0.16 ND ug/m³ 0.25 1 08/19/21 08/19/21 22:36 WB Benzyl chloride 1.00 08/19/21 08/19/21 22:36 WB ND 0.33 Bromodichloromethane 1.30 ug/m3 ND 2.10 0.53 08/19/21 08/19/21 22:36 WB Bromoform ug/m3 0.20 1 08/19/21 08/19/21 22:36 WB Bromomethane ND ug/m³ 0.78 08/19/21 08/19/21 22:36 WB 1,3-Butadiene ND ug/m³ 0.44 0.44 08/19/21 08/19/21 22:36 WB Carbon disulfide ND ug/m3 1.56 1.56 J 0.33 08/19/21 08/19/21 22:36 WB Carbon tetrachloride 0.50 ug/m^3 1.30 0.23 08/19/21 08/19/21 22:36 WB Chlorobenzene ND ug/m3 0.92 08/19/21 08/19/21 22:36 WB 0.27 Chloroethane ND ug/m3 0.53 08/19/21 08/19/21 22:36 Chloroform ND ug/m3 0.97 0.24 WB 08/19/21 08/19/21 22:36 WB Chloromethane 1.16 ug/m³ 0.41 0.10 08/19/21 08/19/21 22:36 WB ND ug/m^3 0.16 3-Chloropropene 0.63 ND 0.17 08/19/21 08/19/21 22:36 WB Cyclohexane ug/m3 0.69 0.33 08/19/21 08/19/21 22:36 WB Dibromochloromethane ND ug/m3 1.30 08/19/21 08/19/21 22:36 WB 1,2-Dibromoethane (EDB) ND ug/m³ 1.40 0.35 08/19/21 08/19/21 22:36 WB 1,2-Dichlorobenzene ND ug/m3 1.20 0.30 1,3-Dichlorobenzene ND 0.30 08/19/21 08/19/21 22:36 WB ug/m^3 1.20 1,4-Dichlorobenzene ND ug/m^3 1.20 0.30 08/19/21 08/19/21 22:36 WB 08/19/21 08/19/21 22:36 WB Dichlorodifluoromethane 2.18 ug/m3 0.99 0.99 1 08/19/21 08/19/21 22:36 1,1-Dichloroethane ND ug/m3 0.81 0.20 WB 1,2-Dichloroethane ND ug/m^3 0.81 0.20 08/19/21 08/19/21 22:36 WB 1,1-Dichloroethene ND 0.79 0.20 08/19/21 08/19/21 22:36 WBug/m3 cis-1,2-Dichloroethene ND ug/m³ 0.79 0.20 08/19/21 08/19/21 22:36 WB 08/19/21 08/19/21 22:36 WB trans-1,2-Dichloroethene 0.52 J ug/m³ 0.79 0.20 08/19/21 08/19/21 22:36 WB 1,2-Dichloropropane ND ug/m³ 0.92 0.23 cis-1,3-Dichloropropene ND ug/m3 0.91 0.23 08/19/21 08/19/21 22:36 WB 08/19/21 08/19/21 22:36 trans-1,3-Dichloropropene ND ug/m³ 0.91 0.23 WB WB 1,4-Dioxane ND ug/m^3 0.72 0.18 08/19/21 08/19/21 22:36 08/19/21 WB 1 08/19/21 22:36 Ethyl acetate ND ug/m³ 3.60 3.60 WB 08/19/21 08/19/21 22:36 ug/m³ 1 Ethylbenzene ND 0.87 0.22 ug/m³ 08/19/21 08/19/21 22:36 WB 4-Ethyltoluene ND 0.98 0.25 08/19/21 08/19/21 22:36 WB Freon 113 0.54 ug/m3 1.50 0.38

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-CLASS C214 21081829-010 1081917-10 (Vapor) Sample Date: 08/17/21

			Reporting	Detection				
Analyte	Result Not	tes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Prepa	red by TO-15	Prep (continued)					
Freon 114	ND	ug/m³	1.40	1.40	1	08/19/21	08/19/21 22:36	WB
n-Heptane	1.07	ug/m³	0.82	0.21	1	08/19/21	08/19/21 22:36	WB
Hexachlorobutadiene	ND	ug/m³	2.10	2.10	1	08/19/21	08/19/21 22:36	WB
Hexane	ND	ug/m³	14.0	14.0	1	08/19/21	08/19/21 22:36	WB
2-Hexanone	ND	ug/m³	0.82	0.15	1	08/19/21	08/19/21 22:36	WB
Isopropylbenzene (Cumene)	ND	ug/m³	1.10	0.40	1	08/19/21	08/19/21 22:36	WB
Methyl tert-butyl ether (MTBE)	ND	ug/m³	0.72	0.21	1	08/19/21	08/19/21 22:36	WB
Methylene chloride	ND	ug/m³	18.0	18.0	1	08/19/21	08/19/21 22:36	WB
Methyl ethyl ketone (2-Butanone)	0.77	ug/m³	0.59	0.34	1	08/19/21	08/19/21 22:36	WB
Methyl isobutyl ketone	ND	ug/m³	0.82	0.82	1	08/19/21	08/19/21 22:36	WB
Naphthalene	ND	ug/m³	1.10	0.70	1	08/19/21	08/19/21 22:36	WB
Propene	ND	ug/m³	0.34	0.34	1	08/19/21	08/19/21 22:36	WB
n-Propylbenzene	ND	ug/m³	0.98	0.40	1	08/19/21	08/19/21 22:36	WB
Styrene	0.17	J ug/m³	0.85	0.15	1	08/19/21	08/19/21 22:36	WB
1,1,2,2-Tetrachloroethane	ND	ug/m³	1.40	0.35	1	08/19/21	08/19/21 22:36	WB
Tetrachloroethene	ND	ug/m³	1.40	0.70	1	08/19/21	08/19/21 22:36	WB
Tetrahydrofuran	ND	ug/m³	0.59	0.15	1	08/19/21	08/19/21 22:36	WB
Toluene	1.02	ug/m³	0.75	0.35	1	08/19/21	08/19/21 22:36	WB
1,2,4-Trichlorobenzene	ND	ug/m³	1.50	0.38	1	08/19/21	08/19/21 22:36	WB
1,1,1-Trichloroethane	ND	ug/m³	1.10	0.28	1	08/19/21	08/19/21 22:36	WB
1,1,2-Trichloroethane	ND	ug/m³	1.10	0.28	1	08/19/21	08/19/21 22:36	WB
Trichloroethene	ND	ug/m³	1.10	0.28	1	08/19/21	08/19/21 22:36	WB
Trichlorofluoromethane (Freon 11)	1.24	ug/m³	1.10	0.28	1	08/19/21	08/19/21 22:36	WB
1,2,4-Trimethylbenzene	ND	ug/m³	0.98	0.25	1	08/19/21	08/19/21 22:36	WB
1,3,5-Trimethylbenzene	ND	ug/m³	0.98	0.25	1	08/19/21	08/19/21 22:36	WB
2,2,4-Trimethylpentane	ND	ug/m³	0.93	0.23	1	08/19/21	08/19/21 22:36	WB
Vinyl acetate	ND	ug/m³	0.70	0.70	1	08/19/21	08/19/21 22:36	WB
Vinyl bromide	ND	ug/m³	0.87	0.22	1	08/19/21	08/19/21 22:36	WB
Vinyl chloride	ND	ug/m³	0.51	0.13	1	08/19/21	08/19/21 22:36	WB
o-Xylene	ND	ug/m³	0.87	0.22	1	08/19/21	08/19/21 22:36	WB
m- & p-Xylenes	ND	ug/m³	1.70	0.43	1	08/19/21	08/19/21 22:36	WB
Surrogate: 4-Bromofluorobenzene		73-115	99 %	08/19/21	!	08/19/21 22:36		

3

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

> TC-CLASS B212 21081829-011 1081917-11 (Vapor) Sample Date: 08/17/21

			Sample Date: 0					
			Reporting	Detection				
Analyte	Result Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15	(GC/MS) Prepared	by TO-15 I						
Acetone	10.7	ug/m³	2.40	2.40	1	08/19/21	08/19/21 23:11	WB
Benzene	ND	ug/m³	0.64	0.16	1	08/19/21	08/19/21 23:11	WB
Benzyl chloride	ND	ug/m³	1.00	0.25	1	08/19/21	08/19/21 23:11	WB
Bromodichloromethane	ND	ug/m³	1.30	0.33	1	08/19/21	08/19/21 23:11	WB
Bromoform	ND	ug/m³	2.10	0.53	1	08/19/21	08/19/21 23:11	WB
Bromomethane	ND	ug/m³	0.78	0.20	1	08/19/21	08/19/21 23:11	WB
1,3-Butadiene	ND	ug/m³	0.44	0.44	1	08/19/21	08/19/21 23:11	WB
Carbon disulfide	ND	ug/m³	1.56	1.56	1	08/19/21	08/19/21 23:11	WB
Carbon tetrachloride	0.44	J ug/m³	1.30	0.33	1	08/19/21	08/19/21 23:11	WB
Chlorobenzene	ND	ug/m³	0.92	0.23	1	08/19/21	08/19/21 23:11	WB
Chloroethane	ND	ug/m³	0.53	0.27	1	08/19/21	08/19/21 23:11	WB
Chloroform	ND	ug/m³	0.97	0.24	1	08/19/21	08/19/21 23:11	WB
Chloromethane	1.09	ug/m³	0.41	0.10	1	08/19/21	08/19/21 23:11	WB
3-Chloropropene	ND	ug/m³	0.63	0.16	1	08/19/21	08/19/21 23:11	WB
Cyclohexane	ND	ug/m³	0.69	0.17	1	08/19/21	08/19/21 23:11	WB
Dibromochloromethane	ND	ug/m³	1.30	0.33	1	08/19/21	08/19/21 23:11	WB
1,2-Dibromoethane (EDB)	ND	ug/m³	1.40	0.35	1	08/19/21	08/19/21 23:11	WB
1,2-Dichlorobenzene	ND	ug/m³	1.20	0.30	1	08/19/21	08/19/21 23:11	WB
1,3-Dichlorobenzene	ND	ug/m³	1.20	0.30	1	08/19/21	08/19/21 23:11	WB
1,4-Dichlorobenzene	ND	ug/m³	1.20	0.30	1	08/19/21	08/19/21 23:11	WB
Dichlorodifluoromethane	2.18	ug/m³	0.99	0.99	1	08/19/21	08/19/21 23:11	WB
1,1-Dichloroethane	ND	ug/m³	0.81	0.20	1	08/19/21	08/19/21 23:11	WB
1,2-Dichloroethane	ND	ug/m³	0.81	0.20	1	08/19/21	08/19/21 23:11	WB
1,1-Dichloroethene	ND	ug/m³	0.79	0.20	1	08/19/21	08/19/21 23:11	WB
cis-1,2-Dichloroethene	ND	ug/m³	0.79	0.20	1	08/19/21	08/19/21 23:11	WB
trans-1,2-Dichloroethene	0.28	J ug/m³	0.79	0.20	1	08/19/21	08/19/21 23:11	WB
1,2-Dichloropropane	ND	ug/m³	0.92	0.23	1	08/19/21	08/19/21 23:11	WB
cis-1,3-Dichloropropene	ND	ug/m³	0.91	0.23	1	08/19/21	08/19/21 23:11	WB
trans-1,3-Dichloropropene	ND	ug/m³	0.91	0.23	1	08/19/21	08/19/21 23:11	WB
1,4-Dioxane	ND	ug/m³	0.72	0.18	1	08/19/21	08/19/21 23:11	WB
Ethyl acetate	ND	ug/m³	3.60	3.60	1	08/19/21	08/19/21 23:11	WB
Ethylbenzene	ND	ug/m³	0.87	0.22	1	08/19/21	08/19/21 23:11	WB
4-Ethyltoluene	ND	ug/m³	0.98	0.25	1	08/19/21	08/19/21 23:11	WB
Freon 113	0.54	J ug/m³	1.50	0.38	1	08/19/21	08/19/21 23:11	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

> Reported: 08/26/21 11:07

Project: T.C. Williams School Project Number: 4920002

Project Manager: Amber Confer

TC-CLASS B212 21081829-011 1081917-11 (Vapor) Sample Date: 08/17/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) Pi	repared by	TO-15 P	rep (continued)					
Freon 114	ND		ug/m^3	1.40	1.40	1	08/19/21	08/19/21 23:11	WB
n-Heptane	0.33	J	ug/m^3	0.82	0.21	1	08/19/21	08/19/21 23:11	WB
Hexachlorobutadiene	ND		ug/m^3	2.10	2.10	1	08/19/21	08/19/21 23:11	WB
Hexane	ND		ug/m^3	14.0	14.0	1	08/19/21	08/19/21 23:11	WB
2-Hexanone	ND		ug/m^3	0.82	0.15	1	08/19/21	08/19/21 23:11	WB
Isopropylbenzene (Cumene)	ND		ug/m^3	1.10	0.40	1	08/19/21	08/19/21 23:11	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m^3	0.72	0.21	1	08/19/21	08/19/21 23:11	WB
Methylene chloride	ND		ug/m^3	18.0	18.0	1	08/19/21	08/19/21 23:11	WB
Methyl ethyl ketone (2-Butanone)	0.94		ug/m^3	0.59	0.34	1	08/19/21	08/19/21 23:11	WB
Methyl isobutyl ketone	ND		ug/m^3	0.82	0.82	1	08/19/21	08/19/21 23:11	WB
Naphthalene	ND		ug/m^3	1.10	0.70	1	08/19/21	08/19/21 23:11	WB
Propene	ND		ug/m^3	0.34	0.34	1	08/19/21	08/19/21 23:11	WB
n-Propylbenzene	ND		ug/m^3	0.98	0.40	1	08/19/21	08/19/21 23:11	WB
Styrene	ND		ug/m^3	0.85	0.15	1	08/19/21	08/19/21 23:11	WB
1,1,2,2-Tetrachloroethane	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 23:11	WB
Tetrachloroethene	ND		ug/m^3	1.40	0.70	1	08/19/21	08/19/21 23:11	WB
Tetrahydrofuran	ND		ug/m^3	0.59	0.15	1	08/19/21	08/19/21 23:11	WB
Toluene	0.60	J	ug/m³	0.75	0.35	1	08/19/21	08/19/21 23:11	WB
1,2,4-Trichlorobenzene	ND		ug/m^3	1.50	0.38	1	08/19/21	08/19/21 23:11	WB
1,1,1-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 23:11	WB
1,1,2-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 23:11	WB
Trichloroethene	ND		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 23:11	WB
Trichlorofluoromethane (Freon 11)	1.24		ug/m^3	1.10	0.28	1	08/19/21	08/19/21 23:11	WB
1,2,4-Trimethylbenzene	ND		ug/m^3	0.98	0.25	1	08/19/21	08/19/21 23:11	WB
1,3,5-Trimethylbenzene	ND		ug/m^3	0.98	0.25	1	08/19/21	08/19/21 23:11	WB
2,2,4-Trimethylpentane	ND		ug/m^3	0.93	0.23	1	08/19/21	08/19/21 23:11	WB
Vinyl acetate	ND		ug/m^3	0.70	0.70	1	08/19/21	08/19/21 23:11	WB
Vinyl bromide	ND		ug/m^3	0.87	0.22	1	08/19/21	08/19/21 23:11	WB
Vinyl chloride	ND		ug/m^3	0.51	0.13	1	08/19/21	08/19/21 23:11	WB
o-Xylene	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 23:11	WB
m- & p-Xylenes	ND		ug/m^3	1.70	0.43	1	08/19/21	08/19/21 23:11	WB
Surrogate: 4-Bromofluorobenzene		73	-115	99 %	08/19/21	!	08/19/21 23:11		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project Number: 4920002 Project Manager: Amber Confer

Project: T.C. Williams School

TC-CLASS B333 21081829-012 1081917-12 (Vapor) Sample Date: 08/17/21

				Sample Date: 0	0/1//21				
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-1	15 (GC/MS) Pi	repared b	y TO-15 I	Prep					
Acetone	14.8		ug/m^3	2.40	2.40	1	08/19/21	08/19/21 23:45	WB
Benzene	ND		ug/m³	0.64	0.16	1	08/19/21	08/19/21 23:45	WB
Benzyl chloride	ND		ug/m^3	1.00	0.25	1	08/19/21	08/19/21 23:45	WB
Bromodichloromethane	ND		ug/m^3	1.30	0.33	1	08/19/21	08/19/21 23:45	WB
Bromoform	ND		ug/m^3	2.10	0.53	1	08/19/21	08/19/21 23:45	WB
Bromomethane	ND		ug/m^3	0.78	0.20	1	08/19/21	08/19/21 23:45	WB
1,3-Butadiene	ND		ug/m^3	0.44	0.44	1	08/19/21	08/19/21 23:45	WB
Carbon disulfide	ND		ug/m^3	1.56	1.56	1	08/19/21	08/19/21 23:45	WB
Carbon tetrachloride	0.44	J	ug/m^3	1.30	0.33	1	08/19/21	08/19/21 23:45	WB
Chlorobenzene	ND		ug/m^3	0.92	0.23	1	08/19/21	08/19/21 23:45	WB
Chloroethane	ND		ug/m^3	0.53	0.27	1	08/19/21	08/19/21 23:45	WB
Chloroform	ND		ug/m^3	0.97	0.24	1	08/19/21	08/19/21 23:45	WB
Chloromethane	1.05		ug/m^3	0.41	0.10	1	08/19/21	08/19/21 23:45	WB
3-Chloropropene	ND		ug/m^3	0.63	0.16	1	08/19/21	08/19/21 23:45	WB
Cyclohexane	ND		ug/m^3	0.69	0.17	1	08/19/21	08/19/21 23:45	WB
Dibromochloromethane	ND		ug/m^3	1.30	0.33	1	08/19/21	08/19/21 23:45	WB
1,2-Dibromoethane (EDB)	ND		ug/m^3	1.40	0.35	1	08/19/21	08/19/21 23:45	WB
1,2-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 23:45	WB
1,3-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 23:45	WB
1,4-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/19/21	08/19/21 23:45	WB
Dichlorodifluoromethane	2.18		ug/m^3	0.99	0.99	1	08/19/21	08/19/21 23:45	WB
1,1-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/19/21	08/19/21 23:45	WB
1,2-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/19/21	08/19/21 23:45	WB
1,1-Dichloroethene	ND		ug/m^3	0.79	0.20	1	08/19/21	08/19/21 23:45	WB
cis-1,2-Dichloroethene	ND		ug/m^3	0.79	0.20	1	08/19/21	08/19/21 23:45	WB
trans-1,2-Dichloroethene	0.24	J	ug/m^3	0.79	0.20	1	08/19/21	08/19/21 23:45	WB
1,2-Dichloropropane	ND		ug/m^3	0.92	0.23	1	08/19/21	08/19/21 23:45	WB
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 23:45	WB
rans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/19/21	08/19/21 23:45	WB
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	08/19/21	08/19/21 23:45	WB
Ethyl acetate	ND		ug/m³	3.60	3.60	1	08/19/21	08/19/21 23:45	WB
Ethylbenzene	0.26	J	ug/m³	0.87	0.22	1	08/19/21	08/19/21 23:45	WB
4-Ethyltoluene	0.64	J	ug/m³	0.98	0.25	1	08/19/21	08/19/21 23:45	WB
Freon 113	0.46	J	ug/m³	1.50	0.38	1	08/19/21	08/19/21 23:45	WB

Ratecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

nelad

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-CLASS B333 21081829-012 1081917-12 (Vapor) Sample Date: 08/17/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) Pr	epared by	y TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	08/19/21	08/19/21 23:45	WB
n-Heptane	ND		ug/m³	0.82	0.21	1	08/19/21	08/19/21 23:45	WB
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	08/19/21	08/19/21 23:45	WB
Hexane	ND		ug/m³	14.0	14.0	1	08/19/21	08/19/21 23:45	WB
2-Hexanone	ND		ug/m³	0.82	0.15	1	08/19/21	08/19/21 23:45	WB
(Sopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	08/19/21	08/19/21 23:45	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	08/19/21	08/19/21 23:45	WB
Methylene chloride	ND		ug/m³	18.0	18.0	1	08/19/21	08/19/21 23:45	WB
Methyl ethyl ketone (2-Butanone)	1.09		ug/m³	0.59	0.34	1	08/19/21	08/19/21 23:45	WB
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	08/19/21	08/19/21 23:45	WB
Naphthalene	ND		ug/m³	1.10	0.70	1	08/19/21	08/19/21 23:45	WB
Propene	ND		ug/m³	0.34	0.34	1	08/19/21	08/19/21 23:45	WB
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	08/19/21	08/19/21 23:45	WB
Styrene	ND		ug/m³	0.85	0.15	1	08/19/21	08/19/21 23:45	WB
,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	08/19/21	08/19/21 23:45	WB
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	08/19/21	08/19/21 23:45	WB
Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	08/19/21	08/19/21 23:45	WB
Toluene	2.03		ug/m³	0.75	0.35	1	08/19/21	08/19/21 23:45	WB
,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	08/19/21	08/19/21 23:45	WB
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	08/19/21	08/19/21 23:45	WB
,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	08/19/21	08/19/21 23:45	WB
Trichloroethene	ND		ug/m³	1.10	0.28	1	08/19/21	08/19/21 23:45	WB
Trichlorofluoromethane (Freon 11)	1.18		ug/m³	1.10	0.28	1	08/19/21	08/19/21 23:45	WB
,2,4-Trimethylbenzene	0.79	J	ug/m³	0.98	0.25	1	08/19/21	08/19/21 23:45	WB
,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	08/19/21	08/19/21 23:45	WB
2,2,4-Trimethylpentane	ND		ug/m^3	0.93	0.23	1	08/19/21	08/19/21 23:45	WB
Vinyl acetate	ND		ug/m^3	0.70	0.70	1	08/19/21	08/19/21 23:45	WB
/inyl bromide	ND		ug/m³	0.87	0.22	1	08/19/21	08/19/21 23:45	WB
Vinyl chloride	ND		ug/m³	0.51	0.13	1	08/19/21	08/19/21 23:45	WB
p-Xylene	0.39	J	ug/m³	0.87	0.22	1	08/19/21	08/19/21 23:45	WB
m- & p-Xylenes	0.78	J	ug/m³	1.70	0.43	1	08/19/21	08/19/21 23:45	WB

Pakecka Kons

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-HALL C309

21081829-013 1081917-13 (Vapor) Sample Date: 08/17/21

				Sample Date: 08	5/1//21				
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-1	15 (GC/MS) Pi	repared b	y TO-15 F	rep					
Acetone	15.5		ug/m³	2.40	2.40	1	08/20/21	08/20/21 00:19	WB
Benzene	ND		ug/m³	0.64	0.16	1	08/20/21	08/20/21 00:19	WB
Benzyl chloride	ND		ug/m³	1.00	0.25	1	08/20/21	08/20/21 00:19	WB
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	08/20/21	08/20/21 00:19	WB
Bromoform	ND		ug/m³	2.10	0.53	1	08/20/21	08/20/21 00:19	WB
Bromomethane	ND		ug/m³	0.78	0.20	1	08/20/21	08/20/21 00:19	WB
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	08/20/21	08/20/21 00:19	WB
Carbon disulfide	ND		ug/m³	1.56	1.56	1	08/20/21	08/20/21 00:19	WB
Carbon tetrachloride	0.38	J	ug/m³	1.30	0.33	1	08/20/21	08/20/21 00:19	WB
Chlorobenzene	ND		ug/m³	0.92	0.23	1	08/20/21	08/20/21 00:19	WB
Chloroethane	ND		ug/m³	0.53	0.27	1	08/20/21	08/20/21 00:19	WB
Chloroform	ND		ug/m³	0.97	0.24	1	08/20/21	08/20/21 00:19	WB
Chloromethane	1.16		ug/m³	0.41	0.10	1	08/20/21	08/20/21 00:19	WB
3-Chloropropene	ND		ug/m^3	0.63	0.16	1	08/20/21	08/20/21 00:19	WB
Cyclohexane	ND		ug/m³	0.69	0.17	1	08/20/21	08/20/21 00:19	WB
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	08/20/21	08/20/21 00:19	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	08/20/21	08/20/21 00:19	WB
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/20/21	08/20/21 00:19	WB
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/20/21	08/20/21 00:19	WB
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/20/21	08/20/21 00:19	WB
Dichlorodifluoromethane	2.18		ug/m³	0.99	0.99	1	08/20/21	08/20/21 00:19	WB
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/20/21	08/20/21 00:19	WB
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/20/21	08/20/21 00:19	WB
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/20/21	08/20/21 00:19	WB
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/20/21	08/20/21 00:19	WB
trans-1,2-Dichloroethene	0.44	J	ug/m³	0.79	0.20	1	08/20/21	08/20/21 00:19	WB
1,2-Dichloropropane	ND		ug/m^3	0.92	0.23	1	08/20/21	08/20/21 00:19	WB
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/20/21	08/20/21 00:19	WB
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/20/21	08/20/21 00:19	WB
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	08/20/21	08/20/21 00:19	WB
Ethyl acetate	ND		ug/m³	3.60	3.60	1	08/20/21	08/20/21 00:19	WB
Ethylbenzene	ND		ug/m³	0.87	0.22	1	08/20/21	08/20/21 00:19	WB
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	08/20/21	08/20/21 00:19	WB
Freon 113	0.46	J	ug/m³	1.50	0.38	1	08/20/21	08/20/21 00:19	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-HALL C309 21081829-013 1081917-13 (Vapor)

Sample Date: 08/17/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared by	TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	08/20/21	08/20/21 00:19	WB
n-Heptane	0.29	J	ug/m³	0.82	0.21	1	08/20/21	08/20/21 00:19	WB
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	08/20/21	08/20/21 00:19	WB
Hexane	ND		ug/m³	14.0	14.0	1	08/20/21	08/20/21 00:19	WB
2-Hexanone	ND		ug/m³	0.82	0.15	1	08/20/21	08/20/21 00:19	WB
(Sopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	08/20/21	08/20/21 00:19	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	08/20/21	08/20/21 00:19	WB
Methylene chloride	ND		ug/m³	18.0	18.0	1	08/20/21	08/20/21 00:19	WB
Methyl ethyl ketone (2-Butanone)	1.15		ug/m³	0.59	0.34	1	08/20/21	08/20/21 00:19	WB
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	08/20/21	08/20/21 00:19	WB
Naphthalene	ND		ug/m³	1.10	0.70	1	08/20/21	08/20/21 00:19	WB
Propene	ND		ug/m³	0.34	0.34	1	08/20/21	08/20/21 00:19	WB
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	08/20/21	08/20/21 00:19	WB
Styrene	ND		ug/m³	0.85	0.15	1	08/20/21	08/20/21 00:19	WB
,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	08/20/21	08/20/21 00:19	WB
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	08/20/21	08/20/21 00:19	WB
Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	08/20/21	08/20/21 00:19	WB
Toluene	0.72	J	ug/m³	0.75	0.35	1	08/20/21	08/20/21 00:19	WB
,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	08/20/21	08/20/21 00:19	WB
,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	08/20/21	08/20/21 00:19	WB
,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	08/20/21	08/20/21 00:19	WB
Trichloroethene	ND		ug/m³	1.10	0.28	1	08/20/21	08/20/21 00:19	WB
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	08/20/21	08/20/21 00:19	WB
,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	08/20/21	08/20/21 00:19	WB
,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	08/20/21	08/20/21 00:19	WB
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	08/20/21	08/20/21 00:19	WB
Vinyl acetate	ND		ug/m³	0.70	0.70	1	08/20/21	08/20/21 00:19	WB
Vinyl bromide	ND		ug/m³	0.87	0.22	1	08/20/21	08/20/21 00:19	WB
Vinyl chloride	ND		ug/m³	0.51	0.13	1	08/20/21	08/20/21 00:19	WB
o-Xylene	ND		ug/m³	0.87	0.22	1	08/20/21	08/20/21 00:19	WB
n- & p-Xylenes	ND		ug/m³	1.70	0.43	1	08/20/21	08/20/21 00:19	WB
Surrogate: 4-Bromofluorobenzene		73	-115	99 %	08/20/21		08/20/21 00:19		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 28 of 36

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

> TC-CLASS A328 21081829-014 1081917-14 (Vapor) Sample Date: 08/17/21

				Sample Date: 0	0/1//21				
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-	15 (GC/MS) Pre	epared b	<u>y TO-15 F</u>	Prep					
Acetone	14.6		ug/m³	2.40	2.40	1	08/20/21	08/20/21 00:53	WB
Benzene	ND		ug/m³	0.64	0.16	1	08/20/21	08/20/21 00:53	WB
Benzyl chloride	ND		ug/m³	1.00	0.25	1	08/20/21	08/20/21 00:53	WB
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	08/20/21	08/20/21 00:53	WB
Bromoform	ND		ug/m³	2.10	0.53	1	08/20/21	08/20/21 00:53	WB
Bromomethane	ND		ug/m³	0.78	0.20	1	08/20/21	08/20/21 00:53	WB
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	08/20/21	08/20/21 00:53	WB
Carbon disulfide	ND		ug/m³	1.56	1.56	1	08/20/21	08/20/21 00:53	WB
Carbon tetrachloride	0.44	J	ug/m^3	1.30	0.33	1	08/20/21	08/20/21 00:53	WB
Chlorobenzene	ND		ug/m³	0.92	0.23	1	08/20/21	08/20/21 00:53	WB
Chloroethane	ND		ug/m³	0.53	0.27	1	08/20/21	08/20/21 00:53	WB
Chloroform	ND		ug/m³	0.97	0.24	1	08/20/21	08/20/21 00:53	WB
Chloromethane	1.12		ug/m³	0.41	0.10	1	08/20/21	08/20/21 00:53	WB
3-Chloropropene	ND		ug/m³	0.63	0.16	1	08/20/21	08/20/21 00:53	WB
Cyclohexane	ND		ug/m³	0.69	0.17	1	08/20/21	08/20/21 00:53	WB
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	08/20/21	08/20/21 00:53	WB
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	08/20/21	08/20/21 00:53	WB
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/20/21	08/20/21 00:53	WB
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/20/21	08/20/21 00:53	WB
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	08/20/21	08/20/21 00:53	WB
Dichlorodifluoromethane	2.13		ug/m³	0.99	0.99	1	08/20/21	08/20/21 00:53	WB
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/20/21	08/20/21 00:53	WB
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	08/20/21	08/20/21 00:53	WB
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/20/21	08/20/21 00:53	WB
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/20/21	08/20/21 00:53	WB
trans-1,2-Dichloroethene	0.48	J	ug/m³	0.79	0.20	1	08/20/21	08/20/21 00:53	WB
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	08/20/21	08/20/21 00:53	WB
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	08/20/21	08/20/21 00:53	WB
trans-1,3-Dichloropropene	ND		ug/m^3	0.91	0.23	1	08/20/21	08/20/21 00:53	WB
1,4-Dioxane	ND		ug/m^3	0.72	0.18	1	08/20/21	08/20/21 00:53	WB
Ethyl acetate	ND		ug/m^3	3.60	3.60	1	08/20/21	08/20/21 00:53	WB
Ethylbenzene	ND		ug/m³	0.87	0.22	1	08/20/21	08/20/21 00:53	WB
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	08/20/21	08/20/21 00:53	WB
Freon 113	0.54	J	ug/m³	1.50	0.38	1	08/20/21	08/20/21 00:53	WB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rabecka Koons, Quality Assurance Officer

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-CLASS A328

21081829-014 1081917-14 (Vapor) Sample Date: 08/17/21

Perfect No. Perfect Perfect No. Perfect					Sample Date: 08	8/17/21				
Validatile Organics by EPA TO-15 (GC/MS) Prepared by TO-15 Prep (continued)					Reporting	Detection				
From 114 ND	Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Second Company Seco	Volatile Organics by EPA TO-15 (C	GC/MS) Pr	repared b	y TO-15 I	Prep (continued)					
Personal Properties N.D.	Freon 114	ND		ug/m³	1.40	1.40	1	08/20/21	08/20/21 00:53	WB
Personne	n-Heptane	ND		ug/m³	0.82	0.21	1	08/20/21	08/20/21 00:53	WB
	Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	08/20/21	08/20/21 00:53	WB
sopropylbenzene (Cumene) ND ug/m² 1.10 0.40 1 0820/21 08/20/21 00:53 WB Methyl tert-butyl ether (MTBE) ND ug/m² 0.72 0.21 1 08/20/21 08/20/21 00:53 WB Methyl tert-butyl ether (MTBE) ND ug/m² 18.0 18.0 1 08/20/21 08/20/21 00:53 WB Methyl tertyl ketone (2-Butanone) 1.95 ug/m² 0.59 0.34 1 08/20/21 08/20/21 00:53 WB Methyl sobutyl ketone ND ug/m² 0.82 0.82 1 08/20/21 08/20/21 00:53 WB Naphthalene ND ug/m² 0.82 0.82 0.82 0.82/02/21 08/20/21 00:53 WB Naphthalene ND ug/m² 0.34 0.34 1 08/20/21 08/20/21 00:53 WB Naphthalene ND ug/m² 0.98 0.40 1 08/20/21 08/20/21 00:53 WB Syrene ND ug/m² 0.85	Hexane	ND		ug/m³	14.0	14.0	1	08/20/21	08/20/21 00:53	WB
Methyl tert-butyl ether (MTBE) ND ug/m³ 0.72 0.21 1 08/20/21 08/20/21 00:53 WB Methylene chloride ND ug/m³ 18.0 18.0 1 08/20/21 08/20/21 00:53 WB Methyl sethyl ketone (2-Butanone) 1.95 ug/m³ 0.59 0.34 1 08/20/21 08/20/21 00:53 WB Methyl stobutyl ketone ND ug/m³ 0.82 0.82 1 08/20/21 08/20/21 00:53 WB Naphthalene ND ug/m³ 1.10 0.70 1 08/20/21 08/20/21 00:53 WB Naphthalene ND ug/m³ 0.34 0.34 1 08/20/21 08/20/21 00:53 WB Propene ND ug/m³ 0.34 0.34 1 08/20/21 08/20/21 00:53 WB Propylbenzene ND ug/m³ 0.40 1 08/20/21 08/20/21 00:53 WB Styrene ND ug/m³ 1.40 0.35 0.15	2-Hexanone	0.29	J	ug/m³	0.82	0.15	1	08/20/21	08/20/21 00:53	WB
Methylene chloride ND ug/m² 18.0 18.0 1 08/20/21 08/20/21 00:53 WB Methyl ethyl ketone (2-Butanone) 1.95 ug/m³ 0.59 0.34 1 08/20/21 08/20/21 00:53 WB Methyl ethyl ketone ND ug/m³ 0.82 0.82 1 08/20/21 08/20/21 00:53 WB Naphthalene ND ug/m³ 0.34 0.34 1 08/20/21 08/20/21 00:53 WB Propoplene ND ug/m³ 0.98 0.40 1 08/20/21 08/20/21 00:53 WB Propylbenzene ND ug/m³ 0.98 0.40 1 08/20/21 08/20/21 00:53 WB Styrene ND ug/m³ 0.85 0.15 1 08/20/21 08/20/21 00:53 WB Retrachloroethane ND ug/m³ 1.40 0.35 1 08/20/21 08/20/21 00:53 WB Retrachloroethane 8.75 ug/m³ 0.75 0.35 1<	Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	08/20/21	08/20/21 00:53	WB
Methyl ethyl ketone (2-Butanone) 1.95 ug/m² 0.59 0.34 1 08/20/21 08/20/21 00:53 WB Methyl isobutyl ketone ND ug/m³ 0.82 0.82 1 08/20/21 08/20/21 00:53 WB Naphthalene ND ug/m³ 0.34 0.34 1 08/20/21 08/20/21 00:53 WB Propene ND ug/m³ 0.34 0.34 1 08/20/21 08/20/21 00:53 WB Propylbenzene ND ug/m³ 0.98 0.40 1 08/20/21 08/20/21 00:53 WB Styrene ND ug/m³ 0.98 0.40 1 08/20/21 08/20/21 00:53 WB Styrene ND ug/m³ 1.40 0.35 1 08/20/21 08/20/21 00:53 WB Styrene ND ug/m³ 1.40 0.70 1 08/20/21 08/20/21 00:53 WB Ictachlorocthane 8.75 ug/m³ 1.40 0.70 1 08/20	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	08/20/21	08/20/21 00:53	WB
Methyl isobutyl ketone ND ug/m³ 0.82 0.82 1 08/2021 08/20/21 00:53 WB Naphthalene ND ug/m³ 1.10 0.70 1 08/20/21 08/20/21 00:53 WB Naphthalene ND ug/m³ 0.34 0.34 1 08/20/21 08/20/21 00:53 WB Naphthalene ND ug/m³ 0.98 0.40 1 08/20/21 08/20/21 00:53 WB Naphthalene ND ug/m³ 0.85 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.85 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.85 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.85 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.85 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.38 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.59 0.38 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.50 0.38 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.10 0.28 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.10 0.28 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Nathylogore ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53	Methylene chloride	ND		ug/m³	18.0	18.0	1	08/20/21	08/20/21 00:53	WB
Naphthalene ND ug/m³ 1.10 0.70 1 08/20/21 08/20/21 00:53 WB 1-Propene ND ug/m³ 0.34 0.34 1 08/20/21 08/20/21 00:53 WB 1-Propylbenzene ND ug/m³ 0.98 0.40 1 08/20/21 08/20/21 00:53 WB 1-Propylbenzene ND ug/m³ 0.85 0.15 1 08/20/21 08/20/21 00:53 WB 1-1,1,2,2-Tetrachloroethane ND ug/m³ 1.40 0.35 1 08/20/21 08/20/21 00:53 WB 1-1,1,2,2-Tetrachloroethane ND ug/m³ 1.40 0.55 1 08/20/21 08/20/21 00:53 WB 1-1,1,2,2-Tetrachloroethane ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB 1-1,1,2-Trichloroethane ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB 1-1,1,1-Trichloroethane ND ug/m³ 1.50 0.38 1 08/20/21 08/20/21 00:53 WB 1-1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1-1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1-1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1-1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1-1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1-1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1-1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1-1,1,2-Trichloroethane ND ug/m³ 0.10 0.28 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylbenzene ND ug/m³ 0.10 0.28 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1-1,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/	Methyl ethyl ketone (2-Butanone)	1.95		ug/m³	0.59	0.34	1	08/20/21	08/20/21 00:53	WB
Propene ND ug/m³ 0.34 0.34 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.40 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.85 0.15 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.40 0.35 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.40 0.35 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.40 0.70 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.75 0.35 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.75 0.35 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.75 0.35 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.50 0.38 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 00:53 WB or Propylbenzene ND ug/m³ 0.98 0.25 1	Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	08/20/21	08/20/21 00:53	WB
ND ug/m³ 0.98 0.40 1 08/20/21	Naphthalene	ND		ug/m³	1.10	0.70	1	08/20/21	08/20/21 00:53	WB
Styrene ND ug/m³ 0.85 0.15 1 08/20/21 08/20/21 005/3 WB ug/m³ 1.40 0.35 1 08/20/21 08/20/21 005/3 WB ug/m³ 1.40 0.35 1 08/20/21 08/20/21 005/3 WB ug/m³ 1.40 0.70 1 08/20/21 08/20/21 005/3 WB ug/m³ 0.59 0.15 1 08/20/21 08/20/21 005/3 WB ug/m³ 0.59 0.15 1 08/20/21 08/20/21 005/3 WB ug/m³ 0.59 0.15 1 08/20/21 08/20/21 005/3 WB ug/m³ 0.75 0.35 1 08/20/21 005/3 WB ug/m³ 1.50 0.38 1 08/20/21 005/3 WB ug/m³ 1.50 0.38 1 08/20/21 005/3 WB ug/m³ 1.10 0.28 1 08/20/21 005/3 WB ug/m³ 0.98 0.25 1 08/20/21 005/3 WB ug/m³ 0.98 0.25 1 08/20/21 005/3 WB ug/m³ 0.98 0.25 1 08/20/21 08/20/21 005/3 WB ug/m³ 0.98 0.25 1 08/20/21 08/20/21 005/3 WB ug/m³ 0.99 0.99 0.23 1 08/20/21 08/20/21 005/3 WB ug/m³ 0.99 0.23 1 08/20/21 005/3 WB ug/m³	Propene	ND		ug/m³	0.34	0.34	1	08/20/21	08/20/21 00:53	WB
1,1,2,2-Tetrachloroethane	n-Propylbenzene	ND		ug/m³	0.98	0.40	1	08/20/21	08/20/21 00:53	WB
Retrachloroethene 8.75 ug/m³ 1.40 0.70 1 08/20/21 08/20/21 00:53 WB Retrahydrofuran ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB Roluene 0.45 J ug/m³ 0.75 0.35 1 08/20/21 08/20/21 00:53 WB L,2,4-Trichloroethane ND ug/m³ 1.50 0.38 1 08/20/21 08/20/21 00:53 WB L,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB L,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB Grichlorofluoromethane (Freon 11) 1.24 ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB Grichlorofluoromethane (Freon 11) 1.24 ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB Grichlorofluoromethane (Freon 11) 1.24	Styrene	ND		ug/m³	0.85	0.15	1	08/20/21	08/20/21 00:53	WB
Fetrahydrofuran ND ug/m³ 0.59 0.15 1 08/20/21 08/20/21 00:53 WB foluene 0.45 J ug/m³ 0.75 0.35 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trichloroethane ND ug/m³ 1.50 0.38 1 08/20/21 08/20/21 00:53 WB 1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB Prichloroethane ND ug/m³ 0.98	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	08/20/21	08/20/21 00:53	WB
Foluene 0.45 J ug/m³ 0.75 0.35 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trichlorobenzene ND ug/m³ 1.50 0.38 1 08/20/21 08/20/21 00:53 WB 1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB Grichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB Grichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB Grichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB Grichloroethane ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB Grichloroethane ND ug/m³ 0.98 0.25<	Tetrachloroethene	8.75		ug/m³	1.40	0.70	1	08/20/21	08/20/21 00:53	WB
1,2,4-Trichlorobenzene ND ug/m³ 1.50 0.38 1 08/20/21 08/20/21 00:53 WB 1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.70 0.70 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 1,1,1-Trichloroethane ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 0.87 0.22	Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	08/20/21	08/20/21 00:53	WB
1,1,1-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 00:53 WB 1,1,2-Trichloroethane ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,1,2-Trichloroethane (Freon 11) 1.24 ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-Trimethylpentane ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB 1,2,2,4-T	Toluene	0.45	J	ug/m³	0.75	0.35	1	08/20/21	08/20/21 00:53	WB
1,1,2-Trichloroethane	1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	08/20/21	08/20/21 00:53	WB
Frichloroethene ND ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 2,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 2,2,4-Trimethylpentane ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 2,2,4-Trimethylpentane ND ug/m³ 0.70 0.70 1 08/20/21 08/20/21 00:53 WB 2/20/21 00:53 WB 2/20/2	1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	08/20/21	08/20/21 00:53	WB
Trichlorofluoromethane (Freon 11) 1.24 ug/m³ 1.10 0.28 1 08/20/21 08/20/21 00:53 WB 1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB Vinyl acetate ND ug/m³ 0.70 0.70 1 08/20/21 08/20/21 00:53 WB Vinyl bromide ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB vinyl chloride ND ug/m³ 0.51 0.13 1 08/20/21 08/20/21 00:53 WB v-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB n-& p-Xylenes ND ug/m³ 1.70 0.43	1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	08/20/21	08/20/21 00:53	WB
1,2,4-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB 2,2,4-Trimethylpentane ND ug/m³ 0.70 0.70 1 08/20/21 08/20/21 00:53 WB 2/20/21 0/	Trichloroethene	ND		ug/m³	1.10	0.28	1	08/20/21	08/20/21 00:53	WB
1,3,5-Trimethylbenzene ND ug/m³ 0.98 0.25 1 08/20/21 08/20/21 00:53 WB 2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB Vinyl acetate ND ug/m³ 0.70 0.70 1 08/20/21 08/20/21 00:53 WB Vinyl bromide ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB Vinyl chloride ND ug/m³ 0.51 0.13 1 08/20/21 08/20/21 00:53 WB 0-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 0-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 0-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 0-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB 0-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB	Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	08/20/21	08/20/21 00:53	WB
2,2,4-Trimethylpentane ND ug/m³ 0.93 0.23 1 08/20/21 08/20/21 00:53 WB Vinyl acetate ND ug/m³ 0.70 0.70 1 08/20/21 08/20/21 00:53 WB Vinyl bromide ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB Vinyl chloride ND ug/m³ 0.51 0.13 1 08/20/21 08/20/21 00:53 WB Vinyl chloride ND ug/m³ 0.51 0.13 1 08/20/21 08/20/21 00:53 WB D-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB m-& p-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB m-& p-Xylene ND ug/m³ 1.70 0.43 1 08/20/21 08/20/21 00:53 WB	1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	08/20/21	08/20/21 00:53	WB
Vinyl acetate ND ug/m³ 0.70 0.70 1 08/20/21 08/20/21 00:53 WB Vinyl bromide ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB Vinyl chloride ND ug/m³ 0.51 0.13 1 08/20/21 08/20/21 00:53 WB v-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB m- & p-Xylenes ND ug/m³ 1.70 0.43 1 08/20/21 08/20/21 00:53 WB	1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	08/20/21	08/20/21 00:53	WB
Vinyl bromide ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB Vinyl chloride ND ug/m³ 0.51 0.13 1 08/20/21 08/20/21 00:53 WB v-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB m- & p-Xylenes ND ug/m³ 1.70 0.43 1 08/20/21 08/20/21 00:53 WB	2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	08/20/21	08/20/21 00:53	WB
Vinyl chloride ND ug/m³ 0.51 0.13 1 08/20/21 08/20/21 00:53 WB 0-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 08/20/21 00:53 WB n- & p-Xylenes ND ug/m³ 1.70 0.43 1 08/20/21 08/20/21 00:53 WB	Vinyl acetate	ND		ug/m³	0.70	0.70	1	08/20/21	08/20/21 00:53	WB
D-Xylene ND ug/m³ 0.87 0.22 1 08/20/21 00:53 WB n-& p-Xylenes ND ug/m³ 1.70 0.43 1 08/20/21 00:53 WB	Vinyl bromide	ND		ug/m³	0.87	0.22	1	08/20/21	08/20/21 00:53	WB
n- & p-Xylenes ND ug/m³ 1.70 0.43 1 08/20/21 08/20/21 00:53 WB	Vinyl chloride	ND		ug/m³	0.51	0.13	1	08/20/21	08/20/21 00:53	WB
1.00	o-Xylene	ND		ug/m³	0.87	0.22	1	08/20/21	08/20/21 00:53	WB
Currogate: 4-Bromofluorobenzene 73-115 99 % 08/20/21 08/20/21 00:53	m- & p-Xylenes	ND		ug/m³	1.70	0.43	1	08/20/21	08/20/21 00:53	WB
	Surrogate: 4-Bromofluorobenzene		7.	3-115	99 %	08/20/21	1	08/20/21 00:53		

LAME

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-OUTDOOR

21081829-015 1081917-15 (Vapor) Sample Date: 08/17/21

				Sample Date: 0	8/17/21				
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-1	5 (GC/MS) P1	repared b	y TO-15 F	Prep					
Acetone	8.22		ug/m³	2.40	2.40	1	08/20/21	08/20/21 01:27	WB
Benzene	ND		ug/m³	0.64	0.16	1	08/20/21	08/20/21 01:27	WB
Benzyl chloride	ND		ug/m^3	1.00	0.25	1	08/20/21	08/20/21 01:27	WB
Bromodichloromethane	ND		ug/m^3	1.30	0.33	1	08/20/21	08/20/21 01:27	WB
Bromoform	ND		ug/m^3	2.10	0.53	1	08/20/21	08/20/21 01:27	WB
Bromomethane	ND		ug/m^3	0.78	0.20	1	08/20/21	08/20/21 01:27	WB
1,3-Butadiene	ND		ug/m^3	0.44	0.44	1	08/20/21	08/20/21 01:27	WB
Carbon disulfide	ND		ug/m^3	1.56	1.56	1	08/20/21	08/20/21 01:27	WB
Carbon tetrachloride	0.44	J	ug/m^3	1.30	0.33	1	08/20/21	08/20/21 01:27	WB
Chlorobenzene	ND		ug/m³	0.92	0.23	1	08/20/21	08/20/21 01:27	WB
Chloroethane	ND		ug/m³	0.53	0.27	1	08/20/21	08/20/21 01:27	WB
Chloroform	ND		ug/m^3	0.97	0.24	1	08/20/21	08/20/21 01:27	WB
Chloromethane	1.12		ug/m^3	0.41	0.10	1	08/20/21	08/20/21 01:27	WB
3-Chloropropene	ND		ug/m³	0.63	0.16	1	08/20/21	08/20/21 01:27	WB
Cyclohexane	ND		ug/m³	0.69	0.17	1	08/20/21	08/20/21 01:27	WB
Dibromochloromethane	ND		ug/m^3	1.30	0.33	1	08/20/21	08/20/21 01:27	WB
1,2-Dibromoethane (EDB)	ND		ug/m^3	1.40	0.35	1	08/20/21	08/20/21 01:27	WB
1,2-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/20/21	08/20/21 01:27	WB
1,3-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/20/21	08/20/21 01:27	WB
1,4-Dichlorobenzene	ND		ug/m^3	1.20	0.30	1	08/20/21	08/20/21 01:27	WB
Dichlorodifluoromethane	2.23		ug/m³	0.99	0.99	1	08/20/21	08/20/21 01:27	WB
1,1-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/20/21	08/20/21 01:27	WB
1,2-Dichloroethane	ND		ug/m^3	0.81	0.20	1	08/20/21	08/20/21 01:27	WB
1,1-Dichloroethene	ND		ug/m^3	0.79	0.20	1	08/20/21	08/20/21 01:27	WB
cis-1,2-Dichloroethene	ND		ug/m^3	0.79	0.20	1	08/20/21	08/20/21 01:27	WB
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	08/20/21	08/20/21 01:27	WB
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	08/20/21	08/20/21 01:27	WB
cis-1,3-Dichloropropene	ND		ug/m^3	0.91	0.23	1	08/20/21	08/20/21 01:27	WB
trans-1,3-Dichloropropene	ND		ug/m^3	0.91	0.23	1	08/20/21	08/20/21 01:27	WB
1,4-Dioxane	ND		ug/m^3	0.72	0.18	1	08/20/21	08/20/21 01:27	WB
Ethyl acetate	ND		ug/m^3	3.60	3.60	1	08/20/21	08/20/21 01:27	WB
Ethylbenzene	ND		ug/m³	0.87	0.22	1	08/20/21	08/20/21 01:27	WB
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	08/20/21	08/20/21 01:27	WB

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project Manager: Amber Confer

Project: T.C. Williams School

Analytical Results

nelac

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

TC-OUTDOOR 21081829-015 1081917-15 (Vapor)

Sample Date: 08/17/21

				Sample Date: 08	5/1//21				
				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 P	rep (continued)					
Freon 113	0.54	J	ug/m^3	1.50	0.38	1	08/20/21	08/20/21 01:27	WB
Freon 114	ND		ug/m^3	1.40	1.40	1	08/20/21	08/20/21 01:27	WB
n-Heptane	ND		ug/m^3	0.82	0.21	1	08/20/21	08/20/21 01:27	WB
Hexachlorobutadiene	ND		ug/m^3	2.10	2.10	1	08/20/21	08/20/21 01:27	WB
Hexane	ND		ug/m³	14.0	14.0	1	08/20/21	08/20/21 01:27	WB
2-Hexanone	ND		ug/m³	0.82	0.15	1	08/20/21	08/20/21 01:27	WB
sopropylbenzene (Cumene)	ND		ug/m^3	1.10	0.40	1	08/20/21	08/20/21 01:27	WB
Methyl tert-butyl ether (MTBE)	ND		ug/m^3	0.72	0.21	1	08/20/21	08/20/21 01:27	WB
Methylene chloride	ND		ug/m^3	18.0	18.0	1	08/20/21	08/20/21 01:27	WB
Methyl ethyl ketone (2-Butanone)	0.91		ug/m³	0.59	0.34	1	08/20/21	08/20/21 01:27	WB
Methyl isobutyl ketone	ND		ug/m^3	0.82	0.82	1	08/20/21	08/20/21 01:27	WB
Naphthalene	ND		ug/m^3	1.10	0.70	1	08/20/21	08/20/21 01:27	WB
Propene	ND		ug/m^3	0.34	0.34	1	08/20/21	08/20/21 01:27	WB
-Propylbenzene	ND		ug/m^3	0.98	0.40	1	08/20/21	08/20/21 01:27	WB
Styrene	ND		ug/m^3	0.85	0.15	1	08/20/21	08/20/21 01:27	WB
,1,2,2-Tetrachloroethane	ND		ug/m^3	1.40	0.35	1	08/20/21	08/20/21 01:27	WB
Tetrachloroethene	ND		ug/m^3	1.40	0.70	1	08/20/21	08/20/21 01:27	WB
Tetrahydrofuran	ND		ug/m^3	0.59	0.15	1	08/20/21	08/20/21 01:27	WB
Toluene	0.38	J	ug/m³	0.75	0.35	1	08/20/21	08/20/21 01:27	WB
,2,4-Trichlorobenzene	ND		ug/m^3	1.50	0.38	1	08/20/21	08/20/21 01:27	WB
,1,1-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/20/21	08/20/21 01:27	WB
,1,2-Trichloroethane	ND		ug/m^3	1.10	0.28	1	08/20/21	08/20/21 01:27	WB
Trichloroethene	ND		ug/m^3	1.10	0.28	1	08/20/21	08/20/21 01:27	WB
Trichlorofluoromethane (Freon 11)	1.24		ug/m^3	1.10	0.28	1	08/20/21	08/20/21 01:27	WB
,2,4-Trimethylbenzene	ND		ug/m^3	0.98	0.25	1	08/20/21	08/20/21 01:27	WB
,3,5-Trimethylbenzene	ND		ug/m^3	0.98	0.25	1	08/20/21	08/20/21 01:27	WB
,2,4-Trimethylpentane	ND		ug/m^3	0.93	0.23	1	08/20/21	08/20/21 01:27	WB
inyl acetate	ND		ug/m³	0.70	0.70	1	08/20/21	08/20/21 01:27	WB
/inyl bromide	ND		ug/m³	0.87	0.22	1	08/20/21	08/20/21 01:27	WB
inyl chloride	ND		ug/m³	0.51	0.13	1	08/20/21	08/20/21 01:27	WB
-Xylene	ND		ug/m³	0.87	0.22	1	08/20/21	08/20/21 01:27	WB
n- & p-Xylenes	ND		ug/m³	1.70	0.43	1	08/20/21	08/20/21 01:27	WB
Surrogate: 4-Bromofluorobenzene		7.	3-115	99 %	08/20/21	,	08/20/21 01:27		

lakecka Koms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Analytical Chemistry Services

1500 Caton Center Dr Suite

Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 08/26/21 11:07

Analytical Results

Project: T.C. Williams School

Project Number: 4920002 Project Manager: Amber Confer

Notes and Definitions

L	Analyte is a	possible	laboratory	contaminant
---	--------------	----------	------------	-------------

J Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered

an estimate (CLP E-flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accreditation

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chain of Custody Form for Subcontracted Analyses

Page 1 of 1

Page 34 of 36

Version 1.000

Samples Transferred To: Phase Separation Science, Inc W.O. No.: 21081829 Maryland Spectral Services, Inc. Project Location : T. C. Williams School 6630 Baltimore National Pike 1500 Caton Center Drive, Suite G Baltimore, MD 21228 Phone: (410) 747-8770 Baltimore, MD 21227 Project Number: 4920002 Fax: (410) 788-8723 Report To LOD: No Phone: For Questions or issues please contact: Amber Confer 410-247-7600 Report Due On:08/26/21 05:00 Field Time Lab Date Matrix Analyses Required Method Type of Preservative Sample ID Sample ID Sampled Sampled Container 21081829-001 TC - Class E117 08/17/21 18:36 VOCs in Air by GC/MS (subbed) TO-15 Air Canister 0 1 08/17/21 21081829-002 TC - Hall E112 18:40 Air VOCs in Air by GC/MS (subbed) TO-15 Air Canister NON 21081829-003 08/17/21 TC - Gym 18:24 VOCs in Air by GC/MS (subbed) Air TO-15 Air Canister NON 21081829-004 TC - Auditorium 08/17/21 18:50 VOCs in Air by GC/MS (subbed) TO-15 Air Air Canister NON O 4 21081829-005 TC - Office A110 08/17/21 19:08 VOCs in Air by GC/MS (subbed) Air TO-15 Air Canister NON 0 21081829-006 08/17/21 TC - Cafeteria 18:55 Air VOCs in Air by GC/MS (subbed) TO-15 NON Air Canister 21081829-007 TC - Class B105 08/17/21 19:03 Air VOCs in Air by GC/MS (subbed) TO-15 NON Air Canister 21081829-008 TC - Media Center 08/17/21 17:40 Air VOCs in Air by GC/MS (subbed) TO-15 NON Air Canister ٥ 21081829-009 TC - Class A205 08/17/21 18:09 Air VOCs in Air by GC/MS (subbed) TO-15 Air Canister NON O 21081829-010 TC - Class C214 08/17/21 18:15 Air VOCs in Air by GC/MS (subbed) TO-15 NON Air Canister 21081829-011 TC - Class B212 08/17/21 18:21 Air VOCs in Air by GC/MS (subbed) TO-15 Air Canister NON 21081829-012 TC - Class B333 08/17/21 17:52 Air VOCs in Air by GC/MS (subbed) TO-15 NON Air Canister 21081829-013 TC - Hall C309 08/17/21 17:59 Air VOCs in Air by GC/MS (subbed) TO-15 NON Air Canister 21081829-014 TC - Class A328 08/17/21 18:02 VOCs in Air by GC/MS (subbed) Air TO-15 NON Air Canister 21081829-015 TC - Outdoor 08/17/21 19:14 Air VOCs in Air by GC/MS (subbed) TO-15 Air Canister NON Data Deliverables Required: COA Perform Q.C. on Sample: Send Report Attn: reporting@phaseonline.com Send InvoiceAttn: invoicing@phaseonline.com Airbill No.: _____ Carrier: Condition Upon Receipt: Comments: Samples Relinquished By: Date : 8/19/21 Time: 1) 55 Samples Received By: Samples Received By: Samples Relinquished By: Samples Relinquished By: Date: Samples Received By: Page 37 of 45

Cilent Contact Information		Project Manager:	J.	Ambe Clorke	T.	Camer						\vdash	1 of 2/ cocs	Γ
Ole - Care			T		7	N constraints	(2)010			**	国际国际国际国际	1		Τ
Company. YMOSE JAPANDA	Ş	Fnone:			***************************************	Sampiers Name(s)	(s)awe	***************************************		<u>ą,</u>	A STATE OF THE STA			
		Sile Collin												
														•
Project Name: TC WILLIAMS Schw	Schwi	Analysis T	ysis Turnaround Time	Time							TSIJ	•		···
Site:		Standard (2082							ŒĐ			
PO#		Rush (Specify)	iffy)	-						T2),	TAI\			
Client Samule ID	Sample Date Start	Time Start (24 brolock)	Sample Date Slon	Time Stop	Canister Pressure in Field ("Hg) (Start)	Canister Pressure in Fleid ("Hg)	Incoming Canister Pressure ("Hg) (Lab)	Sample Sample Regulator (D Can ID		C an SB STO-15 FULL I	/3ਸ਼ਬੁਨ ar-ot dmA \ 1eobri	lu2 \ ast) llo3	etnemmoO	
	8/11/2	9		1336	28			63467	36	14 1	>		+16/80/	,
200-62\$18017		1003	-	ohßl	78	٥	રડ	10512	153 b	<u>.</u> -	~		て 0 - ,	
21071829-003		150 F		1824	29	Ó	Ŝ	4693	549			_	- 03	- T
400 42318012		5101		05 2 l	20	2		34510	900	_		2	70,	1
500- 62818012		1022		(90%	29	7	×	ላዛት	17.65cm		,		- 05	—
900-6281802		1023		1855	20	٥	5	4702	3680	7	-		- 06	
21081829-007		0201		1903	30	۵	Z	472Z	10175			2	+0,	Ī
21021824-008		<u> </u>		1740	30	0	E C	14365	3771	-	<u>-</u>	2	9	T
21051829-009		0953		15 B	30	7	£	9370	2196		2	7	0 0	T
010-67818012		1003		1915	30	7	٤	3605	10177			2	01-	T
110-62818012		1039		1281	30	7	9	기	Ž Ž	-3	7	2	-	Т
210-62818012		2460		1752		O	γ	元 이	843		<u></u>	2	アー・	
2102181817		15 50		1759	29	٥	1	4509	385	_		7	2 - 3	
71021229-017	7	095b	7	1202	30	0	戔	4503	10196		7	5	۶ ،	
Special Instructions/QC Requirements & Comments:	ients & Cr	omments:												
Conjeture Chinned hv	Date/Time.	.00			Canistérs	Canistérs Received by:	Ç		Date/Time:					٦,
· 62 104410 21010100					1				Ø	9	7		(2,2)	
Samples Relinquished by:	Date/Time.	jej.			Received by:	a by:	7		Date/Time:					
Relinquished by:	Date/Time:	ne:			Received by:	d by:			Date/Time:					
										Ì				

Ö

TO-15_COC.XIS

Air Analysis by TO-15	
Analysis by	LΩ
Analysis by	~
Analysis by	١.
Analysis by	Ó
Analysis by	$\mathbf{\mathcal{C}}$
. Analys	⊢
. Analys	-
. Analys	\sim
. Analys	T.
. Analys	70
. Analys	
4	W
4	- 5
4	_ '
4	ത
4	7
Air A	-
Air	<١,
Aii	
⋖	•==
-	⋖
	-

Chain of Custody

Clent Contact Information		Project Manager:		Apular Confer Carrier	Contes	Carrier:							2 of 2 cocs
Company: Prace 400	reacation	Phone:				Samplers Name(s)	lame(s)			90m	Analysis/Matrix	Matrix	
		Site Contact:	1										
Project Name: TC NAVIV 16 and Class	College	Analysis Tumaround Time	umaround	Time							T S1	• • •	
Site:		Standard (Specify)	20							1 0 3.		
₩ Od		Rush (Specify)	cify)	•						721	ΓΑΝ		
Client Samole ID	Sample Date Start	Time Sart (24 hr clock)		Time Stop (24 hr clock)	Canister Pressure in Field (*Hg) (Start)	Canister Pressure in Field (*fg): (Stop)	fincoming Carlster Pressure ('Hg) (Lab) F	Sample Regulator ID Can ID		Cen Size	1 1107 er-ot 7388A er-ot	idmA \ tockini lue \ ese lloe	atnamno0
21581879-015		2101	RILLE	4161	30		1	4689	PLIOI	2.	7		7
												14.77	
												-	
And the second s													
		•											
												-	
ALL STATE OF THE S		,										-	
Special instructions/QC Requirements & Comments:	ulrements & Co	omments:											
Canisters Shipped by:	Date/Time;	ne;			Canisters	Canisters Received by:	5		Date/Time;	3/1	91	17	13:2 5
Samples Relinquished by:	Date/Time:	ë:			Received by:	٠ کخر			Date/Time				
Relinquished by:	Date/Time:	Je:			Received by:	f by:			Date/Time:				
												•	

TO-15_COC.xls

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081829

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Incoming pressures not taken at PSS; samples subbed out. Incoming pressures will be taken at subcontracted lab.

Soil gas/indoor air not indicated on COC; samples are indoor air.

21081829: Analyses associated with analyst code 4010 were performed by Maryland Spectral Services, Inc., 1500 Caton Center Drive, Suite G, Baltimore, MD 21227 - VA 460156

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081829

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical	Batch	Prepared	Analyzed
EPA TO-15	TC - Class E117	Initial	21081829-001	A	187093	187093	0	08/26/2021 15:44	08/26/2021 15:44
	TC - Hall E112	Initial	21081829-002	A	187093	187093	C	08/26/2021 15:44	08/26/2021 15:44
	TC - Gym	Initial	21081829-003	A	187093	187093	O	08/26/2021 15:44	08/26/2021 15:44
	TC - Auditorium	Initial	21081829-004	A	187093	187093	O	08/26/2021 15:44	08/26/2021 15:44
	TC - Office A110	Initial	21081829-005	A	187093	187093	O	08/26/2021 15:44	08/26/2021 15:44
	TC - Cafeteria	Initial	21081829-006	A	187093	187093	O	08/26/2021 15:44	08/26/2021 15:44
	TC - Class B105	Initial	21081829-007	A	187093	187093	O	08/26/2021 15:44	08/26/2021 15:44
	TC - Media Center	Initial	21081829-008	A	187093	187093	O	08/26/2021 15:44	08/26/2021 15:44
	TC - Class A205	Initial	21081829-009	A	187093	187093	O	08/26/2021 15:44	08/26/2021 15:44
	TC - Class C214	Initial	21081829-010	A	187093	187093	O	08/26/2021 15:44	08/26/2021 15:44
	TC - Class B212	Initial	21081829-011	A	187093	187093	O	08/26/2021 15:44	08/26/2021 15:44
	TC - Class B333	Initial	21081829-012	A	187093	187093	C	08/26/2021 15:44	08/26/2021 15:44
	TC - Hall C309	Initial	21081829-013	A	187093	187093	0	08/26/2021 15:44	08/26/2021 15:44
	TC - Class A328	Initial	21081829-014	A	187093	187093	0	08/26/2021 15:44	08/26/2021 15:44
	TC - Outdoor	Initial	21081829-015	A	187093	187093	0	08/26/2021 15:44	08/26/2021 15:44

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

1		Total Environmental Concep	ts, Inc.	ce i co. Loi	rton	1	PSS Wo	tk Order #:			PAGE 1		_OF	2		
ł		: _{ст мек:} Karl Ford	OFFI	JE 100			ó	1108189	19							
ł		kford@teci.pro		PHONE NO.	703) 567-4	1346										
ł		ACPS IAQ te					+ 3		*	*	_ <u>@</u>	* q	*			
ł	*PROJE	T C Williams	 Cobool	PROJECT NO	_{o.:} 4920002 ODC 4920	0002-001	~	<u>•</u>	Canister Pressure in field ("Hg) Start	Canister Pressure in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab	Indoor/Ambient Air	ist		
ŀ	SITE LO	CATION: T.C. Williams		P.O. NO.:				Reg	r Pre	er Pre ("Hg)	20 e	s/S	Amb	Full	List	
	SAMPLE	_{R(S):} Karl Ford				ATT: 01	Can ID	Sample Reg. ID	aniste field	aniste	comii	oil Ga	door	TO-15 Full List	Special List	251445142
2	LAB#	*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)		-			드교	Š	=	F	S	REMARKS
١	1	TC - Class E117	8-17-21	0956	8-17-21	1836	9136	03467	28	0			Щ	V		
1	2	TC - Hall E112	8-17-21	1003	8-17-21	1840	1563	10512	32	2			Щ	V	Щ	
1	3	TC - Gym	8-17-21	1008	8-17-21	1824	599	04693	29	0				V	Щ	
1	4	TC - Auditorium	8-17-21	1015	8-17-21	1850	606	03456	30	2				M	Щ	
1	4	TC -Office A110	8-17-21	1022	8-17-21	1908	00597	04446	29	2				V		
	6	TC - Cafeteria	8-17-21	1023	8-17-21	1855	3680	04708	30	0				V	Ш	
	7	TC - Class B105	8-17-21	1020	8-17-21	1903	10173	04722	30	0			Щ	V		
	8	TC - Media Center	8-17-21	0926	8-17-21	1740	3771	14365	30	0				V		
	9	TC - Class A205	8-17-21	0953	8-17-21	1809	9612	10286	30	2	V 2X	Ш		V		
	io	TC - Class C214	8-17-21	1003	8-17-21	1,815	10177		30	2				\checkmark		
\overline{C}	Reimau	ished By: (1)	Date	Time	Received By:	11		4 Requi	ested TA	I (One T 3-Day	AT per Co	2-Da	ay	Ship		Carrier:
	Dec	us John	8/18/21	1200	140	Vne		Next	Day	Emer	gency	Othe	er		C	Irest
	Relinqu	ished By: (2)	Date	Time	Received By:			Data Deliverat	oles Requ	ired:						
	Relinqu	ished By: (3)	Date	Time	Received By:			Special Instru	ctions:			-				-
	Relinqu	ished By: (4)	Date	Time	Received By:											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

TANIBO OMMENTAL SOLD

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

1)-CL	ENT: Total Environmental Conce	pts, Inc. *OFF	ICE LOC.: LO	rton		PSS Wo	rk Order #:			PAGE _	2	OF	2		
*PR	OJECT MGR: Karl Ford					21	08182	9						Ų.	
	kford@teci.pro		*PHONE NO:	(703) 567-4	4346										
*PR	DJECT NAME: ACPS IAQ te			o 492000		+3		5 F		ab ab	ap *	Air *			
	LOCATION: T.C. Williams			ODC 4920			.ge ⊡	ressu g) Sta	ressu g) Sto	Canist "Hg) I	Subs	bient	l List	*	
	_{IPLER(S):} Karl Ford					Can ID *	Sample Reg. ID	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab	ndoor/Ambient Air	TO-15 Full List	Special List	
2)LAB		*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can	San	Can	Can	Inco Pres	Soil	Indo	-01	Spe	REMARKS
11	TC - Class B212	8-17-21	1039	8-17-21	1821	605	10416	30	2				√		
12	TC - Class B333	8-17-21	0945	8-17-21	1752	893	04501	29	0				✓		
17	TC - Hall C309	8-17-21	0951	8-17-21	1759	00585	04509	29	0				1		
14	TC - Class A328	8-17-21	0956	8-17-21	1802	10190	04503	30	0				✓		
13	TC - Outdoor	8-17-21	1015	8-17-21	1914	10174	04687	30	0				✓		
Id	nquished By: (1)	8 18 d1	Time 1500	Received By:	Lh		4 Requi		3-Day Emerg		2-Da			ping C CIA	
Rel	nquished By: (2)	Date	Time	Received By:			Data Deliverab	les Requi	red:						
Rel	nquished By: (3)	Date	Time	Received By:			Special Instruc	tions:							
Rel	nquished By: (4)	Date	Time	Received By:											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081829

Client Name Total Environmental Concepts - Lorto Received By Thomas Wingate

Date Received 08/18/2021 03:00:00 PM **Disposal Date** 09/22/2021

> Client **Delivered By**

Not Applicable **Tracking No**

Logged In By Thomas Wingate

N/A

Shipping Container(s)

No. of Coolers

Ice N/A

Custody Seal(s) Intact? N/A Temp (deg C)

Seal(s) Signed / Dated? N/A Temp Blank Present No

Sampler Name Karl Ford **Documentation** MD DW Cert. No.

COC agrees with sample labels? Yes Chain of Custody Yes

Custody Seal(s) Intact? Not Applicable Sample Container

Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable

Intact? Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 15

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 15

Preservation

Total Metals	(pH<2)	N/A
Dissolved Metals, filtered within 15 minutes of collection	(pH<2)	N/A
Orthophosphorus, filtered within 15 minutes of collection		N/A
Cyanides	(pH>12)	N/A
Sulfide	(pH>9)	N/A
TOC, DOC (field filtered), COD, Phenols	(pH<2)	N/A
TOX, TKN, NH3, Total Phos	(pH<2)	N/A
VOC, BTEX (VOA Vials Rcvd Preserved)	(pH<2)	N/A
Do VOA vials have zero headspace?		N/A
624 VOC (Rcvd at least one unpreserved VOA vial)		N/A
524 VOC (Rcvd with trip blanks)	(pH<2)	N/A

Phase Separation Science

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081829

Client Name Total Environmental Concepts - Lorto Received By Thomas Wingate

Delivered By Client

Tracking No Not Applicable

Logged In By Thomas Wingate

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Incoming pressures not taken at PSS; samples subbed out. Incoming pressures will be taken at subcontracted lab.

Soil gas/indoor air not indicated on COC; samples are indoor air.

Samples Inspected/Checklist Completed By:	Thomas Wingate	Date: 08/18/2021
PM Review and Approval:	Thomas Wingate	Date: 08/18/2021

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

1	$\overline{}$	- Allie Comments					PSS Wo		al a m. II			DAGE		05				
	*CLIEN	Γ:	*OFF	ICE LOC.:			P55 W0	rk Or	der#:			PAGE_		0F				
ļ	*PROJE	CT MGR:												ı	I	I		
	EMAIL:			*PHONE NO: ()													
	*PROJE	CT NAME:		PROJECT N	O.:		* (3)		*	* L	بة ت	er .ab	* de	Air *				
I	SITELO	CATION:		P.O. NO.:					g. ID	ressu J) Sta	essu j) Sto	anist Hg) I	sqns	oient	List			
ľ				1.0.110			*		le Re	ter Pr d ("Hg	ter Pr d ("Hg	ning C ure ("	as / s	r/Amł	Full 5	al Lis		
_ 2	SAMPLE LAB#	*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can ID *		Sample Reg. ID	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab	Indoor/Ambient Air *	TO-15 Full List	Special List	REMARKS	
Ĭ	/LAD #	SAWI LE IDENTIFICATION	START	(24111 Clock)	3106	(24III CIOCK)												
İ																		
Ì																		
l																		
l																		
ļ																		
ļ																		
ļ																		
ł																		
_ 5	Relingu	lished By: (1)	Date	Time	Received By:			\bigcirc	*Reque	sted TA1	(One T	AT per CO	OC)		Ship	ping C	arrier:	
1	'	, ()			,			4)	*Reques 5-Day Next D	av 🗆] 3-Day] Emerc	iency	2-Da Othe	y er	'	1 3 -		
	Relinqu	ished By: (2)	Date	Time	Received By:				Deliverable					-				
ŀ	Relinqu	nished By: (3)	Date	Time	Received By:			Spe	cial Instruct	ions:								
	Relinqu	uished By: (4)	Date	Time	Received By:													

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

1	$\overline{}$	- Allie Comments					PSS Wo		al a m. II			DAGE		05				
	*CLIEN	Γ:	*OFF	ICE LOC.:			P55 W0	rk Or	der#:			PAGE_		0F				
ļ	*PROJE	CT MGR:												ı	I	I		
	EMAIL:			*PHONE NO: ()													
	*PROJE	CT NAME:		PROJECT N	O.:		* (3)		*	* L	بة ت	er .ab	* de	Air *				
I	SITELO	CATION:		P.O. NO.:					g. ID	ressu J) Sta	essu j) Sto	anist Hg) I	sqns	oient	List			
ľ				1.0.110			*		le Re	ter Pr d ("Hg	ter Pr d ("Hg	ning C ure ("	as / s	r/Amł	Full 5	al Lis		
_ 2	SAMPLE LAB#	*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can ID *		Sample Reg. ID	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab	Indoor/Ambient Air *	TO-15 Full List	Special List	REMARKS	
Ĭ	/LAD #	SAWI LE IDENTIFICATION	START	(24111 Clock)	3106	(24III CIOCK)												
İ																		
Ì																		
l																		
l																		
ļ																		
ļ																		
ļ																		
ł																		
_ 5	Relingu	lished By: (1)	Date	Time	Received By:			\bigcirc	*Reque	sted TA1	(One T	AT per CO	OC)		Ship	ping C	arrier:	
1	'	, ()			,			4)	*Reques 5-Day Next D	av 🗆] 3-Day] Emerc	iency	2-Da Othe	y er	'	1 3 -		
	Relinqu	ished By: (2)	Date	Time	Received By:				Deliverable					-				
ŀ	Relinqu	nished By: (3)	Date	Time	Received By:			Spe	cial Instruct	ions:								
	Relinqu	uished By: (4)	Date	Time	Received By:													

Appendix D: Formaldehyde Analytical Results

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082532

September 3, 2021

Karl Ford
Total Environmental Concepts - Lorton
8382 Terminal Road, Suite B
Lorton, VA 22079

Reference: PSS Project No: 21082532

Project Name: ACPS IAQ Testing Project Location: T.C Williams School

Project ID.: 4920002

Dear Karl Ford:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 21082532.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 29, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

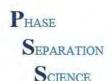
Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082532

Project ID: 4920002


The following samples were received under chain of custody by Phase Separation Science (PSS) on 08/25/2021 at 05:35 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
21082532-001	TC-Class E117	AIR	08/17/21 00:00	
21082532-002	TC-Hall E112	AIR	08/17/21 00:00	
21082532-003	TC-Gym	AIR	08/17/21 00:00	
21082532-004	TC-Auditorium	AIR	08/17/21 00:00	
21082532-005	TC-Office A110	AIR	08/17/21 00:00	
21082532-006	TC-Cafeteria	AIR	08/17/21 00:00	
21082532-007	TC-Class B105	AIR	08/17/21 00:00	
21082532-008	TC-Hall E136	AIR	08/17/21 00:00	
21082532-009	TC-Media Center	AIR	08/17/21 00:00	
21082532-010	TC-Class A205	AIR	08/17/21 00:00	
21082532-011	TC-Class C214	AIR	08/17/21 00:00	
21082532-012	TC-Class B212	AIR	08/17/21 00:00	
21082532-013	TC-Class B333	AIR	08/17/21 00:00	
21082532-014	TC-Hall C309	AIR	08/17/21 00:00	
21082532-015	TC-Class A328	AIR	08/17/21 00:00	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082532

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Ms. Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228 September 02, 2021

Account# 15354 Login# L545213

Dear Amber Confer:

Enclosed are the analytical results for the samples received by our laboratory on August 27, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Lisa Luab

Enclosure(s)

ANALYTICAL REPORT

Account : 15354 Login No.: L545213

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,
			Environmental Microbiology
State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials
Texas	Texas Dept. of Licensing and	Lab ID: 1042	Mold Analysis Laboratory license
	Regulation		

Legend

< - Less than MDL - Method Detection Limit mg - Milligrams ppb - Parts per Billion > - Greater than ug - Micrograms NA - Not Applicable ppm - Parts per Million I - Liters m3 - Cubic Meters NS - Not Specified ppbv - ppb Volume LOQ - Limit of Quantitation kg - Kilograms ND - Not Detected ppmv - ppm Volume ft2 - Square Feet cm2 - Square Centimeters in2 - Square Inches ng - Nanograms

LABORATORY ANALYSIS REPORT

GALSON

Client : Phase Separation Science, Inc. Site : T.C. WILLIAMS SCHOOL

Project No. : ACPS IAQ TESTING-4920002

6601 Kirkville Road East Syracuse, NY 13057

FAX: (315) 437-0571 www.sgsgalson.com

(315) 432-5227

Date Sampled : 17-AUG-21 Date Received : 27-AUG-21

.. Account No.: 15354 Login No. : L545213 Date Analyzed : 30-AUG-21 Report ID : 1262667

Formaldehyde

l I	I	l	1	1	<pre></pre>
				<pre></pre>	
<0.01 <0.01	<0.01		<pre><0.01 <0.01 <0.01</pre>	<pre></pre>	<pre></pre>
<pre><0.01 <0.01 <0.01</pre>	<0.01 <0.01	<0.01	<0.01 <0.01	<pre><0.01 <0.01 <0.02</pre>	<pre></pre>
<pre></pre>	<pre></pre>	<0.01 <0.01	<0.01	<0.01 <0.02	<0.01 <0.02 <0.02
<pre></pre>	<pre></pre>	<pre></pre>		<0.02	<0.02 <0.02

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

: 02-SEP-21	sor : MWJ
Date	Superviso
od. OSHA 1007; HPLC/UV	Assay 581
••	Collection Media : A
	: HPLC/UV Date :

Page 6 of 14

LABORATORY FOOTNOTE REPORT

GALSON

East Syracuse, NY 13057 (315) 432-5227 6601 Kirkville Road FAX: (315) 437-0571 www.sgsgalson.com

Client Name : Phase Separation Science, Inc. Site : T.C. WILLIAMS SCHOOL Project No. : ACPS IAQ TESTING-4920002

Login No. : L545213 Account No.: 15354 Date Sampled : 17-AUG-21 Date Received: 27-AUG-21 Date Analyzed: 30-AUG-21

L545213 (Report ID: 1262667):

Total ug corrected for a desorption efficiency of 96%. FORMALDEHYDE results have been corrected for the average background found on the media: 0.1178 ug for lot #4B21 (samples 1-15). SOPS: LC-SOP-4(23)

ID: 1262667): L545213 (Report

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

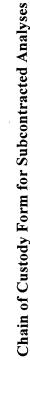
Mean Recovery Accuracy Parameter

+/-12.1%

Formaldehyde

Page 7 of 14

1545213


7108 2532

どじい	CAISON	New Client?	Report To* : Pha 663	Report To*: Phase Separation Science 6630 Baltimore National Pike	ience nal Pike	Invoice To*:Ph	Invoice To*: Phase Separation Science	ience
È		ient Account No.	BE	Baltimore, IVID 21228				
ZZ313E40160372770 ate:08/27/21								23 2H
Shipper:UPS Initials:MAK			Phone No.* : 410	0-747-8770		Phone No.: 410	410-747-8770	
			Cell No. :			Email: inv	Email: invoicing@phaseonline.com	B
Prep: UNKNOWN	•	ū	Email Results to : Amber Confer	ber Confer		P.O. No. : OD] - - 	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
		÷.	Email address: rep	Email address: <u>reporting(@pnaseonline.com</u>	le.com	[Card on File Call for C	Call for Credit Card Info.
Need Results By:	(surcharge)		Z	samples submitted usin	Samples submitted using the FreePumpLoan ^m Program		Samples submitted using the FreeSamplingBadges™ Program	ges ⁿ Program
Standard	%0	Site Name: T.C. Wi	T.C. Williams School	Pro	Project: ACPS IAQ testing	sting - 4920002 sampled by :	Karl Ford	
4 Business Days	35%	Comments:						
3 Business Days	20%	Dosimeter cartrige # noted in the	ge # noted in the	(Hexavelent Chr	(Hexavelent Chromium Process) colum	olum		
2 Business Days	75%							
☐ Next Day by 6pm	100%	List description of indu	ıstıy or Process/interfer	List description of industry or Process/interferences present in sampling area:	ing area :	State samples were	를[vill be used for:
Next Day by Noon	150%	Public grade school building	chool building				SHAPEL AGGIN ILV MSHA Other (specify):	Cal OSHA
Sample Identification* (Maxmium of 20 Characters)	ation* racters)	Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*	Method Reference ^A	Hexevalent Chromium Process (e.g., welding plating, painting, etc.)*
TC - Class E117		08/17/21	Assay N581 Aldehyde Badge	304	Min	Formaldehyde	mod. OSHA 1007: TPLC/JJV	√ PD4334
TC - Hall E112		08/17/21	Assay N581 Aldehyde Badge	312	Min	Formaldehyde	mod. OSHA 1007: TPLC/JJV	v PD4197
TC - Gym		08/17/21	Assay N581 Aldehyde Badge	289	Min	Formaldehyde	mod, OSHA 1007: TPLC/UV	vv PD4198
TC - Auditorium		08/17/21	Assay N581 Aldehyde Badge	319	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	vv PD4240
TC -Office A110		08/17/21	Assay N581 Aldehyde Badge	313	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	√ PD4560
TC - Cafeteria		08/17/21	Assay N581 Aldehyde Badge	307	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	v PD4469
TC - Class B105		08/17/21	Assay N581 Aldehyde Badge	319	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	v PD4171
TC - Hall E136		08/17/21	Assay N581 Aldehyde Badge	305	Min	Formaldehyde	mod. OSHA 1007: TPLC/JUV	v PD4846
TC - Media Center		08/17/21	Assay N581 Aldehyde Badge	263	Min	Formaldehyde	mod. OSHA 1007: TPLC/JUV	v PD5324
TC - Class A205		08/17/21	Assay N581 Aldehyde Badge	249	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	v PD4129
TC - Class C214		08/17/21	Assay N581 Aldehyde Badge	245	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	w PD4750
AGalson Laboratories will	subsititute our	routine/preferred meth	od if it does not match	the method listed on th	e COC unless this box is	AGalson Laboratories will substitute our routine/preferred method if it does not match the method listed on the COC unless this box is checked: 🖊 Use method(s) listed on COC	n COC	
For metals analysis: if requ	uesting an anal	yte with the option of a	lower LOQ, please indi	cate if the lower LOQ is	required (only available	For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG):		
For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite,	(s) of silica nee	ded must be indicated (and/or Tridymite)*:	,			
Chain of Custody	Pri	Print Name/Signature		Time		Print Name/Signature		Date Time
Relinquished by:	S	lient	8	25/11 (735	4	are los	8	-
Relinquished by :	9	アンプ	くど		Received by RA	1	\texts{\frac{1}{2}}	1111
		*	Samples equired fields, failure	received after 3pm	will be considered as ields may result in a	business ur samples being	essed.	Page 1 of 2
			m c afiga		ence. I benerate		A. C.	

Page 8 of 14

21082532

SGS GALSON	LSON	_	Report To*: PI	Report To*: Phase Separation Science 6630 Baltimore National Pike	cience onal Pike	Invoice To*: Ph	Invoice To* : Phase Separation Science	Science	
		Client Account No.*:							
6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227	d NY 13057 (227		Phone No.* :410 Cell No.:	0-747-8770		Phone No.: <u>410-747-8770</u> Email : invoicing@pha	ъв No.: 410-747-8770 Email : invoicing@phaseonline.com	e.com	
888-432-LABS (5 www.sgsgalson.com	kBS (5227)	ш	Email Results to : Amber Confer Email address: reporting@ph	nail Results to : <u>Amber Confer</u> Email address: <u>reporting@phaseonline.com</u>	ne.com	P.O. No. : <u>OD</u> Credit Card : ☐ c	P.O. No.: <u>ODC 4920002-001</u> dit Card: Card on File Call	Call for Credit Card Info.	
				sian postimentan notomo	Complex submitted union the EreaDumn loss The Program		Samples submitted using the FreeSamplingBadges TM Program	oBadoes TM Program	
Need Results By: (su	(surcharge)			Samples submitted using	ig the river umproan		amb me recombine	in in softman	
Standard	%0	Site Name: T.C. W	Williams School	Pro	Project: ACPS IAQ testing	sting - 4920002 sampled by :	Karl Ford		
4 Business Days	35%	Comments:							
3 Business Days	20%	Dosimeter cartri	Dosimeter cartrige # noted in the	e (Hexavelent Chr	(Hexavelent Chromium Process) colum	olum			
2 Business Days	75%								
Next Day by 6pm	100% I	ist description of ind	ustry or Process/interfe	List description of industry or Process/interferences present in sampling area:	ling area:		፮ .	data will be used fo	:
_	150%	Public grade s	Public grade school building			collected in (e.g., NY)	SHA PEL ACGIH TLV MSHA Other (specify):	V CaloshA cifv):	<u> </u>
Same Day	200%	,	,			-	7	t	
Sample Identification* (Maxmium of 20 Characters)	ın* ters)	Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*	Method Reference^		Hexavalent Chromium Process (e.g., welding plating, painting, etc.)*
TC - Class B212		08/17/21	Assay N581 Aldehyde Badge	256	Min	Formaldehyde	mod, OSHA 1007: TPLC/UV	тесли РD4055	
TC - Class B333		08/17/21	Assay N581 Aldehyde Badge	218	Min	Formaldehyde	mod. OSHA 1007: TPLC/JUV	тесли РD4290	
TC - Hall C309		08/17/21	Assay N581 Aldehyde Badge	214	Min .	Formaldehyde	mod, OSHA 1007: TPLC/UV	тесли РD5430	
TC - Class A328		08/17/21	Assay N581 Aldehyde Badge	220	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	TPLCAUV PD4546	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007; TPLC/UV	TPLC/UV	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/UV	TPLC/UV	
			Assay N581 Aldehyde Badge			Formaldehyde	mod, OSHA 1007; TPLCAJV	TPLCAUV	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLCAJV	TPLC/UV	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/UV	TPLC/UV	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/UV	TPLC/UV	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLCAUV	TPLC/UV	
AGalson Laboratories will sub	sititute our r	outine/preferred meth	od if it does not match	the method listed on th	e COC unless this box is	Agalson Laboratories will substitute our routine/preferred method if it does not match the method listed on the COC unless this box is checked: 🗸 Use method(s) listed on COC	n COC		
For metals analysis: if reques	ting an analyt	te with the option of a	lower LOQ, please ind	icate if the lower LOQ is	s required (only available	For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG):		1	
For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite,	of silica neede	ed must be indicated		and/or Tridymite)*:			:		
Chain of Custody	Prin	Print Name/Signature				Print Name/Signature	ture	Date	Time
Relinquished by :	CAL	,ent	8	25M M35	Received by:	ared	22	+	
Relinquished by :	de la	Las Ran			Received by :	tehelle Veacoe Free	10 1/20	12/2/2	7,33
		*	Sample: * Required £glds, £ailur	s received after 3pm e,to complete these;	will be considered as fields may result in a	Samples received after 3pm will be considered as next day's busihess is, failure to complete these fields may recourt in a delay in 1994, samples, being processed.	essed.	Page 2	of 2
				Pao	Page 9 of 14	Version 1.000			ښر
				,					

Page 1 of 1

Phase Separation Science, Inc 6630 Baltimore National Pike Balti Phon Fax:

on sport 21082532 W.O. No. :

-TCWIII Jams Project Location Samuel Tucker Elementary

SGS North America - NY Samples Transferred To:

6601 Kirkville Road

Baltimore, MD 21228 Phone: (410) 747-8770	1228 -8770		Proje Proje	Project Location:Project Number: 4920002	4920002 School	2	6601 Kirkville Road East Syracuse, NY 13057	720
Fax: (410) 788-8723	723		Repo	Report To LOD: No	. No		Old SGS Galson Labs. bsc	£
For Questions	For Questions or issues please contact: Amber Confer	ber Confer]	Report D	Report Due On :09/03/21 05:00		Fnone: 315-432-5227	
Lab Sample ID	Field Sample ID	Date Sampled	Time Sampled	Matrix	Analyses Required	Method	Type of Container	Preservative
21082532-001	TC-Class E117	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-002	TC-Hall E112	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-003	TC-Gym	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-004	TC-Auditorium	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-005	TC-Office A110	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-006	TC-Cafeteria	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-007	TC-Class B105	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-008	TC-Hall E136	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-009	TC-Media Center	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-010	TC-Class A205	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-011	TC-Class C214	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-012	TC-Class B212	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-013	TC-Class B333	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-014	TC-Hall 309	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082532-015	TC-Class A328	08/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON

Data Deliverables Required: COA

reporting@phaseonline.com Send Report Attn:

invoicing@phaseonline.com

Send InvoiceAttn:

Perform Q.C. on Sample:

Carrier: Airbill No.:

Condition Upon Receipt:

Comments:

;	1 11 10 1
Samples Received By :	Samples Received By: _
Time:	Time:
Med Date:	Date :
Samples Relinquished By: Ale	Samples Relinquished By:

Page 7 of 7_{Time} Reference: 1 Generated By: Page 7 of 7_{Time} Report Reference: 1 Generated By: Page 7 of 7_{Time} Report Reference: 1 Generated By: Page 7 of 7_{Time} Report Reference: 1 Generated By: Page 8 of 7_{Time} By: Page 8 of 7 Date: Samples Relinquished By:

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082532

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

21082532: Analyses associated with analyst code 4051 were performed by SGS North America - NY, 6601 Kirkville Road, East Syracuse, NY 13057 - NY 11626

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

2108 2532

Ses	SGS GALSON	New Client? F	Report To*: Ph 66 6.5: Ba	Report To*: Phase Separation Science 6630 Baltimore National Pike Baltimore, MD 21228	Science ional Pike 28	Invoice To	*:Phase Sel	Invoice To*: Phase Separation Science	eou	
6601 Ki East Sy Tel: (31 88	6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227 888-432-LABS (5227) www.sgsgalson.com		Phone No.* :410-747-8770 Cell No. : Email Results to :Amber Confer Email address:reporting@pha	Phone No.*:410-747-8770 Cell No.: nail Results to:Amber Confer Email address:reporting@phaseonline.com	ine.com	Phone No.: Email: P.O. No.: Credit Card:	Phone No.: 410-747-8770 Email: invoicing@phaseol P.O. No.: ODC 4920002-001	ne No.: 410-747-8770 Email: invoicing@phaseonline.com D. No.: ODC 4920002-001 Card: Card on File Call for Credit Card Info.	it Card Info.	
of charge of	(constant		2	Samples submitted us	Samples submitted using the FreePumpLoan™ Program	Ī	ubmitted using the F	Samples submitted using the FreeSamplingBadges™ Program	** Program	
T weed nesults by.	(saichaige)		T C Williams Cohool		Polo IAO tacting	4020002	La Luc Korl Eon	7		1
Standard	0%		IIIdills School		roject: Acr o lock :	4920002	Sampled by: Nail I Old			_
3 Business Days	25%	Comments: Dosimeter cartride # noted in the	ae # noted in the	Hexavelent Ch	e (Hexavelent Chromium Process) colum	colum				_
2 Business Days					(2000)					
Next Day by 6pm	100%	List description of industry or Process/interl	stry or Process/interfe	erences present in sampling area :	pling area:	State samples were	Please indicate whi	Please indicate which OEL this data will be used for:	be used for:	$\overline{}$
Next Day by Noon	non 150% ay 200%	Public grade school building	chool building			collected in (e.g., NY)	OSHA PEL	ACGIH TLV Other (specify):	Cal OSHA	
Sample Ide (Maxmium of	Sample Identification* (Maxmium of 20 Characters)	Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*		Method Reference^	Hexavalent Chromium Process (e.g., welding plating, painting, etc.)*	
rc - Class E117		08/17/21	Assay N581 Aldehyde Badge	304	Min	Formaldehyde	E	mod, OSHA 1007: TPLC/UV	PD4334	
TC - Hall E112		08/17/21	Assay N581 Aldehyde Badge	312	Min	Formaldehyde	E	mod. OSHA 1007: TPLC/UV	PD4197	
TC - Gym		08/17/21	Assay N581 Aldehyde Badge	289	Min	Formaldehyde	E	mod, OSHA 1007: TPLC/UV	PD4198	
TC - Auditorium		08/17/21	Assay N581 Aldehyde Badge	319	Min	Formaldehyde	£	mod. OSHA 1007; TPLC/UV	PD4240	
TC -Office A110		08/17/21	Assay N581 Aldehyde Badge	313	Min	Formaldehyde	2	mod. OSHA 1007: TPLC/JV	PD4560	
TC - Cafeteria		08/17/21	Assay N581 Aldehyde Badge	307	Min	Formaldehyde	E	mod. OSHA 1007: TPLC/UV	PD4469	
TC - Class B105		08/17/21	Assay N581 Aldehyde Badge	319	Min	Formaldehyde	E	mod, OSHA 1007; TPLC/UV	PD4171	
TC - Hall E136		08/17/21	Assay N581 Aldehyde Badge	305	Min	Formaldehyde	E .	mod. OSHA 1007: TPLC/UV	PD4846	
TC - Media Center	Je.	08/17/21	Assay N581 Aldehyde Badge	263	Min	Formaldehyde	EL .	mod, OSHA 1007: TPLC/UV	PD5324	
TC - Class A205		08/17/21	Assay N581 Aldehyde Badge	249	Min	Formaldehyde	E	mod. OSHA 1007: TPLC/UV	PD4129	
TC - Class C214		08/17/21	Assay N581 Aldehyde Badge	245	Min	Formaldehyde	E	mod. OSHA 1007: TPLC/UV	PD4750	
AGalson Laboratorie	s will subsititute our	routine/preferred metho	od if it does not match	the method listed on 1	the COC unless this box is	AGalson Laboratories will substitute our routine/preferred method if it does not match the method listed on the COC unless this box is checked: 🖊 Use method(s) listed on COC	listed on COC			
For metals analysis: For crystalline silica:	if requesting an analy form(s) of silica need	For metals analysis: if requesting an analyte with the option of a lower LOC, please i For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite,	lower LOQ, please ind Juartz, Cristobalite, a	idicate if the lower LOQ and/or Tridymite)*:	is required (only available	For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG): For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite)*:	3);			_
Chain of Custody	Prin	Print Name/Signature		Date Time		Print Name	Print Name/Signature	Date	9 Time	
Relinquished by :	CLI	lient	8	251 173	S Received by :	alance	X			-
Relinquished by:	B	るとと	3		Received by:		6.			
		* Re	Sample: * Required fields, failur	s received after 3pm e to complete these	Samples received after 3pm will be considered as next day's business is, failure to complete these fields may result in a delay in your sample	ss received after 3pm will be considered as next day's business re to complete these fields may result in a delay in your samples being processed.	ng processed.	ď	Page 1 of 2	

Page 12 of 14

2
3
S
2
00
0
7

Ses	SGS GALSON	New Client? F	7 Report To*: Pl 66 No.*: Bi	Report To*: Phase Separation Science 6630 Baltimore National Pike Baltimore, MD 21228	ocience ional Pike t8	Invoice Te	*· Phase Se	Invoice To*: Phase Separation Science	nce
6601 K East Sy Tel: (3)	6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227 888-432-LABS (5227)			10-747-8770		Phone N	Phone No.: <u>410-747-8770</u> Email : <u>invoicing@phaseo</u> P.O. No. : ODC 4920002-001	ne No.: 410-747-8770 Email : invoicing@phaseonline.com	
www.s	www.sgsgalson.com		Email address: re	Email address: reporting@phaseonline.com	ine.com	Credit Card :	d: Card on File	Call for Credit Card Info.	it Card Info.
Need Results By:	(surcharge)		2		Samples submitted using the FreePumpLoan TM Program	_	ubmitted using the	Samples submitted using the FreeSamplingBadges [™] Program	™ Program
Standard	%0	Site Name: T.C. M	T.C. Williams School	d	Project: ACPS IAQ testing	- 4920002	Sampled by: Karl Ford	rd	
4 Business Days	35%	Comments:							
3 Business Days		Dosimeter cartr	rige # noted in th	าe (Hexavelent Ch	Dosimeter cartrige # noted in the (Hexavelent Chromium Process) colum	colum			
Next Day by 6pm	100%	List description of ind	List description of industry or Process/inter	erences present in sampling area :	oling area :	State samples were	Please indicate wh	Please indicate which OEL this data will be used for :	be used for:
Next Day by Noon	150%	Public grade s	Public grade school building			collected in (e.g., NY)	OSHA PEL	ACGIH TLV Other (specify):	Cal OSHA
Sample Ide (Maxmium of	ficatio	Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*	sted*	Method Reference^	Hexavalent Chromium Process (e.g., welding plating, painting, etc.)*
TC - Class B212		08/17/21	Assay N581 Aldehyde Badge	25	Min	Formaldehyde		mod, OSHA 1007; TPLC/UV	PD4055
TC - Class B333		08/17/21	Assay N581 Aldehyde Badge	e 218	Min	Formaldehyde		mod, OSHA 1007: TPLC/UV	PD4290
TC - Hall C309		08/17/21	Assay N581 Aldehyde Badge	P 214	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD5430
TC - Class A328		08/17/21	Assay N581 Aldehyde Badge	e 220	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4546
			Assay N581 Aldehyde Badge	9		Formaldehyde		mod. OSHA 1007: TPLC/UV	
			Assay N581 Aldehyde Badge	Ф		Formaldehyde		mod. OSHA 1007: TPLC/UV	
	6		Assay N581 Aldehyde Badge	0		Formaldehyde		mod, OSHA 1007; TPLC/UV	
			Assay N581 Aldehyde Badge	0		Formaldehyde		mod. OSHA 1007; TPLC/UV	
			Assay N581 Aldehyde Badge	9		Formaldehyde		mod. OSHA 1007: TPLC/UV	
			Assay N581 Aldehyde Badge	9		Formaldehyde		mod. OSHA 1007: TPLC/UV	
			Assay N581 Aldehyde Badge	9		Formaldehyde		mod. OSHA 1007; TPLC/UV	
AGalson Laboratorie	s will subsititute our r	routine/preferred meth	hod if it does not matc	h the method listed on t	he COC unless this box is	AGalson Laboratories will substitute our routine/preferred method if it does not match the method listed on the COC unless this box is checked: 🖊 Use method(s) listed on COC) listed on COC		
For metals analysis: For crystalline silica:	For metals analysis: if requesting an analyte with the option of a lower LOQ, please i For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite,	re with the option of a ed must be indicated (lower LOO, please in Quartz, Cristobalite,	idicate if the lower LOQ and/or Tridymite)*:	s required (only available	For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG): For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite)*:	(9):		
Chain of Custody	Prin	Print Name/Signature		Date Time		Print Nam	Print Name/Signature	Date	e Time
Relinquished by :	Chi	1ent	8	129 M 173	Received by:	ale	4 EX		
Relinquished by:	are	as con			Received by:		2		
		*	Sample equired fields, failu	ss received after 3pm re to complete these	Samples received after 3pm will be considered as next day's business is, failure to complete these fields may result in a delay in your sample	Samples received after 3pm will be considered as next day's business * Required fields, failure to complete these fields may result in a delay in your samples being processed.	ng processed.	ď.	Page 2 of 2
				Pa	Page 13 of 14	Version 1.000	1.000		

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21082532

Client Name Total Environmental Concepts - Lorto Received By Amber Confer

Delivered By Client

Tracking No Not Applicable

Logged In By Amber Confer

Shipping Container(s)

No. of Coolers 0

Ice N/A

Custody Seal(s) Intact? N/A Temp (deg C)

Seal(s) Signed / Dated?

N/A Temp Blank Present No

Documentation Sampler Name <u>Karl Ford</u>

COC agrees with sample labels? Yes MD DW Cert. No. N/A

Chain of Custody Yes

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable

Intact? Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 15

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 15

Preservation

Total Metals (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols (pH<2)N/A TOX, TKN, NH3, Total Phos (pH<2)N/A VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)N/A Do VOA vials have zero headspace? N/A 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Jules I longer	Date: 08/26/2021
	Amber Confer	

PM Review and Approval:

Lynn Jackson
Page 14 of 14

Date: 08/26/2021

ccc .		New Client?	Report To* :					Invoice T	o*:				
303	GALSOI												
		Client Account	NO.^:										
6601 Kirkvi	ille Rd use, NY 13057		Phone No * :					Phone N	lo .				
Tel: (315) 4	132-5227		Cell No :					Fm	lo.: ail :				
888-43	32-LABS (5227)							P.O. N	ail : lo. :				
www.sgsga	alson.com							Credit Ca	rd : Card on Fi	le 🗌	Call for Cred	dit Card Ir	nfo.
			_								ouo. o. o.		
Need Results By:	(surcharge)			Samples subn	nitted usin	g the FreePumpLoan [™]	Program	Samples	submitted using th	e FreeSam	plingBadge	s™ Progra	am.
Standard	0%	Site Name :			Pro	ject :		Sam	pled by :				
4 Business Days	35%	Comments :											
3 Business Days	50%												
2 Business Days	75%												
Next Day by 6pm	100%	List description of ind	ustry or Process/interfer	ences presen	t in sampl	ing area :	State samples		Please indicate w				
Next Day by Noon	150%						collected in (e.	g., NY)	OSHA PEL	_		Cal (DSHA
Same Day	200%								MSHA	Other (specify):		
Sample Identifi (Maxmium of 20 C		Date Sampled	Collection Medium	Sample \ Sample Sample	Time	Sample Units*: L, ml,min,in2,cm2,ft2	A	analysis Requ	ested*	Method F	Reference^	Process (ent Chromium (e.g., welding painting, etc.)*
^Galson Laboratories wi	II subsititute ou	r routine/preferred meth	I nod if it does not match	the method li	sted on the	e COC unless this box is	s checked:	Use method(s	s) listed on COC				
For metals analysis: if re	questing an ana	lyte with the option of a	lower LOQ, please indi	cate if the low	ver LOQ is	required (only availabl	e for certain ana	llytes - see SA	(G):				
For crystalline silica: forr	m(s) of silica nee	eded must be indicated	(Quartz, Cristobalite, an	d/or Tridymit	e)*:								
Chain of Custody	Pr	int Name/Signature	Г	ate	Time			Print Nam	ne/Signature		Da	te	Time
Relinquished by :		-				Received by :							
Relinquished by :						Received by :							
		* R	Samples equired fields, failure			will be considered as elds may result in a			ing processed.		P	'age	of

ccc .		New Client?	Report To* :					Invoice T	o*:				
303	GALSOI												
		Client Account	NO.^:										
6601 Kirkvi	ille Rd use, NY 13057		Phone No * :					Phone N	lo .				
Tel: (315) 4	132-5227		Cell No :					Fm	lo.: ail :				
888-43	32-LABS (5227)							P.O. N	ail : lo. :				
www.sgsga	alson.com							Credit Ca	rd : Card on Fi	le 🗌	Call for Cred	dit Card Ir	nfo.
			_								ouo. o. o.		
Need Results By:	(surcharge)			Samples subn	nitted usin	g the FreePumpLoan [™]	Program	Samples	submitted using th	e FreeSam	plingBadge	s™ Progra	am.
Standard	0%	Site Name :			Pro	ject :		Sam	pled by :				
4 Business Days	35%	Comments :											
3 Business Days	50%												
2 Business Days	75%												
Next Day by 6pm	100%	List description of ind	ustry or Process/interfer	ences presen	t in sampl	ing area :	State samples		Please indicate w				
Next Day by Noon	150%						collected in (e.	g., NY)	OSHA PEL	_		Cal (DSHA
Same Day	200%								MSHA	Other (specify):		
Sample Identifi (Maxmium of 20 C		Date Sampled	Collection Medium	Sample \ Sample Sample	Time	Sample Units*: L, ml,min,in2,cm2,ft2	A	analysis Requ	ested*	Method F	Reference^	Process (ent Chromium (e.g., welding painting, etc.)*
^Galson Laboratories wi	II subsititute ou	r routine/preferred meth	I nod if it does not match	the method li	sted on the	e COC unless this box is	s checked:	Use method(s	s) listed on COC				
For metals analysis: if re	questing an ana	lyte with the option of a	lower LOQ, please indi	cate if the low	ver LOQ is	required (only availabl	e for certain ana	llytes - see SA	(G):				
For crystalline silica: forr	m(s) of silica nee	eded must be indicated	(Quartz, Cristobalite, an	d/or Tridymit	e)*:								
Chain of Custody	Pr	int Name/Signature	Г	ate	Time			Print Nam	ne/Signature		Da	te	Time
Relinquished by :		-				Received by :							
Relinquished by :						Received by :							
		* R	Samples equired fields, failure			will be considered as elds may result in a			ing processed.		P	'age	of

Appendix E: 4-PCH Analytical Results

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082533

September 3, 2021

Karl Ford
Total Environmental Concepts - Lorton
8382 Terminal Road, Suite B
Lorton, VA 22079

Reference: PSS Project No: 21082533

Project Name: ACPS IAQ Testing Project Location: T.C.Williams School

Project ID.: 4920002

Dear Karl Ford:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21082533**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 29, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082533

Project ID: 4920002


The following samples were received under chain of custody by Phase Separation Science (PSS) on 08/25/2021 at 05:35 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
21082533-001	TC-Class E117	AIR	08/17/21 00:00
21082533-002	TC-Hall E112	AIR	08/17/21 00:00
21082533-003	TC-Gym	AIR	08/17/21 00:00
21082533-004	TC-Auditorium	AIR	08/17/21 00:00
21082533-005	TC-Office A110	AIR	08/17/21 00:00
21082533-006	TC-Cafeteria	AIR	08/17/21 00:00
21082533-007	TC-Class B105	AIR	08/17/21 00:00
21082533-008	TC-Hall E136	AIR	08/17/21 00:00
21082533-009	TC-Media Center	AIR	08/17/21 00:00
21082533-010	TC-Class A205	AIR	08/17/21 00:00
21082533-011	TC-Class C214	AIR	08/17/21 00:00
21082533-012	TC-Class B212	AIR	08/17/21 00:00
21082533-013	TC-Class B333	AIR	08/17/21 00:00
21082533-014	TC-Hall C309	AIR	08/17/21 00:00
21082533-015	TC-Hall A328	AIR	08/17/21 00:00

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082533

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Ms. Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228 September 02, 2021

Account# 15354 Login# L545230

Dear Amber Confer:

Enclosed are the analytical results for the samples received by our laboratory on August 27, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Lisa Luab

Enclosure(s)

ANALYTICAL REPORT

Account : 15354 Login No.: L545230

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,
			Environmental Microbiology
State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials
Texas	Texas Dept. of Licensing and	Lab ID: 1042	Mold Analysis Laboratory license
	Regulation		

Legend

< - Less than MDL - Method Detection Limit mg - Milligrams ppb - Parts per Billion > - Greater than ug - Micrograms NA - Not Applicable ppm - Parts per Million I - Liters m3 - Cubic Meters NS - Not Specified ppbv - ppb Volume LOQ - Limit of Quantitation kg - Kilograms ND - Not Detected ppmv - ppm Volume ft2 - Square Feet cm2 - Square Centimeters ng - Nanograms in2 - Square Inches

LABORATORY ANALYSIS REPORT

GALSON

6601 Kirkville Road
East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com Client : Phase Separation Science, Inc. Account No.: 15354 Site : T.C. WILLIAMS SCHOOL Login No. : L545230

Project No. : ACPS IAQ TESTING-4920002

Date Sampled : 17-AUG-21 Date Received : 27-AUG-21 Report ID : 1262966

4-Phenylcyclohexene (4PCH low LOQ)

		Air Vol	Front	Back	Total	Conc	ppm
Sample ID	<u>Lab ID</u>	liter	ug	ug	uq	mg/m3	
TC-CLASS E117	L545230-1	43.2	<0.2	<0.2	<0.2	<0.005	<0.0007
TC-HALL E112	L545230-2	41.4	<0.2	<0.2	<0.2	<0.005	<0.0008
TC-GYM	L545230-3	41.4	<0.2	<0.2	<0.2	<0.005	<0.0008
TC-AUDITORIUM	L545230-4	43.2	<0.2	<0.2	<0.2	<0.005	<0.0007
TC-OFFICE A110	L545230-5	42.6	<0.2	<0.2	<0.2	<0.005	<0.0007
TC-CAFETERIA	L545230-6	41	<0.2	<0.2	<0.2	<0.005	<0.0008
TC-CLASS B105	L545230-7	39.2	<0.2	<0.2	<0.2	<0.005	<0.0008
TC-HALL E136	L545230-8	25.8	<0.2	<0.2	<0.2	<0.008	<0.001
TC-MEDIA CENTER	L545230-9	48	<0.2	<0.2	<0.2	<0.004	<0.0007
TC-CLASS A205	L545230-10	38.4	<0.2	<0.2	<0.2	<0.005	<0.0008
TC-CLASS C214	L545230-11	39.6	<0.2	<0.2	<0.2	<0.005	<0.0008
TC-CLASS B212	L545230-12	41.2	<0.2	<0.2	<0.2	<0.005	<0.0008
TC-CLASS B333	L545230-13	38.4	<0.2	<0.2	<0.2	<0.005	<0.0008
TC-HALL C309	L545230-14	40	<0.2	<0.2	<0.2	<0.005	<0.0008
TC-CLASS A328	L545230-15	40.6	<0.2	<0.2	<0.2	<0.005	<0.0008

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of Quantitation: 0.2 ug Submitted by: BDK Approved by: MLN

Analytical Method : mod. NIOSH 1501; GC/PID Date : 02-SEP-21

Collection Media : 226-01 Supervisor : KAG

LABORATORY FOOTNOTE REPORT

GALSON

Client Name : Phase Separation Science, Inc.

Site : T.C. WILLIAMS SCHOOL Project No. : ACPS IAQ TESTING-4920002

Date Sampled: 17-AUG-21 Account No.: 15354
Date Received: 27-AUG-21 Login No.: L545230

Date Analyzed: 31-AUG-21

FAX: (315) 437-0571 www.sgsgalson.com

(315) 432-5227

6601 Kirkville Road East Syracuse, NY 13057

L545230 (Report ID: 1262966):

Total ug corrected for a desorption efficiency of 97%. SOPs: GC-SOP-16(26), GC-SOP-8(27), GC-SOP-12(20)

L545230 (Report ID: 1262966):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
4 Phonylavalchovena (4POU lev 100)	. / 10%	00 2%
4-Phenylcyclohexene (4PCH low LOQ)	+/-18%	88.2%

L545230

21082533

CCC	? Report To# : P	hase Separa	ation Sc	ience	Invoice To	Invoice To*: Phase Separation Science					
343 G	ALSO	V	60	30 Baltimor							
1Z2313E40166972748 Date:08/27/21		Client Account	No.*: B	altimore, ML	21228					(a)	
Shipper:UPS			Phone No * : 4:	10 747 9770			Phone N	lo.: 410-747 - 87	770		
Initials:MAK			Phone No.* : 4: Cell No. :	10-747-0770					phaseonline.com		
		F	mail Results to : A	mbar Canfar				o.: <u>ODC 4920</u>			
Prep:UNKNOWN		•	Email address: re			e com		d: Card on Fi		edit Card Info.	
Trape											
Need Results By:	(surcharge)			Samples subm		g the FreePumpLoan™			e FreeSamplingBadge	:s™ Program	
Standard	0%	Site Name: T.C. W	/illiams School		Proj	ect: ACPS IAQ te	sting - 4920002 samp	oled by: Karl F	ord		
4 Business Days	35%	Comments:									
3 Business Days	50%										
2 Business Days	75%						T	T			
Next Day by 6pm	100%	List description of ind	ustry or Process/inter	erences present	in sampli	ng area :	State samples were collected in (e.g., NY)	Please indicate w	which OEL this data wi	Il be used for : Cal OSHA	
Next Day by Noon	150%	Public grade s	school				VA	MSHA	Other (specify):	Car conx	
Same Day	200%		Γ	Sample V	oluma		V//			Hexavalent Chromium	
	Sample Identification* Date Sampled Collection Med (Maxmium of 20 Characters)						Analysis Requ	ested*	Method Reference^	Process (e.g., welding plating, painting, etc.)*	
TC - Class E117		08/17/21	Sm Charcoal tubes / 226-0	26-01 43.2 L		L	4-Phenylcyclohexene		mod. NIOSH 1501		
TC - Hall E112		08/17/21	Sm Charcoal tubes / 226-0	226-01 41.4 L 4-P		4-Phenylcyclohexene		mod. NIOSH 1501			
TC - Gym		08/17/21	Sm Charcoal tubes / 226-0	26-01 41.4 L			4-Phenylcyclohexene		mod. NIOSH 1501		
TC - Auditorium		08/17/21	Sm Charcoal tubes / 226-0	226-01 43.2 L		4-Phenylcyclohexene		mod. NIOSH 1501			
TC -Office A110		08/17/21	Sm Charcoal tubes / 226-0	1 42.6		L	4-Phenylcyclohexene		mod. NIOSH 1501		
TC - Cafeteria		08/17/21	Sm Charcoal tubes / 226-0	1 41.0		L	4-Phenylcyclohexene		mod. NIOSH 1501		
TC - Class B105		08/17/21	Sm Charcoal tubes / 226-0	1 39.2		L	4-Phenylcyclohexene		mod. NIOSH 1501		
TC - Hall E136		08/17/21	Sm Charcoal tubes / 226-0	25.8		L	4-Phenylcyclohexene		mod. NIOSH 1501		
TC - Media Center		08/17/21	Sm Charcoal tubes / 226-0	1 48.0		L	4-Phenylcyclohexene		mod. NIOSH 1501		
TC - Class A205		08/17/21	Sm Charcoal tubes / 226-0	1 38.4		L	4-Phenylcyclohexene		mod. NIOSH 1501		
TC - Class C214		08/17/21	Sm Charcoal tubes / 226-0	1 39.6		L	4-Phenylcyclohexene	·. • · · · · · · · · · · · · · · · · · ·	mod. NIOSH 1501		
^Galson Laboratories will	subsititute ou	routine/preferred meth	nod if it does not mate	h the method lis	ted on the	COC unless this box is	s checked: 🔽 Use method(s) listed on COC			
For metals analysis: if rec	uesting an anal	yte with the option of a	tower LOQ, please in	dicate if the low	er LOQ is	required (only available	e for certain analytes - see SA	(G):	- desired to the second second		
For crystalline silica: form	n(s) of silica nee	ded must be indicated	(Quartz, Cristobalite,	and/or Tridymite	:}* :			!			
Chain of Custody	Pri	nt Name/Signature		Date	Time		Print Nam	e/Signature	Da	ate Time	
Relinquished by:	C	unt	8	25/21	<u>1735</u>	Received by :	arer	wh	1 / _	1-1	
Relinquished by :	a	en of hi		. <u></u>		Received by :	ichelle Krause	Park Le	(627	14 1111	
		* R					next day's business delay in your samples be	ing processed.	-	Page 1 of 2	

21082533

SGS	GALSOI	New Client Client Account	663	ase Separation So 30 Baltimore Natio Itimore, MD 21228	onal Pike	Invoice T	•*: <u>Phase Se</u> 	eparation Sc	ience	
Tel: (315) 432-5227 Cell 888-432-LABS (5227) Email Resul				0-747-8770 ber Confer orting@phaseonlin	ne.com	Ema	Phone No.: 410-747-8770 Email: invoicing@phaseonline.com P.O. No.: ODC 4920002-001 Credit Card: Card on File Call for Credit Card Info.			
Need Results By:	(surcharge)			Samples submitted usir	ig the FreePumpLoan™	Program Samples s	submitted using the	e FreeSamplingBad	ges™ Progra	ım
✓ Standard		Site Name : T.C. V	Villiams School	Pro	oject: ACPS IAQ te	sting - 4920002 sam	oled by: Karl Fo	ord		
4 Business Days	s 35%	Comments :								
3 Business Days	s 50%	:								
2 Business Days	s 75%									
Next Day by 6pm	100%	List description of ind	dustry or Process/interfe	rences present in sampl	ling area :	State samples were collected in (e.g., NY)		hich OEL this data		
Next Day by Noor	150%	Public grade s	school			1	OSHA PEL	<u> </u>	Cal C	JSHA
Same Day	200%		T	T 0 11/1	r	VA	∐ Мэна	Other (specify):	Tueverete	nt Chromium
Sample Identification* Date Sampled Collection (Maxmium of 20 Characters)			Collection Medium	Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requ	ested*	Method Reference	^ Process (e	e.g., welding painting, etc.)*
TC - Class B212	- Class B212 08/17/21 Sm Charcoal tub			41.2	L	4-Phenylcyclohexene		mod. NIOSH 150	11	
TC - Class B333		08/17/21	Sm Charcoal tubes / 226-01	38.4	L	4-Phenylcyclohexene		mod. NIOSH 150	11	
TC - Hall C309		08/17/21	Sm Charcoal tubes / 226-01	40.0	L	4-Phenylcyclohexene	mod. NIOSH 156)1		
TC - Class A328		08/17/21	Sm Charcoal tubes / 226-01	40.6	L	4-Phenylcyclohexene	mod. NIOSH 1501			
			Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod. NIOSH 150)1	
	•		Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod, NIOSH 150	501	
			Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod, NIOSH 150)1	
			Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod. NIOSH 150)1	
			Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod. NIOSH 150	1	
			Sm Charcoal tubes / 226-01			4-Phenylcyclohexene		mod. NIOSH 150	1	
	<u> </u>		Sm Charcoal tubes / 226-01			4-Phenylcyclohexene		mod. NIOSH 150)1	
^Galson Laboratories v	vill subsititute ou	r routine/preferred met	hod if it does not match	the method listed on th	e COC unless this box is	s checked: 🔽 Use method(s) listed on COC	·		
						e for certain analytes - see SA				
<u> </u>			(Quartz, Cristobalite, ar		· · · · · · · · · · · · · · · · · · ·					
Chain of Custody	Pr	int Name/Signature		Date Time		Print Nam	ne/Signature		Date	Time
Relinquished by:		lient	912	512 1735	Received by:	anter 7	wa	<u> </u>		
Relinquished by:	0 4		Je 1		Received by :N	lichelle Krause	Michelle	Kiguria 6	27/21	11/7
		* R				s next day's business delay in your samples be	ing processed.)	Page 2	of <u>2</u>

Chain of Custody Form for Subcontracted Analyses

Page 1 of 1

Samples Transferred To: Phase Separation Science, Inc. W.O. No.: SGS North America - NY 21082533 Project Location: T.C.Williams School 6630 Baltimore National Pike 6601 Kirkville Road Baltimore, MD 21228 Phone: (410) 747-8770 East Syracuse, NY 13057 Project Number: 4920002 Fax: (410) 788-8723 Report To LOD: No Old SGS Galson Labs. bsc Phone: 315-432-5227 For Questions or issues please contact: Amber Confer Report Due On:09/03/21 05:00 Field Lab Time Date Matrix Analyses Required Method Type of Preservative Sample ID Sample ID Sampled Sampled Container 21082533-001 TC-Class E117 08/17/21 00:00 4-Phenylcyclohexene VARIOUS Air NONSC NON TC-Hall E112 08/17/21 21082533-002 00:00 Air 4-Phenylcyclohexene VARIOUS NONSC NON 21082533-003 TC-Gym 08/17/21 00:00 VARIOUS Air 4-Phenylcyclohexene NONSC NON 21082533-004 08/17/21 TC-Auditorium 00:00 Air 4-Phenylcyclohexene VARIOUS NONSC NON 21082533-005 TC-Office A110 08/17/21 00:00 4-Phenylcyclohexene VARIOUS Air NONSC NON 21082533-006 TC-Cafeteria 08/17/21 00:00 Air 4-Phenylcyclohexene VARIOUS NONSC NON 21082533-007 TC-Class B105 08/17/21 00:00 VARIOUS Аіг 4-Phenylcyclohexene NON NONSC 21082533-008 TC-Hall E136 00:00 08/17/21 4-Phenylcyclohexene VARIOUS Air NONSC NON 21082533-009 TC-Media Center 08/17/21 00:00 Air VARIOUS 4-Phenylcyclohexene NONSC NON 21082533-010 TC-Class A205 08/17/21 00:00 Air 4-Phenylcyclohexene VARIOUS NONSC NON 21082533-011 TC-Class C214 08/17/21 00:00 Air 4-Phenylcyclohexene VARIOUS NONSC NON 21082533-012 TC-Class B212 08/17/21 00:00 Air 4-Phenylcyclohexene VARIOUS NONSC NON 21082533-013 TC-Class B333 08/17/21 00:00 Air 4-Phenylcyclohexene VARIOUS NONSC NON 21082533-014 TC-Hall C309 08/17/21 00:00 Air 4-Phenylcyclohexene VARIOUS NONSC NON 21082533-015 TC-Hall A328 08/17/21 00:00 4-Phenylcyclohexene **VARIOUS** Air NONSC NON Data Deliverables Required: COA Perform Q.C. on Sample: Send Report Attn: reporting@phaseonline.com Send InvoiceAttn: invoicing@phaseonline.com Airbill No.: _____ Carrier : _ \(\mathcal{V} \bigsip \sumset \) Condition Upon Receipt : Comments: Samples Relinquished By : ______ Date : _____ Samples Received By : _____ Samples Relinquished By: _____ Date : ____ Time : ____ Samples Received By: _____ Samples Relinquished By: _____ Date: ____ Page 7 of 7_Time: ____ Samples Received By: _____ Samples Received By: _____ Version 1.000

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082533

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

21082533: Analyses associated with analyst code 4051 were performed by SGS North America - NY, 6601 Kirkville Road, East Syracuse, NY 13057 - NY 11626

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

21082533

	SGS G	ALSON	_	New Client? Report To*: Phase Separation Science Invoice To*: Phase								
	Tel: (315) 4	ise, NY 13057 32-5227 2-LABS (5227)		Phone No.* : 41 Cell No. : Email Results to : An Email address: reg	nber Confer	P.O.	Phone No.: 410-747-8770 Email: invoicing@phaseonline.com P.O. No.: ODC 4920002-001 Credit Card: Card on File Call for Credit Card Info					
						d using the FreePumpLoan™		_	the FreeSamplingBadg			
_	Need Results By:	(surcharge)			Campics Submittee					o rrogram		
V	Standard	0%	Site Name: T.C. \	Williams School		Project: ACPS IAQ to	esting - 4920002 San	npled by: Karl	Ford			
_	4 Business Days	35%	Comments:									
	3 Business Days 2 Business Days	50% 75%										
	Next Day by 6pm	100%	List description of in	dustry or Process/interfe	erences present in s	sampling area :	State samples were	Please indicate	which OEL this data w	Il be used for :		
	Next Day by Noon	150%					collected in (e.g., NY)	OSHA PEL	The second secon	Cal OSHA		
	Same Day	200%	Public grade	school		VA	☐ MSHA	Other (specify):				
	Sample Identific		Date Sampled	Collection Medium	Sample Volun Sample Time Sample Area	e I mi min in 2 cm 2 ft 2	Analysis Req	uested*	Method Reference^	Hexavalent Chromi Process (e.g., welding) plating, painting, et		
TC	- Class E117	17 08/17/21 Sm Charcoal tubes / 226-01 43.2		43.2	L	4-Phenylcyclohexene		mod. NIOSH 1501				
TC	- Hall E112		08/17/21	Sm Charcoal tubes / 226-01	41.4	L	4-Phenylcyclohexene		mod. NIOSH 1501			
TC	- Gym		08/17/21	Sm Charcoal tubes / 226-01	41.4	L	4-Phenylcyclohexene		mod. NIOSH 1501			
TC	- Auditorium		08/17/21	Sm Charcoal tubes / 226-01	43.2	L	4-Phenylcyclohexene		mod. NIOSH 1501			
тс	-Office A110		08/17/21	Sm Charcoal tubes / 226-01	42.6	L	4-Phenylcyclohexene		mod. NIOSH 1501			
TC	- Cafeteria		08/17/21	Sm Charcoal tubes / 226-01	41.0	L	4-Phenylcyclohexene		mod. NIOSH 1501			
TC	- Class B105		08/17/21	Sm Charcoal tubes / 226-01	39.2	L	4-Phenylcyclohexene		mod. NIOSH 1501			
TC	- Hall E136		08/17/21	Sm Charcoal tubes / 226-01	25.8	L	4-Phenylcyclohexene		mod. NIOSH 1501			
TC	- Media Center		08/17/21	Sm Charcoal tubes / 226-01	48.0	L	4-Phenylcyclohexene		mod. NIOSH 1501			
TC	- Class A205		08/17/21	Sm Charcoal tubes / 226-01	38.4	L	4-Phenylcyclohexene		mod. NIOSH 1501			
TC	- Class C214		08/17/21	Sm Charcoal tubes / 226-01	39.6	L	4-Phenylcyclohexene		mod. NIOSH 1501			
٨G	alson Laboratories wil	I subsititute our	routine/preferred me	thod if it does not match	the method listed	on the COC unless this box is	s checked: Vse method	(s) listed on COC		1		
_							e for certain analytes - see S					
_				(Quartz, Cristobalite, an								
Cha	in of Custody	Prir	nt Name/Signature		Date Tir	me	Print Nar	ne/Signature	Da	ite Tim		
Reli	nquished by:	CI	ient	81.	25/21 17	Received by :	aler	wh	7			
D-II	nquished by :	0 30	. /	5		Received by :						

21082533

SGS	ALSON	New Client	-0-0	ase Separation 30 Baltimore No. 21	lational Pike	Invoice	To*:Phase	Separation Sci	ence			
Tel: (315) 4	use, NY 13057 132-5227 2-LABS (5227)		Phone No.* : 410 Cell No. : Email Results to : Am Email address: rep	ber Confer	P.O.	Phone No.: 410-747-8770 Email: invoicing@phaseonline.com P.O. No.: ODC 4920002-001 Credit Card: Card on File Call for Credit Card Info						
Need Results By:	(surcharge)			Samples submitted	using the FreePumpLoan™	Program Sample	s submitted using	the FreeSamplingBadge	es™ Program			
Standard	0%	Site Name : T.C. \	Villiams School		Project : ACPS IAQ to	esting - 4920002 sa	mpled by: Karl	Ford				
4 Business Days	35%	Comments:			,							
3 Business Days	50%											
2 Business Days	75%											
Next Day by 6pm	100%	List description of in	dustry or Process/interfe	rences present in s	ampling area:	State samples were	7-3-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	which OEL this data wi	I be used for :			
Next Day by Noon	150%	Public grade	school			collected in (e.g., NY)	collected in (e.g., NY) SHA PEL ACGIH TLV Cal OSHA					
Same Day	200%	rubiic grade	SCHOOL	Other (specify):								
Sample Identifi (Maxmium of 20 C		Date Sampled	Collection Medium	Sample Volum Sample Time Sample Area	I ml min in 2 cm 2 ft?	Analysis Red	quested*	Method Reference^	Hexavalent Chromium Process (e.g., welding plating, painting, etc.)			
TC - Class B212	C - Class B212		Sm Charcoal tubes / 226-01	41.2	L	4-Phenylcyclohexene		mod, NIOSH 1501				
TC - Class B333	3 08/17		Sm Charcoal tubes / 226-01	38.4	L	4-Phenylcyclohexene		mod. NIOSH 1501				
TC - Hall C309		08/17/21	Sm Charcoal tubes / 226-01	40.0	L	4-Phenylcyclohexene		mod. NIOSH 1501				
TC - Class A328		08/17/21	Sm Charcoal tubes / 226-01	40.6	L	4-Phenylcyclohexene		mod, NIOSH 1501				
			Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod. NIOSH 1501				
			Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod, NIOSH 1501				
			Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod. NIOSH 1501				
			Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod. NIOSH 1501				
			Sm Charcoal tubes / 226-01		L	4-Phenylcyclohexene		mod. NIOSH 1501				
			Sm Charcoal tubes / 226-01			4-Phenylcyclohexene		mod. NIOSH 1501				
			Sm Charcoal tubes / 226-01			4-Phenylcyclohexene		mod, NIOSH 1501				
^Galson Laboratories wil	Il subsititute our	routine/preferred met	thod if it does not match	the method listed of	on the COC unless this box is		d(s) listed on COC					
					Q is required (only available							
For crystalline silica: form	n(s) of silica need	led must be indicated	(Quartz, Cristobalite, an	nd/or Tridymite)*:								
Chain of Custody		nt Name/Signature		Date Tin		Print Na	me/Signature	Da	te Time			
Relinquished by:	C	ient	8/2	5/2 17		anter -	1 was	5				
Relinquished by:	and	n y hi	J		Received by :			-				

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21082533

Client Name Total Environmental Concepts - Lorto Received By Amber Confer

Delivered By Client

Tracking No Not Applicable

Logged In By Amber Confer

Shipping Container(s)

No. of Coolers 0

Ice N/A

Custody Seal(s) Intact? N/A Temp (deg C)

Seal(s) Signed / Dated?

N/A Temp Blank Present No

Documentation Sampler Name <u>Karl Ford</u>

COC agrees with sample labels?

Yes

MD DW Cert. No. N/A

Chain of Custody Yes

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable

Intact? Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 15

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 15

Preservation

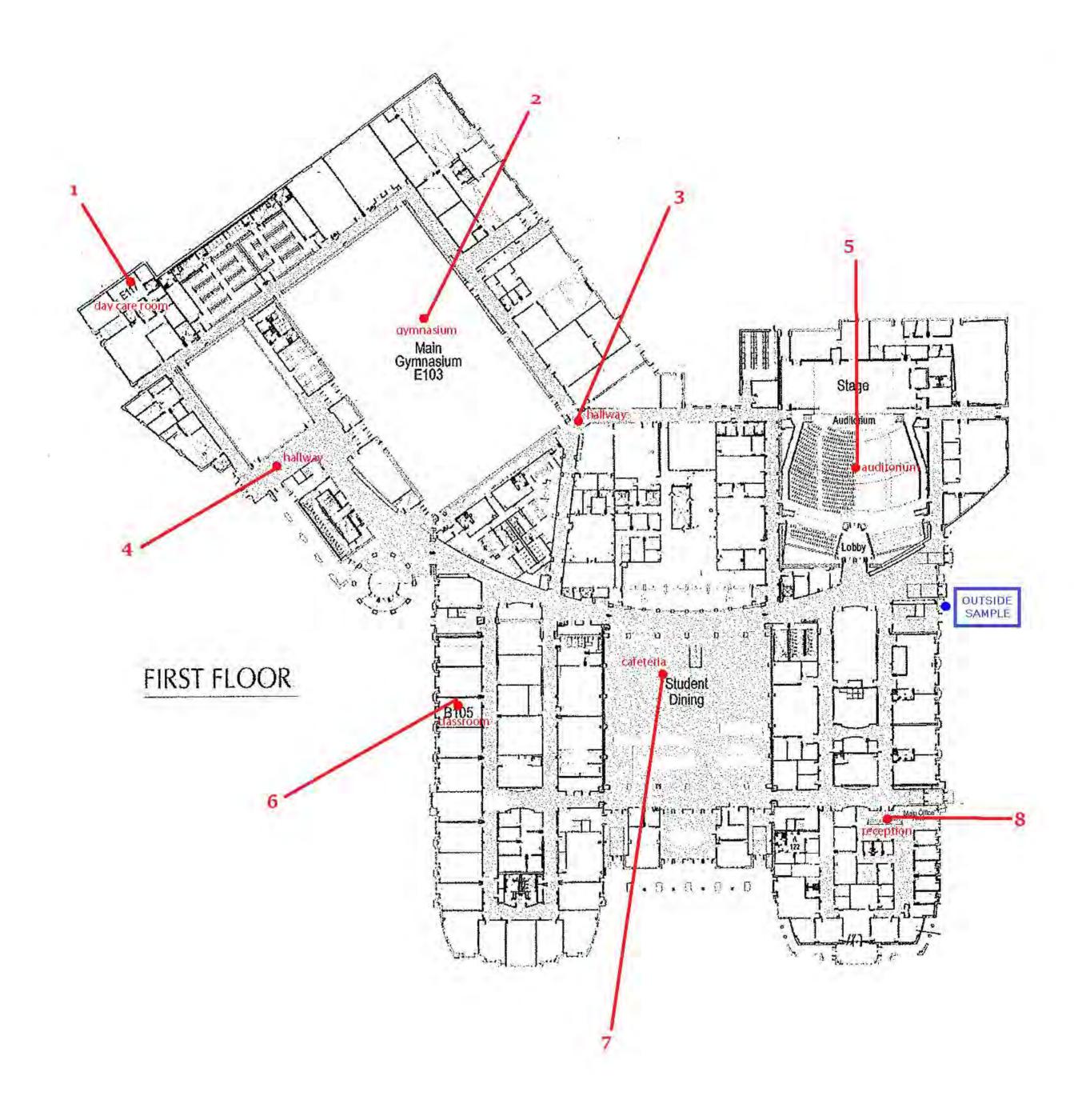
i CSCI vation		
Total Metals	(pH<2)	N/A
Dissolved Metals, filtered within 15 minutes of collection	(pH<2)	N/A
Orthophosphorus, filtered within 15 minutes of collection		N/A
Cyanides	(pH>12)	N/A
Sulfide	(pH>9)	N/A
TOC, DOC (field filtered), COD, Phenols	(pH<2)	N/A
TOX, TKN, NH3, Total Phos	(pH<2)	N/A
VOC, BTEX (VOA Vials Rcvd Preserved)	(pH<2)	N/A
Do VOA vials have zero headspace?		N/A
624 VOC (Rcvd at least one unpreserved VOA vial)		N/A
524 VOC (Rcvd with trip blanks)	(pH<2)	N/A

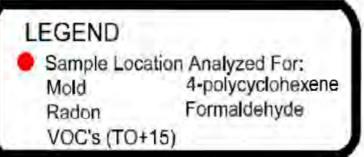
Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Outer of longer	Date: 08/26/2021
	Amber Confer	

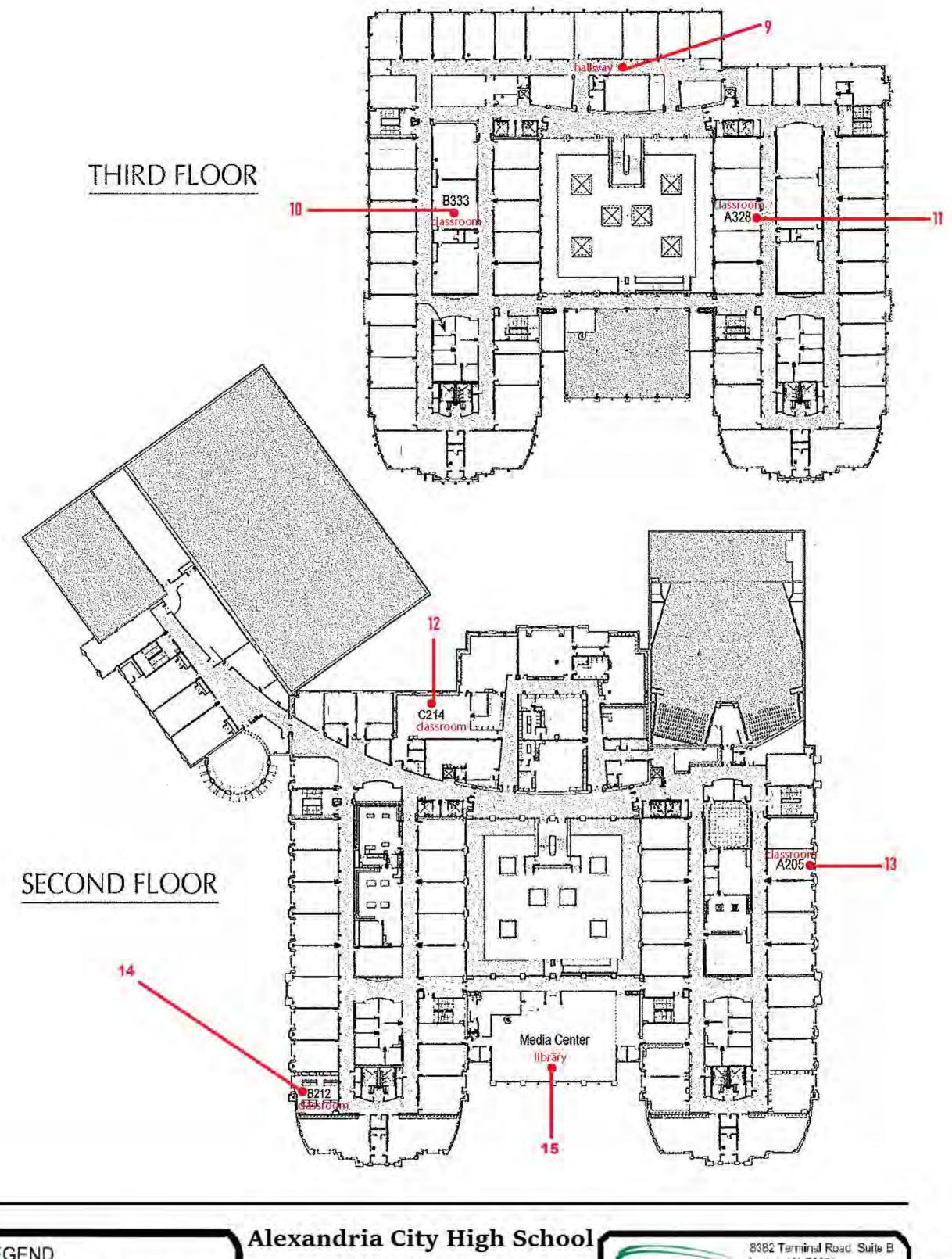
PM Review and Approval:

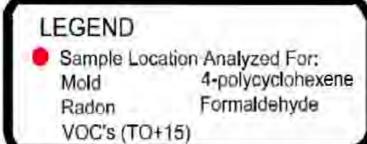

Lynn Jackson
Page 14 of 14


Date: 08/26/2021

ccc .		New Client?	Report To* :					Invoice T	o*:				
303	GALSOI												
		Client Account	NO.^:										
	6601 Kirkville Rd East Syracuse, NY 13057 Phone No.*:								lo .				
Tel: (315) 4	132-5227		Cell No :					Fm	lo.: ail :				
888-43	32-LABS (5227)							P.O. N	ail : lo. :				
www.sgsga	alson.com							Credit Ca	rd : Card on Fi	le 🗌	Call for Cred	dit Card Ir	nfo.
			_								ouo. o. o.		
Need Results By:	(surcharge)			Samples subn	nitted usin	g the FreePumpLoan [™]	Program	Samples	submitted using th	e FreeSam	plingBadge	s™ Progra	am.
Standard	0%	Site Name :			Pro	ject :		Sam	pled by :				
4 Business Days	35%	Comments :											
3 Business Days	50%												
2 Business Days	75%												
Next Day by 6pm	100%	List description of ind	ustry or Process/interfer	ences presen	t in sampl	ing area :	State samples		Please indicate w				
Next Day by Noon	150%						collected in (e.	g., NY)	OSHA PEL	_		Cal (DSHA
Same Day	200%								MSHA	Other (specify):		
Sample Identifi (Maxmium of 20 C		Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area* Sample Units*: L, ml,min,in2,cm2,ft2			Analysis Requested*			Method F	thod Reference Process (e.g., weldin plating, painting, etc.		
^Galson Laboratories wi	II subsititute ou	r routine/preferred meth	I nod if it does not match	the method li	sted on the	e COC unless this box is	s checked:	Use method(s	s) listed on COC				
For metals analysis: if re	questing an ana	lyte with the option of a	lower LOQ, please indi	cate if the low	ver LOQ is	required (only availabl	e for certain ana	llytes - see SA	(G):				
For crystalline silica: forr	m(s) of silica nee	eded must be indicated	(Quartz, Cristobalite, an	d/or Tridymit	e)*:								
Chain of Custody	Pr	int Name/Signature	Г	ate	Time			Print Nam	ne/Signature		Da	te	Time
Relinquished by :		-				Received by :							
Relinquished by :						Received by :							
		* R	Samples equired fields, failure			will be considered as elds may result in a			ing processed.		P	'age	of

ccc .		New Client?	Report To* :					Invoice T	o*:				
303	GALSOI												
		Client Account	NO.^:										
	6601 Kirkville Rd East Syracuse, NY 13057 Phone No.*:								lo .				
Tel: (315) 4	132-5227		Cell No :					Fm	lo.: ail :				
888-43	32-LABS (5227)							P.O. N	ail : lo. :				
www.sgsga	alson.com							Credit Ca	rd : Card on Fi	le 🗌	Call for Cred	dit Card Ir	nfo.
			_								ouo. o. o.		
Need Results By:	(surcharge)			Samples subn	nitted usin	g the FreePumpLoan [™]	Program	Samples	submitted using th	e FreeSam	plingBadge	s™ Progra	am.
Standard	0%	Site Name :			Pro	ject :		Sam	pled by :				
4 Business Days	35%	Comments :											
3 Business Days	50%												
2 Business Days	75%												
Next Day by 6pm	100%	List description of ind	ustry or Process/interfer	ences presen	t in sampl	ing area :	State samples		Please indicate w				
Next Day by Noon	150%						collected in (e.	g., NY)	OSHA PEL	_		Cal (DSHA
Same Day	200%								MSHA	Other (specify):		
Sample Identifi (Maxmium of 20 C		Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area* Sample Units*: L, ml,min,in2,cm2,ft2			Analysis Requested*			Method F	thod Reference Process (e.g., weldin plating, painting, etc.		
^Galson Laboratories wi	II subsititute ou	r routine/preferred meth	I nod if it does not match	the method li	sted on the	e COC unless this box is	s checked:	Use method(s	s) listed on COC				
For metals analysis: if re	questing an ana	lyte with the option of a	lower LOQ, please indi	cate if the low	ver LOQ is	required (only availabl	e for certain ana	llytes - see SA	(G):				
For crystalline silica: forr	m(s) of silica nee	eded must be indicated	(Quartz, Cristobalite, an	d/or Tridymit	e)*:								
Chain of Custody	Pr	int Name/Signature	Г	ate	Time			Print Nam	ne/Signature		Da	te	Time
Relinquished by :		-				Received by :							
Relinquished by :						Received by :							
		* R	Samples equired fields, failure			will be considered as elds may result in a			ing processed.		P	'age	of


Alexandria City High School


3330 King Street Alexandria, VA 22302

8382 Terminal Road, Suite B Lorton, VA 22079 Phone: 703-567-4346 Fax: 703-567-3487

3330 King Street Alexandria, VA 22302

8382 Terminal Road. Suite B Lorton, VA 22079 Phone: 703-567-4346 Fax: 703-567-3487

Alexandria City, Media Center

Alexandria City, Cafeteria

Alexandria City, Auditorium

Alexandria City, Classroom

Alexandria City, Gym

Alexandria City, Daycare Room