

15 Park Avenue Gaithersburg, MD 20877 PHONE: 301-548-0382 FAX: 301-527-0248

Setting the Standard in Comprehensive Environmental Solutions

INDOOR AIR QUALITY ASSESSMENT REPORT

at

JAMES K. POLK ELEMENTARY SCHOOL

5000 Polk Ave, Alexandria, VA 22304

<u>Report Prepared for:</u> John Contreras Alexandria City Public Schools 2601 Cameron Mills Rd, Alexandria, VA 22302

Dated: October 5, 2021

TABLE OF CONTENTS

1	Execu	itive Summary	1
2	Asses	sment Methods	3
3	Visual	Observations	6
4	Condi	tions for Human Occupancy	8
	4.1	Temperature	8
	4.2	Relative Humidity	9
	4.3	Carbon Dioxide	9
	4.4	Carbon Monoxide	9
	4.5	Multi-Gas	9
5	Mold	Sampling Results	9
6	Rador	n Gas Sampling Results	10
7	TO+1	5 (VOCs) Sampling Results	11
8	Forma	aldehyde Gas Sampling Results	11
9	4-PCH	I Sampling Results	11
10	Multi-	Gas detector (MSA Altair Multi-gas) Readings – Oxygen, VOCs, Hydrog	jen
	Sulfid	e	11
11	Qualit	y Control Program	14

APPENDICES

- Appendix A: Mold Analytical Results
- Appendix B: Radon Analytical Results
- Appendix C: VOCs (TO+15) Analytical Results
- **Appendix D:** Formaldehyde Analytical Results
- **Appendix E:** 4-PCH Analytical Results
- **Appendix F:** Sampling Locations
- Appendix G: Photographs

ABBREVIATIONS AND ACRONYMS

AHU AIHA ASHRAE	Air-Handling Unit American Industrial Hygiene Association American Society of Heating, Refrigerating and Air-Conditioning Engineers
ASTM	American Society for Testing and Materials
СО	Carbon Monoxide
CO2	Carbon Dioxide
EMLAP	Environmental Microbiology Laboratory Accreditation Program
HVAC	Heating, Ventilating, And Air-Conditioning
IAQ	Indoor Air Quality
NIST	National Institute for Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
RH	Relative Humidity

Abbreviations involving scientific volume and measurements involving media or water sampling

- Spores/m3 Mold spores per cubic meter of air
- LPM Liters Per Minute
- **NTE** Not to exceed
- **°F** degree Fahrenheit
- PPM Parts Per Million

1. Executive Summary

Total Environmental Concepts (TEC) was contracted by Alexandria City Public Schools (ACPS) to perform Indoor Air Quality (IAQ) assessments at 19 schools. The original list is provided below:

- Alexandria City High School (AC)
- AC Satellite Campus, Central Offices (CO)
- Charles Barrett Elementary School (BC)
- Cora Kelly School for Math (CK)
- Frances C. Hammond Elementary School (FH)
- George Mason Elementary School (GM)
- George Mason Elementary School (GW)
- James K. Polk Elementary School (JP)
- John Adams Elementary School (JA)
- Lyles-Crouch Elementary School (LC)
- Minnie Howard High School (MH)
- Naomi Brooks Elementary School (NB)
- Samuel Tucker Elementary School (ST)
- William Ramsey Elementary School (WR)
- Douglas MacArthur Elementary School (Out of Service)
- Jefferson-Houston Elementary School (JH)
- Ferdinand T. Day Elementary School (FD)
- Patrick Henry K-8 School (PH)
- Mount Vernon Community School (MV)

This IAQ assessment was conducted at at James K. Polk Elementary School on Friday, August 27, 2021. ACPS required that the testing be based on the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) guidelines. ACPS provided site plans and fifteen (15) sampling locations per school. ACPS chose sampling locations based on internal review of facilities maintenance records and a review of facilities maintenance-related issues. These sampling locations were selected to collect representative IAQ data in these specific areas and to document any areas of potential concern observed during the site assessment. ACPS required that TEC test for the following major indoor air pollutants:

- Mold
- Radon
- TO+15 (VOCs)
- Formaldehyde
- 4-polycyclohexene (4-PCH)

In accordance with ASHRAE, TEC also took measurements of the following at each school:

- Carbon Monoxide
- Carbon Dioxide
- Humidity

- Temperature
- Oxygen

Summary of findings and recommendations during this limited IAQ investigation:

 Mold – TEC conducted site-specific mold sampling outside the James K Polk Elementary School to obtain a baseline of the number and types of fungal spores in the air. This baseline was compared to the spores collected at the sampling locations since inside spore counts above baseline could indicate internal sources of mold.

Findings:

- 1. The number of spores in the air was within acceptable ranges in all locations compared to background outside air mold spore counts.
- 2. Minor water staining was observed in several locations on ceiling tiles. No active leaks could be identified above the drop ceilings. These tiles should be replaced so that active leaking can be detected.

Photographs can be found in Section 3, Visual Observations.

Recommendations:

- Moving forward, any suspected mold growth should be inspected by a qualified professional.
- Investigate sources of water leaks and any evidence of water staining.
- Inspect above drop ceilings and replace stained ceiling tiles.
- Inspect areas around the building foundation.
- For all HVAC and associated building systems, a detailed maintenance schedule should be established and adhered to.

None of the results from the fifteen sampling locations at James K Polk Elementary School were indicative of mold issues.

- **Radon** levels recorded in all locations were less than 4pCi/L, as recommended by EPA and HUD.
- **VOCs** The levels of volatile organic compounds (VOCs) recorded at each location were within acceptable ranges compared to EPA Regional Screening Levels (RSLs).
- **Formaldehyde** the levels of formaldehyde recorded at each location were within an acceptable range, compared to EPA Regional Screening Level (RSLs) of 1ug/m3.
- **4-PCH** levels recorded during this investigation were within the LEED (Leadership of Energy and Environmental Design) IAQ guideline of 6.5 ug/m3.
- **Carbon monoxide** concentrations in all areas were less than the EPA, and ASHRAE recommended a limit of 9 ppm.
- **Carbon dioxide** concentrations in all tested spaces were less than the ASHRAE limit of 1,092 ppm.
- **RH** the relative humidity in all tested spaces was within the ASHRAE guidelines of ≤ 67% and for this investigation, ≤ 65%. None of the tested locations had a relative humidity greater than 65%.

• **Temperature** – none of the tested spaces had temperatures greater than the ASHRAE recommended summer range of 75°F-80.5°F.

3. <u>Assessment Methods</u>

Under the direction of TEC Industrial Hygienist Nikki Satari, Margaret Stanger, Victoria Powers, and Channing Jackson, also of TEC, conducted IAQ inspections and air sampling on August 26, 2021. All air samples were collected three feet to six feet from the floor level, the typical breathing zone for adults.

Mold air samples were collected with a field calibrated Environmental Monitoring Systems High Volume Sampling Pump on Allergenco-D Disposable IAQ Air Monitoring Cassettes at a flow rate of 10 liters per minute for a sample volume of 75 liters during the assessment (photograph below). The Hayes Microbial Consulting laboratory reports are included in Appendix A.

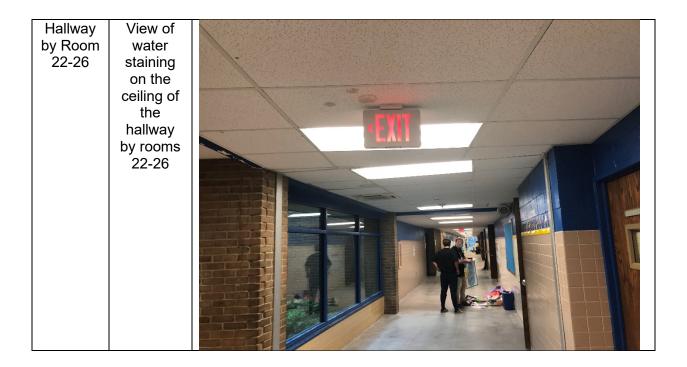
Radon gas samples were collected by securing Air Chek Radon Test Kits (photograph below). Samples were collected within the breathing zone (4-6ft from ground level) at each sample location. In accordance with Air Chek's Radon Test Kit Instructions, kits were secured to walls inside the building and away from open windows, doors to the outside, or interior air ventilation systems. The sampling time was 72 hours. Radon analytical results can be found in Appendix B.

Formaldehyde gas air samples were collected using static Aldehyde TraceAir II Monitors (photograph below). Samples were secured to surrounding testing equipment to expose the total surface area of the sampling device for the 4 hours of sampling time. Monitors were collected after 4 hours and processed for shipment to Phase Separation Science located in Catonsville, MD. Formaldehyde analytical results can be found in Appendix D.

The 4-polycyclohexene (4-PCH) samples were collected in SKC's Anasorb CSC sorbent tubes through Gilian GilAir3 Air Sampling Pumps (photograph below). Pumps were placed within the breathing zone (4-6ft from ground level). Run times were 8 hours or time-weighted 4-hour runs. 4-PCH analytical results can be found in Appendix E.

TO+15 (VOCs) samples were collected using ENTECH Instruments 1.4L SUMMA canisters with an ENTECH regulator attachment (photograph below). Canisters were deployed at each location for a run time of 8 hours or a time-weighted run time of 4 hours. Internal pressure readings were recorded at the start and end of each sample run time. TO+15 (VOCs) analytical results can be found in Appendix C.

The temperature and relative humidity were taken with the AcuRite Digital Indoor Temperature and Humidity Monitor in the lobby of each school. Temperature and relative humidity readings can be found in Section 5, Mold Sampling Results, below.


Real-time measurements for oxygen, carbon dioxide, carbon monoxide, VOC, hydrogen sulfides were taken with a Multi-gas detector. These measurements can be found in Section 10 Multi-gas Detector (MSA Altair Multi-gas) Readings. This information can be found in Table 1 below.

4. Visual Observations

Sample Location	August 27, 2021	Visual Observations
Hallway by Room 22-26	Water staining was observed on the ceiling of the hallway by rooms 22-26.	

Hallway by Room 25	View of water staining on the ceiling of the hallway by room 25.	
Hallway by Room 22-26	View of water staining on the ceiling of the hallway by rooms 22-26.	

5. <u>Conditions for Human Occupancy</u>

Conditions for Human Occupancy are addressed in ASHRAE Standard 55-2017. These standards are designed to provide comfort for an estimated 80% of occupants. The standard provides for a temperature range between approximately 67 and 82 °F. A more specific range based on relative humidity, season, clothing worn, activity levels, and other factors can be determined. For example, the standard does not specify a lower humidity range but notes that issues of comfort, skin irritation, dry mucous membranes, and static electricity may arise when the relative humidity is less than 30%. ASHRAE Standard 62.1-2016 does recommend an upper limit of 67% humidity to avoid conditions conducive to microbial growth. For this investigation, TEC used a conservative upper limit of 65%. The recommended ASHRAE temperature range for schools and office spaces in summer is 75°F-80.5°F.

4.1 Temperature

The recommended ASHRAE temperature range for schools and office spaces in summer is 75°F-80.5°F. The recorded relative humidity in all locations was below 65%, and the average indoor temperature can be found in Table 2.

4.2 Relative Humidity

ASHRAE Standard 62.1-2016 recommends a relative humidity no greater than 67% to avoid conditions conducive to microbial growth. The relative humidity observed by TEC during this investigation was below 65% in all locations. Average relative humidity can be found in Table 2.

4.3 Carbon Dioxide

Carbon dioxide (CO2) is a by-product of combustion-burning engines such as generators, furnaces, boilers, and idling automobile engines. High CO2 measurements may indicate engine maintenance issues. There were no exceedances in real-time during the IAQ investigation. Complete results are summarized in Table 1.

4.4 Carbon Monoxide

Carbon monoxide (CO) is a by-product of the combustion of fossil fuels. Generators, furnaces, boilers, idling automobile engines may all produce CO. High CO measurements may indicate engine maintenance issues. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

4.5 Multi-gas Detector Readings

Multi-gas readings were taken at each location to document current conditions at the time of the sampling efforts and to monitor the environment between sampling locations. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

6. Mold Sampling Results

TEC conducted mold sampling outside to obtain a baseline spore count. This baseline was compared to inside mold spore counts at the designated sampling locations.

The number of spores in the air was within acceptable ranges in all locations compared to background outside air mold spore counts.

In conclusion, federal standards for the number of fungal spores present in the indoor environment don't exist. The widely accepted guideline in the indoor air quality field requires that the number and types of spores present in the indoor environment not exceed those present outdoors at any given time.

Mold is carried indoors through building entrances, open windows, loading docks, foot traffic into buildings, and the HVAC system. To thrive indoors, mold requires a food source, proper temperature, and humidity to foster its growth.

There will always be some mold spores present in "normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and, if it does, to help pinpoint the area of contamination.

There will also be mold spores present in "normal" outdoor environments. In any environment, excess mold growth may arise due to excess moisture, and indoors this may indicate water leaks or high indoor humidity.

Interior spore counts above baseline readings may indicate internal sources of mold, and this would indicate a requirement for further investigation and potential mitigation

TEC recommends that ACPS investigate all areas where there are obvious signs of water intrusion. Care should be taken to look above drop ceilings and around the building foundation. Any hidden suspected mold should be tested and verified by a qualified professional. The mold in air results do not indicate a need for mold abatement at this time, but conditions may worsen if the issues with leaks and water intrusion are not addressed. The observed ratio anomalies are most likely caused by a combination of the normal fluctuation in daily spore counts and the issues with water intrusion.

Findings:

- 1. The number of spores in the air was within acceptable ranges in all locations compared to background outside air mold spore counts.
- 2. Minor water staining was observed in several locations on ceiling tiles. Active water intrusion could be observed due to rain during sampling.

Photographs can be found in Section 3, Visual Observations.

Recommendations:

- Moving forward, any suspected mold growth should be inspected by a qualified professional.
- Investigate sources of water leaks and any evidence of water staining.
- Inspect above drop ceilings and replace stained ceiling tiles.
- Inspect areas around the building foundation.
- For all HVAC and associated building systems, a detailed maintenance schedule should be established and adhered to.

None of the results from the fifteen sampling locations at James K Polk Elementary School were indicative of mold issues.

Mold analytical results can be found in Appendix A.

7. Radon Gas Sampling Results

Radon forms as the result of the radioactive decay of uranium. Uranium is a naturally occurring radioactive by-product that occurs when rock and soil break down. Some building materials, such as granite, maybe a source of radon. ACPS provided sampling areas, which did not allow for TEC to utilize the sampling protocol provided by Air Chek to perform a comprehensive survey. Air Chek Radon Test Kits collection times were a minimum of 72 hours. Test kits were then retrieved and shipped to Air Chek Inc., located in Mills River, NC. Air Chek laboratories are the National Institute of Standards and Technology's (NIST) National Voluntary Laboratory Accreditation Program (NVLAP), and American Industrial Hygiene Association (AIHA) for Environmental Microbial Laboratory Accreditation Program (EMLAP) certified. Analytical results can be found in Appendix B.

8. TO+15 (VOC) Sampling Results

Volatile organic compounds (VOCs) are organic chemicals emitted as gases. Carpets, flooring materials, cleaning agents, disinfectants, air fresheners, and vinyl furnishings may all be sources of VOCs in indoor air. Analytical results can be found in Appendix C.

9. Formaldehyde Gas Sampling Results

Sources of formaldehyde are similar to sources of carbon monoxide. They include gas-burning engines and space heaters. Other sources include smoking, household products, pressed wood products, and adhesives. Analytical results can be found in Appendix D.

10. 4-PCH Sampling Results

4-polycyclohexene is a common indoor air contaminant most commonly associated with " newcarpet" smell complaints. 4-PCH is a by-product of carpet manufacturing and has been associated with adverse health effects. None of the areas investigated during this study indicated elevated levels of PCH. Analytical results can be found in Appendix E.

11. Multi-Gas Detector (MSA Altair Multi-gas) Readings

Multi-gas readings were taken at each location to document current conditions at the time of the sampling efforts and to monitor the environment between sampling locations. There were no exceedances in real-time during the IAQ investigation. Multi-gas results can be found below in Table 1.

Table 1

	Multi-G	as Detector Readings		
Location	VOC	СО	OXYGEN	H2S
Reception Office	0.0	0.0	20.9	0.0
Cafeteria	0.0	0.0	20.9	0.0
Library	0.0	0.0	20.9	0.0
Gym	0.0	0.0	20.9	0.0
41	0.0	0.0	20.9	0.0
50	0.0	0.0	20.9	0.0
38	0.0	0.0	20.9	0.0
Hall 38	0.0	0.0	20.9	0.0
14	0.0	0.0	20.9	0.0
Hall 8	0.0	0.0	20.9	0.0
1	0.0	0.0	20.9	0.0
22	0.0	0.0	20.9	0.0
Multi-Purpose	0.0	0.0	20.9	0.0
33	0.0	0.0	20.9	0.0
Hall 52	0.0	0.0	20.9	0.0
26	0.0	0.0	20.9	0.0

Table 2

		Results of A	nalytes by Loo	cation		
Location	Radon		Iold	TO+15	4PCH	Formaldehyde
		AVG: 77 F	AVG: 63 %	VOCs		
Reception Office	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
Cafeteria	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
Library	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
Gym	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
41	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
50	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
38	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
Hall 38	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
14	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
Hall 8	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
1	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
22	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
Multi-Purpose	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
33	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	
Hall 52	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
26					ug/m3	
26	< 4 pCi/L	Spore Co	unt Normal	< RSL	< 6.5	< RSL
					ug/m3	

*See Section 5 - Ratio abnormalities are most likely caused by fluctuations in daily spore counts

12. Quality Control Program

- TEC recognizes the importance of quality assurance (QA) and quality control (QC) measures related to sample collection and processing performance.
- To ensure compliance with QA/QC measures, Standard Operating Procedures (SOPs) have been developed for field sample collection techniques, field sample screening procedures, multi-media sampling, and the accurate presentation of findings/reporting.
- All staff are provided these SOPs and are trained in these procedures before conducting work activities. TEC's Program Manager and the on-site PM/QCM will manage the quality control program.
- The PM will work closely with field technicians to ensure the success of the quality control program. All team members will receive copies of and abide by the quality control plan.
- Daily records will be kept of all operations, activities, and tests performed in the quality control program.
- All samples collected during this IAQ assessment were collected, processed, and shipped under the strictest chain of custody (CoC) guidelines.
- All samples were shipped for analysis by a National Voluntary Laboratory Accreditation Program (NVLAP) accredited laboratory.

Appendix A: Mold Analytical Results

#21032407

Analysis Report prepared for

Total Environmental Concepts, Inc.

8382 Terminal Road Suite B Lorton, VA 22079

Phone: (571) 289-2173

James K. Polk

Collected: August 27, 2021 Received: August 30, 2021 Reported: August 30, 2021 We would like to thank you for trusting Hayes Microbial for your analytical needs! We received 16 samples by FedEx in good condition for this project on August 30th, 2021.

The results in this analysis pertain only to this job, collected on the stated date, and should not be used in the interpretation of any other job. This report may not be duplicated, except in full, without the written consent of Hayes Microbial Consulting, LLC..

This laboratory bears no responsibility for sample collection activities, analytical method limitations, or your use of the test results. Interpretation and use of test results are your responsibility. Any reference to health effects or interpretation of mold levels is strictly the opinion of Hayes Microbial. In no event, shall Hayes Microbial or any of its employees be liable for lost profits or any special, incidental or consequential damages arising out of the use of these test results.

plien N. Hoyces

Steve Hayes, BSMT(ASCP) Laboratory Director Hayes Microbial Consulting, LLC.

EPA Laboratory ID: VA01419

DPH License: #PH-0198

3005 East Boundary Terrace, Suite F. Midlothian, VA. 23112

(804) 562-3435

Karl Ford Total Environmental Concepts, Inc. 8382 Terminal Road Suite B Lorton, VA 22079

(571) 289-2173

#21032407

SOP - HMC#101

Sample Number	1	JP43	15321	2	JP431	5337	3	JP431	5341	4	JP431	5342		
Sample Name		JP 41			JP SO		JP 38			JP Hall 34				
Sample Volume		75.00 liter			75.00 liter			75.00 liter			75.00 liter			
Reporting Limit		13 spores/m ³	3		13 spores/m ³			13 spores/m ³		13 spores/m ³				
Background		2			2			2			2			
Fragments		ND			ND			ND			ND			
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Tota		
Alternaria														
Ascospores	3	40	100.0%	1	13	100.0%	2	27	66.7%	2	27	100.0%		
spergillus Penicillium														
Basidiospores							1	13	33.3%					
Bipolaris Drechslera														
Chaetomium														
Cladosporium														
Curvularia														
Epicoccum														
Fusarium														
Memnoniella														
Myxomycetes														
Pithomyces														
Stachybotrys														
Stemphylium														
Torula														
Ulocladium														
Total	3	40	100%	1	13	100%	3	40	100%	2	27	100%		
Water Damage Indicato	r	Commo	on Allergen		Slightly Higher	than Baseline	Signi	ficantly Higher	than Baseline		Ratio Abnormal	ity		
		Collected: Aug 2	27, 2021	Rece	eived: Aug 30, 2	021	Reported	Aug 30, 2021						
HAY		Project Analyst: Ramesh Poluri,		ame	An	Date: 08 - 30 - 202	Review 21 Steve H	ed By: layes, BSMT 🏒	tealer 7	1. Hours	Date:	0 - 2021		
MICROBIAL CO		3005 East Bo				00 00 202			1	yu	- 00 50	2021		

Karl Ford Total Environmental Concepts, Inc. 8382 Terminal Road Suite B Lorton, VA 22079

(571) 289-2173

#21032407

SOP - HMC#101

Sample Number	5	JP431	5327	6	JP431	5332	7	JP431	5326	8	JP431	5336	
Sample Name		JP 14			JP Hall 8			JP 1			JP Outside		
Sample Volume		75.00 liter			75.00 liter			75.00 liter			75.00 liter		
Reporting Limit		13 spores/m ³			13 spores/m ³			13 spores/m ³		13 spores/m ³			
Background		2			2			2			2		
Fragments		ND			ND			ND			13/m ³		
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Tota	
Alternaria										1	13	<1%	
Ascospores	1	13	100.0%	2	27	66.7%	1	13	25.0%	184	2453	55.9%	
Aspergillus Penicillium							3	40	75.0%	3	40	<19	
Basidiospores				1	13	33.3%				96	1280	29.2%	
Bipolaris Drechslera													
Chaetomium													
Cladosporium										40	533	12.2%	
Curvularia													
Epicoccum													
Fusarium													
Memnoniella													
Myxomycetes										3	40	<1%	
Pithomyces										2	27	<1%	
Stachybotrys													
Stemphylium													
Torula													
Ulocladium													
Total	1	13	100%	3	40	100%	4	53	100%	329	4386	100%	
Water Damage Indicator		Commo	n Allergen		Slightly Higher than Baseline		Significantly Higher than Baseline		than Baseline	Ratio Abnormality			
		Collected: Aug 2	27, 2021	Rece	eived: Aug 30, 2	021	Reported	Aug 30, 2021					
	ES	Project Analyst: Ramesh Poluri,	PHD P. R	Came	Shy	Date: 08 - 30 - 202	Review 21 Steve H	ed By: łayes, BSMT 🏒	tephen 7	1. Hoyes	Date:) - 2021	
MICROBIAL CO			1 .	ce, Suite F. Mic	-		(804) 562-34	-	tact@havesn	nicrobial.com		Page: 3	

Karl Ford Total Environmental Concepts, Inc. 8382 Terminal Road Suite B Lorton, VA 22079

(571) 289-2173

#21032407

SOP - HMC#101

Sample Name			JP4315657		10 JP4315331 JP 22			11 JP4315364 JP Reception			12 JP4315323 JP Multipurpose		
	JP Library												
Sample Volume		75.00 liter		75.00 liter			75.00 liter			75.00 liter			
Reporting Limit		13 spores/m ³	}		13 spores/m ³			13 spores/m ³		13 spores/m ³			
Background		2			2			2		2			
Fragments		ND			ND			ND			ND		
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Tota	
Alternaria													
Ascospores	1	13	100.0%	2	27	66.7%	2	27	40.0%	1	13	33.3%	
spergillus/Penicillium	•		100.010						10.0.0	· · ·			
Basidiospores													
Bipolaris Drechslera													
Chaetomium													
Cladosporium				1	13	33.3%	2	27	40.0%				
Curvularia													
Epicoccum													
Fusarium													
Memnoniella													
Myxomycetes							1	13	20.0%	2	27	66.79	
Pithomyces													
Stachybotrys													
Stemphylium													
Torula													
Ulocladium													
Total	1	13	100%	3	40	100%	5	67	100%	3	40	1009	
Water Damage Indicator		Commo	on Allergen		Slightly Higher	than Baseline	Signi	ficantly Higher	than Baseline		Ratio Abnormal	ity	
		Collected: Aug 2		Rece	eived: Aug 30, 2			Aug 30, 2021	A 4	,			
		Project Analyst: Ramesh Poluri,		Came	/1.	Date: 08 - 30 - 202	Review Steve H	ed By: łayes, BSMT 🏒	tephen 7	1. Hoyes	Date:	0 - 2021	

Karl Ford Total Environmental Concepts, Inc. 8382 Terminal Road Suite B

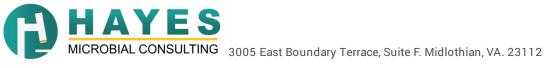
MICROBIAL CONSULTING

Lorton, VA 22079

#21032407

SOP - HMC#101

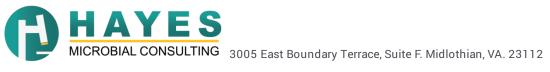
Sample Number	13	JP431	5328	14	JP431	5330	15	JP431	5325	16	JP431	15318	
Sample Name		JP Gym			JP 33			JP Hall 52-53			JP 26		
Sample Volume		75.00 liter			75.00 liter			75.00 liter			75.00 liter		
Reporting Limit		13 spores/m ³		13 spores/m ³				13 spores/m ³		13 spores/m ³ 2			
Background		2			2			2					
Fragments		ND			ND			ND			ND		
Ormaniam	Dave Oavent	Count / m ³	% of Total	Davis Occurat	Count / m ³	% of Total	Dave Occurt	Count / m ³	9 of Total	Davis Occurat	Count / m ³	0 of Taba	
Organism	Raw Count	Count / m-	% of Total	Raw Count		% of Total	Raw Count		% of Total	Raw Count	Count / m-	% of Tota	
Alternaria		40	75.00/		07	F0.0%		10	10.5%		F0	00.0%	
Ascospores	3	40	75.0%	2	27	50.0%	1	13 93	12.5% 87.5%	4	53	80.0%	
pergillus Penicillium							//	93	87.5%				
Basidiospores Bipolaris Drechslera													
Chaetomium													
Cladosporium	1	13	25.0%							1	13	20.0%	
Ciadosponum Curvularia	I	13	25.0%							I	13	20.0%	
Epicoccum													
Fusarium													
Memnoniella													
Myxomycetes				1	13	25.0%							
Pithomyces				1	13	25.0%							
Stachybotrys					15	20.0 %							
Stemphylium													
Torula													
Ulocladium							-						
Total	4	53	100%	4	53	100%	8	106	100%	5	66	100%	
Water Damage Indicato	r	Commo	n Allergen		Slightly Higher	than Baseline	Signi	ficantly Higher	than Baseline		Ratio Abnormal	ity	
		Collected: Aug 2	27, 2021	Rece	eived: Aug 30, 2	021	Reported:	Aug 30, 2021					
ТНАТ	ES	Project Analyst: Ramesh Poluri,	Pr	2		Date: 08 - 30 - 202	Reviewe	ed By: ayes, BSMT 🏒	Halin		Date:	0 - 2021	


3005 East Boundary Terrace, Suite F. Midlothian, VA. 23112

(804) 562-3435

contact@hayesmicrobial.com

Page: 5 of 8


Karl Ford Fotal Environmental Concepts 3382 Terminal Road Suite B	, Inc. James K. Polk #21032407
orton, VA 22079 571) 289-2173	Spore Trap Information
Reporting Limit	The Reporting Limit is the lowest number of spores that can be detected based on the total volume of the sample collected and the percentage of the slide that is counted. At Hayes Microbial, 100% of the slide is read so the LOD is based solely on the total volume. Raw spore counts that exceed 500 spores will be estimated.
Blanks	Results have not been corrected for field or laboratory blanks.
Background	The Background is the amount of debris that is present in the sample. This debris consists of skin cells, dirt, dust, pollen, drywall dust and other organic and non-organic matter. As the background density increases, the likelihood of spores, especially small spores such as those of Aspergillus and Penicillium may be obscured. The background is rated on a scale of 1 to 5 and each level is determined as follows:
	 NBD: No background detected due to possible pump or cassette malfunction. Recollect sample. (Field Blanks will display NBD) 1: <5% of field occluded. No spores will be uncountable. 2: 5-25% of field occluded. 3: 25-75% of field occluded. 4: 75-90% of field occluded. 5: >90% of field occluded.
Fragments	Fragments are small pieces of fungal mycelium or spores. They are not identifiable as to type and when present in very large numbers, may indicate the presence of mold amplification.
Control Comparisons	There are no national standards for the numbers of fungal spores that may be present in the indoor environment. As a general rule and guideline that is widely accepted in the indoor air quality field, the numbers and types of spores that are present in the indoor environment should not exceed those that are present outdoors at any given time. There will always be some mold spores present in "normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination. Spore counts should not be used as the sole determining factor of mold contamination. There are many factors that can cause anomalies in the comparison of indoor and outdoor samples due to the dynamic nature of both of those environments.
Water Damage Indicator	Blue: These molds are commonly seen in conditions of prolonged water intrusion and usually indicate a problem.
Common Allergen	Green: Although all molds are potential allergens, these are the most common allergens that may be found indoors.
	Orange: The spore count is slightly higher than the outside count and may or may not indicate a source of contamination.
Slightly Higher than Baseline	Red: The spore count is significantly higher than the baseline count and probably indicates a source of contamination.
Significantly Higher than Baseline	Violet: The types of spores found indoors should be similar to the ones that were identified in the baseline sample. Significant increases (more than 25%) in
Ratio Abnormality	the ratio of a particular spore type may indicate the presence of abnormal levels of mold, even if the total number of spores of that type is lower in the indoor environment than it was outdoors.
Color Coding	Fungi that are present in indoor samples at levels lower than 200 per cubic meter are not color coded on the report, unless they are one of the water damage indicators.

Karl Ford Total Environmental Co	oncepts, l	лс. James К. Polk #21032 4
8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173		Organism Descript
Alternaria	Habitat:	Commonly found outdoors in soil and decaying plants. Indoors, it is commonly found on window sills and other horizontal surfaces.
	Effects:	A common allergen and has been associated with hypersensitivity pneumonitis. Alternaria is capable of producing toxic metabolites which may be associated with disease in humans or animals. Occasionally an agent of onychomycosis, ulcerated cutaneous infection and chronic sinusitis, principally in the immunocompromised patient.
Ascospores	Habitat:	A large group consisting of more than 3000 species of fungi. Common plant pathogens and outdoor numbers become very high following rain. Most of the genera are indistinguishable by spore trap analysis and are combined on the report.
	Effects:	Health affects are poorly studied, but many are likely to be allergenic.
Aspergillus Penicillium	Habitat:	The most common fungi isolated from the environment. Very common in soil and on decaying plant material. Are able to grow well indoors on a wide variety of substrates.
	Effects:	This group contains common allergens and many can cause hypersensitivity pneumonitis. They may cause extrinsic asthma, and many are opportunistic pathogens. Many species produce mycotoxins which may be associated with disease in humans and other animals. Toxin production is dependent on the species, the food source, competition with other organisms, and other environmental conditions.
Basidiospores	Habitat:	A common group of Fungi that includes the mushrooms and bracket fungi. They are saprophytes and plant pathogens. In wet conditions they can cause structural damage to buildings.
	Effects:	Common allergens and are also associated with hypersensitivity pneumonitis.
Cladosporium	Habitat:	One of the most common genera worldwide. Found in soil and plant debris and on the leaf surfaces of living plants. The outdoor numbers are lower in the winter and often relatively high in the summer, especially in high humidity. The outdoor numbers often spike in the late afternoon
	Effects:	and evening. Indoors, it can be found growing on textiles, wood, sheetrock, moist window sills and in HVAC supply ducts. A common allergen, producing more than 10 allergenic antigens and a common cause of hypersensitivity pneumonitis.
Myxomycetes	Habitat:	Found on decaying plant material and as a plant pathogen.
	Effects:	Some allergenic properties reported, but generally pose no health concerns to humans.

	ntal Concepts, Inc.	James K. Polk	#21032407
8382 Terminal Road Suit Lorton, VA 22079 (571) 289-2173	te B		Organism Descriptions
Pithomyces	Habitat: Common f	ungus isolated from soil, decaying plant material. Rarely found indoors.	
	Effects: Allergenic	properties are poorly studied. No cases of infection in humans.	

#21032685

Analysis Report prepared for

Total Environmental Concepts, Inc.

8382 Terminal Road Suite B Lorton, VA 22079

Phone: (571) 289-2173

ACPS IAQ Testing

Collected: August 27, 2021 Received: August 31, 2021 Reported: August 31, 2021 We would like to thank you for trusting Hayes Microbial for your analytical needs! We received 1 samples by FedEx in good condition for this project on August 31st, 2021.

The results in this analysis pertain only to this job, collected on the stated date, and should not be used in the interpretation of any other job. This report may not be duplicated, except in full, without the written consent of Hayes Microbial Consulting, LLC..

This laboratory bears no responsibility for sample collection activities, analytical method limitations, or your use of the test results. Interpretation and use of test results are your responsibility. Any reference to health effects or interpretation of mold levels is strictly the opinion of Hayes Microbial. In no event, shall Hayes Microbial or any of its employees be liable for lost profits or any special, incidental or consequential damages arising out of the use of these test results.

John N. Hoyces

Steve Hayes, BSMT(ASCP) Laboratory Director Hayes Microbial Consulting, LLC.

EPA Laboratory ID: VA01419

DPH License: #PH-0198

3005 East Boundary Terrace, Suite F. Midlothian, VA. 23112

(804) 562-3435

Total E	ie Stanger Environmental Concepts, Inc.	ACPS IAQ Testi	ng		#21032685
	minal Road Suite B /A 22079 99-2173				Direct Analysis SOP - HMC#102
#1	Swab (1.00 cm2)		Organism	Spore Estimate	Mycelial Estimate
JP-1	JP - Hall 25		No Fungi Detected		

	Collected:Aug 27, 2021	Received: Aug 31, 2021	Reported: Aug 31, 20	021	
HAYES	Project Analyst: Steve Hayes, BSMT Stephen N.	Date: 08 - 31 - 2	Reviewed By: 021 Ramesh Poluri, PhD	P. Romexh	Date: 08 - 31 - 2021
MICROBIAL CONSULTING	3005 East Boundary Terrace, Suite I			contact@hayesmicrobial.com	Page: 2 of 3

Direct Analysis Information

Spore Estimate		Percentages
ND	None Detected	0%
Rare	Less than 10 spores	< 1%
Light	10 - 99 spores	1-10%
Moderate	100 - 999 spores	11-25%
Heavy	1000 - 9999 spores	26-50%
Very Heavy	10000 or greater spores	51-100%

Mycelial Estimate		
ND	None Detected No active growth at site.	
Trace	Very small amount of Mycelium Probably no active growth at site.	
Few	Some Mycelium Possible active growth at site.	
Many	Large amount of Mycelium Probable active growth at site.	

	TU ISCU	1	Pump Start Time	Pump End Time
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 10			1609
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 UP		1632	1639
4315327 JP 14 4315326 JP 1015ide 1649 4315326 JP 0015ide 1559 4315328 JP 22 4315328 JP 22 431528 JP 22 431528 JP 22 431528 JP 22 431528 JP 22 431528 JP 22 431528	JP hai		1621	1428
4315326 JP hell 8 4315326 JP COLECIDE 1 4315326 JP COLECIDE 1 4315328 JP 22 4315328 JP 22 4315328 JP 22 4315328 JP 22 4315328 JP Action 4315328 JP Action 43	JP 14) le LO	1647
4315326 JP I <td< td=""><td>5332 JP hall</td><td></td><td>1649</td><td>1656</td></td<>	5332 JP hall		1649	1656
4315336 JP Barry 4315364 JP Barry 4315323 JP Barry 4315323 JP Barry 4315325 JP Multipurpose 4315318 JP 2.6 4315318 JP 2.6 4315318 JP 2.6	315326 JP 1		1657	1704
431531 JP 22 431532 JP 22 431532 JP multipurpose 431532 JP multipurpose 431532 JP multipurpose 431531 JP 26 431531 JP 26 4	D		1559	1607
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D		1703	171
1215323 12 multipurpose 1623 1315323 12 12 1641 1315323 12 1641 1623 1315323 12 1641 1623 1315323 12 1641 1623 1315323 12 1641 1623 1315323 12 1641 1623 1315323 12 1641 1623 14315323 12 1641 1623 14315313 12 1641 1657 165313 14 1657 1657 165313 14 1657 1657 165313 16 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 1657 <	J P		1706	1113
4315323 UP multipurpose 4315323 UP gum 4315325 UP hall 5253 4315325 UP hall 5253 14 2 le 4315318 UP 2 le 4315318 UP 2 le 1641 1641 1641 1641 1641 1641	1 JPY		1602	1604
4315328 UP Gymn 4315325 UP hall 5253 4315318 UP 26 4315318 UP 26 4515318 UP 26 1641 1641 1641 1641	222 JP		Stall	1624
4315330 UY 33 4315325 UP hall 5253 4515318 UP 76 1641 1657 1657	215328 JP		1628	1655
4315325 UP half 5253	1 5330 UY		1041	1001
	UP halls		1 Le LIH	159
	JP 2		1657	- 01

Appendix B: Radon Analytical Results

September 2, 2021 ** LABORATORY	ANALYSIS REPORT ** Pg 1 of 4			
Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS				
Kit #: 9723769 Result: < 0.3 pCi/l Location: mul +l purpos e - 2 Jp	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 5:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 94 hours 19.3% 70°F			
Kit #: 9723777 Result: < 0.3 pCi/l Location: ۲۵۲۲۸ – ۱ Jp	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 5:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 94 hours 11.0% 70°F			
Kit #: 9723778 Result: < 0.3 pCi/l Location: Hall ろろ-ろこ Jp	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 5:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 94 hours 17.6% 70°F			
Kit #: 9723784 Result: < 0.3 pCi/l Location: $C 1955 50$	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 5:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 94 hours 13.7% 70°F			
Kit #: 9723785 Result: < 0.3 pCi/l Location: c1ass 22/Band Jp	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 4:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 95 hours 16.8% 70°F			
Kit #: 9723786 Result: < 0.3 pCi/l Location:	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 4:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 95 hours 16.7% 70°F			

September 2, 2021	** LABORATORY	ANALYSIS REPORT **	Pg 2 of 4
Attention: P8184 / LEILA DE	EAN / TOTAL ENVIRON	MENTAL CONCEPTS	
Kit #: 9723789 Result: Location: Class 41 Jp	< 0.3 pCi/l		08-27 at 5:00 pm 08-31 at 3:00 pm
Kit #: 9723790 Result: Location: multi purpose Jp	< 0.3 pCi/l - 1		08-27 at 5:00 pm 08-31 at 3:00 pm
Kit #: 9723791 Result: Location: Class 2.6 Jp	< 0.3 pCi/l		08-27 at 4:00 pm 08-31 at 3:00 pm
Kit #: 9723792 Result: Location: Library -2 Jp	< 0.3 pCi/l		08-27 at 4:00 pm 08-31 at 3:00 pm
Kit #: 9723793 Result: Location: Library - B Jp	< 0.3 pCi/l		08-27 at 4:00 pm 08-31 at 3:00 pm
Kit #: 9723794 Result: Location: Library - D Jp ,	< 0.3 pCi/l		08-27 at 4:00 pm 08-31 at 3:00 pm

September 2, 2021 ** LABORATORY ANALY	SIS REPORT ** Pg 3 of 4			
Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS				
Kit #: 9723795 Result: < 0.3 pCi/l Location: Hall 8-9 Jp	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 4:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 95 hours 15.3% 70°F			
Kit #: 9723796 Result: < 0.3 pCi/l Location: $Reception$	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 4:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 95 hours 19.6% 70°F			
Kit #: 9723797 Result: < 0.3 pCi/l Location: Library-1 Jp	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 4:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 95 hours 15.6% 70°F			
Kit #: 9723798 Result: < 0.3 pCi/l Location: Class \ Jp	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 4:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 95 hours 16.1% 70°F			
Kit #: 9723799 Result: < 0.3 pCi/l Location: c1ass 14 Jp	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 4:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 95 hours 18.1% 70°F			
Kit #: 9723800 Result: < 0.3 pCi/l Location: 644m - 2 Jp	Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 5:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 94 hours 11.1% 70°F			

Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS

Kit #: 9723862 Result: < 0.3 pCi/l Location: \all 34

Jp

,

Analysis Note : Analyzed : 2021-09-02 at 10:00 am Started : 2021-08-27 at 5:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 94 hours 15.9% 70°F

Kit #: 9723892 Result: ???? Location: C\ass 3 8

Jp

,

Started : 2021-08-27 at 5:00 pm Ended : 2021-08-31 at 3:00 pm Hours/MST% : 94 hours 21.5% 70°F

Analyzed : 2021-09-02 at 10:00 am

Analysis Note : WI

					Comment																										
H: 63	27	Pickup Tech	Pickup Date Email		Time out																			-							
、ユ	N-				Time in	3:56	4:00	4:00	4.00	4:00	11:4	4:13	4. 18	41.25	4:33	4:38	1	91:5	4:57	4:57	5:05	5:05	5:22	5:30	5,30	5:32					
	1	Hoper			Fan Y/N	2	S	2	R	N	2	Ν	2	N	N	N	1	2	2	8	2	2	S	2	2	N					
\$	P011		Sample Media		Window Y/N	2	X		>	٢	٢	Y	٢	٢	٢	٢	1	2	٨.	~	٢	2	N	2	R	٢					
	SK				HVAC Y/N	-	~ :	>-	27	-	٢	۲	ىر	5	ىر	2.	1	-ر	7	7	ر	2	٢	٢	٢	3					
	James K	Maggies	1711710		SQFT >2000												(-					*								
		Placement Tech	Placement Date Address	19 (July 10)	Location/ room	JP-Keception	JP-Library-1	28-L. Orang B		JP-Library D	JP-C1955 1	JP - Hall 8-9	JP - class 14	JP-Class 22 Band	JP- C19 55 26	3P-C1955 33		JP-Hall 33-32	JP - Onutri - Durpose (3P-MULLi-PULPOSE2	5P-GYM-1	JP-GYM-2	JP- Halish	2P - a class 38	JP - Cla 5541	JP- CLASS 50					
		Total	Environmental		Sample #	12112119	7975555 C	3841237938		J 44123749 D	329723798	JP9123795	30 9723 799	JP 9723785	30 9723791	JP 1123786	BARD BUR LOGA	JP 9723778	599723790	JP9723769	JP 9723777	JP 9723800	309723862	JP 9723892	39 9723 789	389723784				×	

Appendix C: VOCs (TO+15) Analytical Results

Project Name: ACPS IAQ testing PSS Project No.: 21091322

September 22, 2021

Karl Ford Total Environmental Concepts - Lorton 8382 Terminal Road, Suite B Lorton, VA 22079

Reference: PSS Project No: **21091322** Project Name: ACPS IAQ testing Project Location: James K. Polk ES Project ID.: 4920002

Dear Karl Ford:

www.phaseonline.com

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21091322**.

Certificate of Analysis

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on October 18, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Project Name: ACPS IAQ testing PSS Project No.: 21091322

Project ID: 4920002

The following samples were received under chain of custody by Phase Separation Science (PSS) on 09/13/2021 at 12:44 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
21091322-001	JP - 50 Class	AIR	09/09/21 18:50	
21091322-002	JP - 41 Class	AIR	09/09/21 18:54	
21091322-003	JP - 38 Class	AIR	09/09/21 18:57	
21091322-004	JP - 35 Hall	AIR	09/09/21 18:59	
21091322-005	JP - Reception	AIR	09/09/21 19:04	
21091322-006	JP - 53 Hall	AIR	09/09/21 19:09	
21091322-007	JP - 33 Class	AIR	09/09/21 19:13	
21091322-008	JP - 26 Class	AIR	09/09/21 19:16	
21091322-009	JP - Multi Purpose	AIR	09/09/21 19:20	
21091322-010	JP - Gym	AIR	09/09/21 19:24	
21091322-011	JP - 22 Band	AIR	09/09/21 19:04	
21091322-012	JP - Library	AIR	09/09/21 19:07	
21091322-013	JP - Room 14	AIR	09/09/21 19:11	
21091322-014	JP - Room 1	AIR	09/09/21 19:18	
21091322-015	JP - Outdoor	AIR	09/09/21 19:21	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].

7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.

8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Explanation of Qualifiers

SCIENCE

Project Name: ACPS IAQ testing

PSS Project No.: 21091322

Standard Flags/Abbreviations:

- В A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- С Results Pending Final Confirmation.
- Е The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1. Fail
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- PSS Reporting Limit. RL
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com VELAP ID 460040

21 September 2021

Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike, Route 40 West Baltimore, MD 21228 RE: 4920002

Enclosed are the results of analyses for samples received by the laboratory on 09/14/21 14:07.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

UlliBengto

Will Brewington President

Maryland **spectral** Services

Project: 4920002

Analytical Results

Analytical Chemistry Services

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 09/21/21 10:46

Project Number: [none] Project Manager: Amber Confer

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
JP-50 CLASS	21091322-001	1091424-01	Vapor	09/09/21 18:50	09/14/21 14:07
JP-41 CLASS	21091322-002	1091424-02	Vapor	09/09/21 18:54	09/14/21 14:07
JP-38 CLASS	21091322-003	1091424-03	Vapor	09/09/21 18:57	09/14/21 14:07
JP-35 HALL	21091322-004	1091424-04	Vapor	09/09/21 18:59	09/14/21 14:07
JP-RECEPTION	21091322-005	1091424-05	Vapor	09/09/21 19:04	09/14/21 14:07
JP-53 HALL	21091322-006	1091424-06	Vapor	09/09/21 19:09	09/14/21 14:07
JP-33 CLASS	21091322-007	1091424-07	Vapor	09/09/21 19:13	09/14/21 14:07
JP-26 CLASS	21091322-008	1091424-08	Vapor	09/09/21 19:16	09/14/21 14:07
JP-MULTI PURPOSE	21091322-009	1091424-09	Vapor	09/09/21 19:20	09/14/21 14:07
JP-GYM	21091322-010	1091424-10	Vapor	09/09/21 19:24	09/14/21 14:07
JP-22 BAND	21091322-011	1091424-11	Vapor	09/09/21 19:04	09/14/21 14:07
JP-LIBRARY	21091322-012	1091424-12	Vapor	09/09/21 19:07	09/14/21 14:07
JP-ROOM 14	21091322-013	1091424-13	Vapor	09/09/21 19:11	09/14/21 14:07
JP-ROOM 1	21091322-014	1091424-14	Vapor	09/09/21 19:18	09/14/21 14:07
JP-OUTDOOR	21091322-015	1091424-15	Vapor	09/09/21 19:21	09/14/21 14:07

Withente

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 5 of 43

Version 1.000

Page 2 of 36

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-50 CLASS 21091322-001 1091424-01 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15	(GC/MS) Pre	pared by	TO-15 F	rep					
Acetone	43.4		ug/m³	2.40	2.40	1	09/17/21	09/18/21 03:12	СМК
Benzene	0.38	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 03:12	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 03:12	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 03:12	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 03:12	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 03:12	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 03:12	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 03:12	CMK
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 03:12	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 03:12	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 03:12	СМК
Chloroform	2.25		ug/m³	0.97	0.24	1	09/17/21	09/18/21 03:12	CMK
Chloromethane	1.18		ug/m³	0.41	0.10	1	09/17/21	09/18/21 03:12	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 03:12	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 03:12	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 03:12	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 03:12	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 03:12	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 03:12	CMK
1,4-Dichlorobenzene	0.36	J	ug/m³	1.20	0.30	1	09/17/21	09/18/21 03:12	CMK
Dichlorodifluoromethane	2.03		ug/m³	0.99	0.99	1	09/17/21	09/18/21 03:12	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 03:12	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 03:12	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 03:12	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 03:12	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 03:12	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 03:12	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 03:12	СМК
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 03:12	СМК
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 03:12	СМК
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 03:12	CMK
Ethylbenzene	0.39	J	ug/m³	0.87	0.22	1	09/17/21	09/18/21 03:12	CMK
4-Ethyltoluene	0.25	J	ug/m³	0.98	0.25	1	09/17/21	09/18/21 03:12	СМК
Freon 113	0.54	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 03:12	CMK

Withut

The results in this report apply to the samples analyzed in accordance with the chain of

 $custody\ document.\ This\ analytical\ report\ must\ be\ reproduced\ in\ its\ entirety.$

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 6 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-50 CLASS 21091322-001 1091424-01 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) Pi	repared b	y TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 03:12	CMK
n-Heptane	1.39		ug/m³	0.82	0.21	1	09/17/21	09/18/21 03:12	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 03:12	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 03:12	CMK
2-Hexanone	0.33	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 03:12	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 03:12	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 03:12	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 03:12	CMK
Methyl ethyl ketone (2-Butanone)	2.01		ug/m³	0.59	0.34	1	09/17/21	09/18/21 03:12	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 03:12	CMK
Naphthalene	2.83		ug/m³	1.10	0.70	1	09/17/21	09/18/21 03:12	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 03:12	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 03:12	CMK
Styrene	0.72	J	ug/m³	0.85	0.15	1	09/17/21	09/18/21 03:12	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 03:12	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 03:12	CMK
Tetrahydrofuran	0.71		ug/m³	0.59	0.15	1	09/17/21	09/18/21 03:12	CMK
Toluene	3.05		ug/m³	0.75	0.35	1	09/17/21	09/18/21 03:12	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 03:12	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 03:12	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 03:12	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 03:12	CMK
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	09/17/21	09/18/21 03:12	CMK
1,2,4-Trimethylbenzene	0.29	J	ug/m³	0.98	0.25	1	09/17/21	09/18/21 03:12	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 03:12	CMK
2,2,4-Trimethylpentane	0.37	J	ug/m³	0.93	0.23	1	09/17/21	09/18/21 03:12	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 03:12	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 03:12	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 03:12	CMK
o-Xylene	0.39	J	ug/m³	0.87	0.22	1	09/17/21	09/18/21 03:12	CMK
m- & p-Xylenes	1.00	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 03:12	CMK
Surrogate: 4-Bromofluorobenzene		7.	3-115	100 %	09/17/21		09/18/21 03:12		

Willibringe

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 7 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-41 CLASS 21091322-002 1091424-02 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) P	repared b	y TO-15 F	Prep					
Acetone	14.0		ug/m³	2.40	2.40	1	09/17/21	09/18/21 03:46	CMK
Benzene	0.32	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 03:46	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 03:46	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 03:46	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 03:46	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 03:46	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 03:46	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 03:46	CMK
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 03:46	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 03:46	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 03:46	CMK
Chloroform	0.63	J	ug/m³	0.97	0.24	1	09/17/21	09/18/21 03:46	CMK
Chloromethane	1.01		ug/m³	0.41	0.10	1	09/17/21	09/18/21 03:46	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 03:46	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 03:46	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 03:46	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 03:46	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 03:46	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 03:46	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 03:46	CMK
Dichlorodifluoromethane	2.27		ug/m³	0.99	0.99	1	09/17/21	09/18/21 03:46	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 03:46	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 03:46	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 03:46	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 03:46	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 03:46	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 03:46	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 03:46	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 03:46	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 03:46	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 03:46	CMK
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 03:46	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 03:46	CMK
Freon 113	0.46	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 03:46	СМК

Withut

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 8 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-41 CLASS 21091322-002 1091424-02 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (O	GC/MS) Pi	repared b	<u>y TO-15 P</u>	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 03:46	CMK
n-Heptane	ND		ug/m³	0.82	0.21	1	09/17/21	09/18/21 03:46	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 03:46	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 03:46	CMK
2-Hexanone	ND		ug/m³	0.82	0.15	1	09/17/21	09/18/21 03:46	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 03:46	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 03:46	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 03:46	CMK
Methyl ethyl ketone (2-Butanone)	1.15		ug/m³	0.59	0.34	1	09/17/21	09/18/21 03:46	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 03:46	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 03:46	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 03:46	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 03:46	CMK
Styrene	ND		ug/m³	0.85	0.15	1	09/17/21	09/18/21 03:46	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 03:46	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 03:46	CMK
Tetrahydrofuran	0.18	J	ug/m³	0.59	0.15	1	09/17/21	09/18/21 03:46	CMK
Toluene	1.47		ug/m³	0.75	0.35	1	09/17/21	09/18/21 03:46	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 03:46	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 03:46	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 03:46	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 03:46	CMK
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	09/17/21	09/18/21 03:46	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 03:46	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 03:46	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 03:46	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 03:46	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 03:46	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 03:46	CMK
o-Xylene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 03:46	CMK
m- & p-Xylenes	0.43	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 03:46	СМК
Surrogate: 4-Bromofluorobenzene		7	3-115	95 %	09/17/21	,	09/18/21 03:46		

Burtes

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 9 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-38 CLASS 21091322-003 1091424-03 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (Go	C/MS) Pi	repared b	y TO-15 I	Prep					
Acetone	15.1		ug/m³	2.40	2.40	1	09/17/21	09/18/21 04:20	CMK
Benzene	0.29	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 04:20	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 04:20	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 04:20	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 04:20	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 04:20	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 04:20	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 04:20	CMK
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 04:20	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 04:20	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 04:20	CMK
Chloroform	0.54	J	ug/m³	0.97	0.24	1	09/17/21	09/18/21 04:20	CMK
Chloromethane	1.01		ug/m ³	0.41	0.10	1	09/17/21	09/18/21 04:20	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 04:20	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 04:20	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 04:20	CMK
1,2-Dibromoethane (EDB)	ND		ug/m ³	1.40	0.35	1	09/17/21	09/18/21 04:20	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 04:20	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 04:20	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 04:20	CMK
Dichlorodifluoromethane	2.18		ug/m³	0.99	0.99	1	09/17/21	09/18/21 04:20	CMK
1,1-Dichloroethane	ND		ug/m ³	0.81	0.20	1	09/17/21	09/18/21 04:20	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 04:20	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 04:20	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 04:20	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 04:20	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 04:20	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 04:20	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 04:20	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 04:20	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 04:20	CMK
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 04:20	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 04:20	CMK
Freon 113	0.46	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 04:20	CMK

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willistinge

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 10 of 43

Version 1.000

Page 7 of 36

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-38 CLASS 21091322-003 1091424-03 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) Pi	repared b	<u>y TO-15 P</u>	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 04:20	CMK
n-Heptane	ND		ug/m³	0.82	0.21	1	09/17/21	09/18/21 04:20	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 04:20	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 04:20	CMK
2-Hexanone	0.16	J	ug/m ³	0.82	0.15	1	09/17/21	09/18/21 04:20	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 04:20	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 04:20	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 04:20	CMK
Methyl ethyl ketone (2-Butanone)	1.03		ug/m³	0.59	0.34	1	09/17/21	09/18/21 04:20	CMK
Methyl isobutyl ketone	ND		ug/m ³	0.82	0.82	1	09/17/21	09/18/21 04:20	CMK
Naphthalene	ND		ug/m ³	1.10	0.70	1	09/17/21	09/18/21 04:20	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 04:20	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 04:20	CMK
Styrene	0.17	J	ug/m³	0.85	0.15	1	09/17/21	09/18/21 04:20	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 04:20	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 04:20	CMK
Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	09/17/21	09/18/21 04:20	CMK
Toluene	1.51		ug/m³	0.75	0.35	1	09/17/21	09/18/21 04:20	CMK
1,2,4-Trichlorobenzene	ND		ug/m ³	1.50	0.38	1	09/17/21	09/18/21 04:20	CMK
1,1,1-Trichloroethane	ND		ug/m ³	1.10	0.28	1	09/17/21	09/18/21 04:20	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 04:20	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 04:20	CMK
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	09/17/21	09/18/21 04:20	CMK
1,2,4-Trimethylbenzene	ND		ug/m ³	0.98	0.25	1	09/17/21	09/18/21 04:20	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 04:20	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 04:20	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 04:20	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 04:20	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 04:20	CMK
p-Xylene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 04:20	CMK
m- & p-Xylenes	0.43	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 04:20	CMK
Surrogate: 4-Bromofluorobenzene		7.	3-115	95 %	09/17/21		09/18/21 04:20		

But

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 11 of 43

Maryland **spectral** Services

Analytical Results

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-35 HALL 21091322-004 1091424-04 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 ((GC/MS) Pi	repared by	<u>y TO-15</u> F	rep			_	· · · · · · · · · · · · · · · · · · ·	
Acetone	16.1		ug/m³	2.40	2.40	1	09/17/21	09/18/21 04:54	СМК
Benzene	0.29	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 04:54	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 04:54	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 04:54	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 04:54	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 04:54	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 04:54	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 04:54	CMK
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 04:54	СМК
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 04:54	СМК
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 04:54	CMK
Chloroform	0.88	J	ug/m³	0.97	0.24	1	09/17/21	09/18/21 04:54	CMK
Chloromethane	0.99		ug/m³	0.41	0.10	1	09/17/21	09/18/21 04:54	СМК
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 04:54	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 04:54	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 04:54	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 04:54	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 04:54	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 04:54	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 04:54	CMK
Dichlorodifluoromethane	2.23		ug/m³	0.99	0.99	1	09/17/21	09/18/21 04:54	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 04:54	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 04:54	СМК
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 04:54	СМК
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 04:54	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 04:54	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 04:54	СМК
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 04:54	СМК
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 04:54	СМК
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 04:54	СМК
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 04:54	СМК
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 04:54	СМК
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 04:54	CMK
Freon 113	0.46	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 04:54	CMK

Williberge

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 12 of 43

Maryland spectral Ser es

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-35 HALL 21091322-004 1091424-04 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared by	TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 04:54	CMK
n-Heptane	ND		ug/m³	0.82	0.21	1	09/17/21	09/18/21 04:54	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 04:54	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 04:54	CMK
2-Hexanone	0.20	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 04:54	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 04:54	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 04:54	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 04:54	CMK
Methyl ethyl ketone (2-Butanone)	1.09		ug/m³	0.59	0.34	1	09/17/21	09/18/21 04:54	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 04:54	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 04:54	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 04:54	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 04:54	CMK
Styrene	ND		ug/m³	0.85	0.15	1	09/17/21	09/18/21 04:54	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 04:54	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 04:54	CMK
Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	09/17/21	09/18/21 04:54	CMK
Toluene	1.66		ug/m³	0.75	0.35	1	09/17/21	09/18/21 04:54	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 04:54	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 04:54	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 04:54	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 04:54	CMK
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	09/17/21	09/18/21 04:54	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 04:54	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 04:54	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 04:54	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 04:54	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 04:54	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 04:54	CMK
o-Xylene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 04:54	CMK
m- & p-Xylenes	ND		ug/m³	1.70	0.43	1	09/17/21	09/18/21 04:54	CMK
Surrogate: 4-Bromofluorobenzene		73-	-115	94 %	09/17/2	I	09/18/21 04:54		

Surrogate: 4-Bromofluorobenzen

Willisinge

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 13 of 43

Version 1.000

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-RECEPTION 21091322-005 1091424-05 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15	(GC/MS) P	repared by	y TO-15 F	rep					
Acetone	17.9		ug/m³	2.40	2.40	1	09/17/21	09/18/21 05:28	CMK
Benzene	0.32	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 05:28	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 05:28	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 05:28	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 05:28	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 05:28	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 05:28	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 05:28	CMK
Carbon tetrachloride	0.50	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 05:28	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 05:28	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 05:28	CMK
Chloroform	2.44		ug/m³	0.97	0.24	1	09/17/21	09/18/21 05:28	CMK
Chloromethane	1.07		ug/m³	0.41	0.10	1	09/17/21	09/18/21 05:28	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 05:28	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 05:28	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 05:28	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 05:28	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 05:28	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 05:28	CMK
1,4-Dichlorobenzene	0.30	J	ug/m³	1.20	0.30	1	09/17/21	09/18/21 05:28	CMK
Dichlorodifluoromethane	2.23		ug/m³	0.99	0.99	1	09/17/21	09/18/21 05:28	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 05:28	CMK
1,2-Dichloroethane	1.01		ug/m³	0.81	0.20	1	09/17/21	09/18/21 05:28	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 05:28	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 05:28	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 05:28	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 05:28	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 05:28	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 05:28	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 05:28	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 05:28	CMK
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 05:28	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 05:28	CMK
Freon 113	0.46	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 05:28	CMK

Withut

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 14 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-RECEPTION 21091322-005 1091424-05 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) Pi	repared by	y TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 05:28	CMK
n-Heptane	0.25	J	ug/m³	0.82	0.21	1	09/17/21	09/18/21 05:28	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 05:28	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 05:28	CMK
2-Hexanone	0.20	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 05:28	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 05:28	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 05:28	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 05:28	CMK
Methyl ethyl ketone (2-Butanone)	1.09		ug/m³	0.59	0.34	1	09/17/21	09/18/21 05:28	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 05:28	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 05:28	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 05:28	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 05:28	CMK
Styrene	0.30	J	ug/m³	0.85	0.15	1	09/17/21	09/18/21 05:28	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 05:28	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 05:28	CMK
Tetrahydrofuran	0.18	J	ug/m³	0.59	0.15	1	09/17/21	09/18/21 05:28	CMK
Toluene	2.45		ug/m³	0.75	0.35	1	09/17/21	09/18/21 05:28	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 05:28	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 05:28	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 05:28	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 05:28	CMK
Trichlorofluoromethane (Freon 11)	1.29		ug/m³	1.10	0.28	1	09/17/21	09/18/21 05:28	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 05:28	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 05:28	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 05:28	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 05:28	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 05:28	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 05:28	CMK
o-Xylene	0.30	J	ug/m ³	0.87	0.22	1	09/17/21	09/18/21 05:28	СМК
m- & p-Xylenes	0.69	J	ug/m ³	1.70	0.43	1	09/17/21	09/18/21 05:28	CMK
Surrogate: 4-Bromofluorobenzene		73	8-115	95 %	09/17/21		09/18/21 05:28		

Withente

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 15 of 43

Version 1.000

Page 12 of 36

Maryland **spectral** Services

Analytical Results

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-53 HALL 21091322-006 1091424-06 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15	(GC/MS) P	repared b	y TO-1 <u>5</u> I	rep				· · · · · · · · · · · · · · · · · · ·	
Acetone	23.7		ug/m³	2.40	2.40	1	09/17/21	09/18/21 06:02	CMK
Benzene	0.32	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 06:02	CMK
Benzyl chloride	ND		ug/m ³	1.00	0.25	1	09/17/21	09/18/21 06:02	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 06:02	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 06:02	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 06:02	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 06:02	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 06:02	CMK
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 06:02	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 06:02	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 06:02	CMK
Chloroform	1.03		ug/m³	0.97	0.24	1	09/17/21	09/18/21 06:02	CMK
Chloromethane	1.07		ug/m³	0.41	0.10	1	09/17/21	09/18/21 06:02	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 06:02	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 06:02	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 06:02	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 06:02	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 06:02	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 06:02	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 06:02	CMK
Dichlorodifluoromethane	2.18		ug/m³	0.99	0.99	1	09/17/21	09/18/21 06:02	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 06:02	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 06:02	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 06:02	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 06:02	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 06:02	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 06:02	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 06:02	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 06:02	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 06:02	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 06:02	CMK
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 06:02	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 06:02	CMK
Freon 113	0.46	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 06:02	CMK

Withut

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 16 of 43

Maryland **spectral** Services

Analytical Results

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-53 HALL 21091322-006 1091424-06 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) Pi	repared by	y TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 06:02	CMK
n-Heptane	0.33	J	ug/m³	0.82	0.21	1	09/17/21	09/18/21 06:02	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 06:02	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 06:02	CMK
2-Hexanone	0.20	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 06:02	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 06:02	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 06:02	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 06:02	CMK
Methyl ethyl ketone (2-Butanone)	1.27		ug/m³	0.59	0.34	1	09/17/21	09/18/21 06:02	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 06:02	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 06:02	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 06:02	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 06:02	CMK
Styrene	0.26	J	ug/m³	0.85	0.15	1	09/17/21	09/18/21 06:02	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 06:02	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 06:02	CMK
Tetrahydrofuran	0.29	J	ug/m³	0.59	0.15	1	09/17/21	09/18/21 06:02	CMK
Toluene	2.34		ug/m³	0.75	0.35	1	09/17/21	09/18/21 06:02	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 06:02	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 06:02	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 06:02	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 06:02	CMK
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	09/17/21	09/18/21 06:02	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 06:02	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 06:02	CMK
2,2,4-Trimethylpentane	0.33	J	ug/m³	0.93	0.23	1	09/17/21	09/18/21 06:02	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 06:02	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 06:02	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 06:02	CMK
o-Xylene	0.26	J	ug/m³	0.87	0.22	1	09/17/21	09/18/21 06:02	CMK
m- & p-Xylenes	0.56	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 06:02	CMK
Surrogate: 4-Bromofluorobenzene		73	-115	96 %	09/17/21		09/18/21 06:02		

Withut

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 17 of 43

Version 1.000

Page 14 of 36

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-33 CLASS 21091322-007 1091424-07 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) Pi	repared b	y TO-15 F	Prep					
Acetone	18.7		ug/m³	2.40	2.40	1	09/17/21	09/18/21 06:36	CMK
Benzene	0.26	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 06:36	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 06:36	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 06:36	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 06:36	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 06:36	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 06:36	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 06:36	CMK
Carbon tetrachloride	0.50	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 06:36	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 06:36	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 06:36	CMK
Chloroform	0.88	J	ug/m³	0.97	0.24	1	09/17/21	09/18/21 06:36	CMK
Chloromethane	1.03		ug/m³	0.41	0.10	1	09/17/21	09/18/21 06:36	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 06:36	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 06:36	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 06:36	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 06:36	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 06:36	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 06:36	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 06:36	CMK
Dichlorodifluoromethane	2.27		ug/m³	0.99	0.99	1	09/17/21	09/18/21 06:36	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 06:36	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 06:36	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 06:36	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 06:36	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 06:36	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 06:36	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 06:36	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 06:36	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 06:36	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 06:36	CMK
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 06:36	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 06:36	CMK
Freon 113	0.46	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 06:36	CMK

Willistingte

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 18 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-33 CLASS 21091322-007 1091424-07 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 F	Prep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 06:36	CMK
n-Heptane	ND		ug/m³	0.82	0.21	1	09/17/21	09/18/21 06:36	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 06:36	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 06:36	CMK
2-Hexanone	0.16	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 06:36	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 06:36	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m ³	0.72	0.21	1	09/17/21	09/18/21 06:36	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 06:36	CMK
Methyl ethyl ketone (2-Butanone)	0.97		ug/m³	0.59	0.34	1	09/17/21	09/18/21 06:36	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 06:36	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 06:36	CMK
Propene	ND		ug/m ³	0.34	0.34	1	09/17/21	09/18/21 06:36	CMK
n-Propylbenzene	ND		ug/m ³	0.98	0.40	1	09/17/21	09/18/21 06:36	CMK
Styrene	ND		ug/m³	0.85	0.15	1	09/17/21	09/18/21 06:36	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m ³	1.40	0.35	1	09/17/21	09/18/21 06:36	CMK
Tetrachloroethene	1.97		ug/m³	1.40	0.70	1	09/17/21	09/18/21 06:36	CMK
Tetrahydrofuran	0.18	J	ug/m³	0.59	0.15	1	09/17/21	09/18/21 06:36	CMK
Toluene	2.68		ug/m³	0.75	0.35	1	09/17/21	09/18/21 06:36	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 06:36	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 06:36	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 06:36	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 06:36	CMK
Trichlorofluoromethane (Freon 11)	1.35		ug/m³	1.10	0.28	1	09/17/21	09/18/21 06:36	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 06:36	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 06:36	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 06:36	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 06:36	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 06:36	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 06:36	CMK
o-Xylene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 06:36	CMK
m- & p-Xylenes	0.52	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 06:36	CMK
Surrogate: 4-Bromofluorobenzene		7	3-115	95 %	09/17/21		09/18/21 06:36		

Withut

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 19 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-26 CLASS 21091322-008 1091424-08 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15				()	()		1		
Acetone	16.7	-parea b	ug/m ³	2.40	2.40	1	09/17/21	09/18/21 07:10	СМК
Benzene	0.29	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 07:10	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 07:10	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 07:10	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 07:10	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 07:10	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 07:10	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 07:10	CMK
Carbon tetrachloride	0.50	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 07:10	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 07:10	СМК
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 07:10	CMK
Chloroform	1.61		ug/m³	0.97	0.24	1	09/17/21	09/18/21 07:10	CMK
Chloromethane	1.03		ug/m³	0.41	0.10	1	09/17/21	09/18/21 07:10	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 07:10	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 07:10	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 07:10	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 07:10	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 07:10	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 07:10	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 07:10	CMK
Dichlorodifluoromethane	2.32		ug/m³	0.99	0.99	1	09/17/21	09/18/21 07:10	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 07:10	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 07:10	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 07:10	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 07:10	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 07:10	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 07:10	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 07:10	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 07:10	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 07:10	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 07:10	CMK
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 07:10	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 07:10	CMK
Freon 113	0.46	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 07:10	CMK

Williberge

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 20 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-26 CLASS 21091322-008 1091424-08 (Vapor) Sample Date: 09/09/21

			Reporting	Detection				
Analyte	Result	Notes Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	GC/MS) Pi	repared by TO-15	Prep (continued)					
Freon 114	ND	ug/m³	1.40	1.40	1	09/17/21	09/18/21 07:10	CMK
n-Heptane	ND	ug/m³	0.82	0.21	1	09/17/21	09/18/21 07:10	CMK
Hexachlorobutadiene	ND	ug/m³	2.10	2.10	1	09/17/21	09/18/21 07:10	CMK
Hexane	ND	ug/m³	14.0	14.0	1	09/17/21	09/18/21 07:10	CMK
2-Hexanone	ND	ug/m ³	0.82	0.15	1	09/17/21	09/18/21 07:10	CMK
Isopropylbenzene (Cumene)	ND	ug/m ³	1.10	0.40	1	09/17/21	09/18/21 07:10	CMK
Methyl tert-butyl ether (MTBE)	ND	ug/m ³	0.72	0.21	1	09/17/21	09/18/21 07:10	CMK
Methylene chloride	ND	ug/m ³	18.0	18.0	1	09/17/21	09/18/21 07:10	CMK
Methyl ethyl ketone (2-Butanone)	1.24	ug/m³	0.59	0.34	1	09/17/21	09/18/21 07:10	CMK
Methyl isobutyl ketone	ND	ug/m³	0.82	0.82	1	09/17/21	09/18/21 07:10	CMK
Naphthalene	ND	ug/m³	1.10	0.70	1	09/17/21	09/18/21 07:10	CMK
Propene	ND	ug/m³	0.34	0.34	1	09/17/21	09/18/21 07:10	CMK
n-Propylbenzene	ND	ug/m³	0.98	0.40	1	09/17/21	09/18/21 07:10	CMK
Styrene	ND	ug/m ³	0.85	0.15	1	09/17/21	09/18/21 07:10	CMK
1,1,2,2-Tetrachloroethane	ND	ug/m ³	1.40	0.35	1	09/17/21	09/18/21 07:10	CMK
Tetrachloroethene	ND	ug/m ³	1.40	0.70	1	09/17/21	09/18/21 07:10	CMK
Tetrahydrofuran	ND	ug/m ³	0.59	0.15	1	09/17/21	09/18/21 07:10	CMK
Toluene	10.7	ug/m ³	0.75	0.35	1	09/17/21	09/18/21 07:10	CMK
1,2,4-Trichlorobenzene	ND	ug/m³	1.50	0.38	1	09/17/21	09/18/21 07:10	CMK
1,1,1-Trichloroethane	ND	ug/m³	1.10	0.28	1	09/17/21	09/18/21 07:10	CMK
1,1,2-Trichloroethane	ND	ug/m ³	1.10	0.28	1	09/17/21	09/18/21 07:10	CMK
Trichloroethene	ND	ug/m ³	1.10	0.28	1	09/17/21	09/18/21 07:10	CMK
Trichlorofluoromethane (Freon 11)	1.29	ug/m ³	1.10	0.28	1	09/17/21	09/18/21 07:10	CMK
1,2,4-Trimethylbenzene	ND	ug/m³	0.98	0.25	1	09/17/21	09/18/21 07:10	CMK
1,3,5-Trimethylbenzene	ND	ug/m³	0.98	0.25	1	09/17/21	09/18/21 07:10	CMK
2,2,4-Trimethylpentane	ND	ug/m³	0.93	0.23	1	09/17/21	09/18/21 07:10	СМК
Vinyl acetate	ND	ug/m ³	0.70	0.70	1	09/17/21	09/18/21 07:10	CMK
Vinyl bromide	ND	ug/m ³	0.87	0.22	1	09/17/21	09/18/21 07:10	CMK
Vinyl chloride	ND	ug/m ³	0.51	0.13	1	09/17/21	09/18/21 07:10	CMK
o-Xylene	ND	ug/m³	0.87	0.22	1	09/17/21	09/18/21 07:10	CMK
m- & p-Xylenes	ND	ug/m ³	1.70	0.43	1	09/17/21	09/18/21 07:10	CMK
Surrogate: 4-Bromofluorobenzene		73-115	96 %	09/17/21	!	09/18/21 07:10		

Withut

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 21 of 43

Maryland **spectral** Services

Analytical Results

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-MULTI PURPOSE 21091322-009 1091424-09 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (Go	C/MS) Pi	repared by	y TO-15 F	rep					
Acetone	19.9		ug/m³	2.40	2.40	1	09/17/21	09/18/21 07:44	CMK
Benzene	0.45	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 07:44	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 07:44	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 07:44	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 07:44	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 07:44	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 07:44	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 07:44	CMK
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 07:44	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 07:44	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 07:44	CMK
Chloroform	1.12		ug/m³	0.97	0.24	1	09/17/21	09/18/21 07:44	CMK
Chloromethane	1.09		ug/m³	0.41	0.10	1	09/17/21	09/18/21 07:44	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 07:44	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 07:44	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 07:44	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 07:44	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 07:44	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 07:44	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 07:44	CMK
Dichlorodifluoromethane	2.23		ug/m³	0.99	0.99	1	09/17/21	09/18/21 07:44	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 07:44	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 07:44	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 07:44	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 07:44	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 07:44	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 07:44	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 07:44	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 07:44	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 07:44	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 07:44	CMK
Ethylbenzene	0.26	J	ug/m ³	0.87	0.22	1	09/17/21	09/18/21 07:44	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 07:44	CMK
Freon 113	0.46	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 07:44	CMK

Mitante

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 22 of 43

Maryland **spectral** Services

410-247-7600

Analytical Results

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 www.mdspectral.com

Reported:

09/21/21 10:46

JP-MULTI PURPOSE 21091322-009 1091424-09 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared b	y TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 07:44	CMK
n-Heptane	ND		ug/m³	0.82	0.21	1	09/17/21	09/18/21 07:44	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 07:44	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 07:44	CMK
2-Hexanone	0.29	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 07:44	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 07:44	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 07:44	СМК
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 07:44	CMK
Methyl ethyl ketone (2-Butanone)	1.98		ug/m³	0.59	0.34	1	09/17/21	09/18/21 07:44	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 07:44	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 07:44	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 07:44	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 07:44	CMK
Styrene	0.17	J	ug/m³	0.85	0.15	1	09/17/21	09/18/21 07:44	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 07:44	СМК
Tetrachloroethene	0.75	J	ug/m³	1.40	0.70	1	09/17/21	09/18/21 07:44	CMK
Tetrahydrofuran	0.21	J	ug/m³	0.59	0.15	1	09/17/21	09/18/21 07:44	CMK
Toluene	2.37		ug/m³	0.75	0.35	1	09/17/21	09/18/21 07:44	CMK
1,2,4-Trichlorobenzene	ND		ug/m ³	1.50	0.38	1	09/17/21	09/18/21 07:44	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 07:44	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 07:44	CMK
Trichloroethene	ND		ug/m ³	1.10	0.28	1	09/17/21	09/18/21 07:44	CMK
Trichlorofluoromethane (Freon 11)	1.29		ug/m³	1.10	0.28	1	09/17/21	09/18/21 07:44	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 07:44	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 07:44	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 07:44	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 07:44	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 07:44	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 07:44	CMK
o-Xylene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 07:44	CMK
m- & p-Xylenes	0.61	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 07:44	CMK
Surrogate: 4-Bromofluorobenzene		7	3-115	94 %	09/17/21		09/18/21 07:44		

Withente

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 23 of 43

Version 1.000

Page 20 of 36

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 09/21/21 10:46

JP-GYM 21091322-010 1091424-10 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) P	repared by	y TO-15 I	Prep					
Acetone	20.6		ug/m³	2.40	2.40	1	09/17/21	09/18/21 08:18	СМК
Benzene	0.38	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 08:18	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 08:18	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 08:18	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 08:18	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 08:18	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 08:18	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 08:18	CMK
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 08:18	СМК
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 08:18	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 08:18	CMK
Chloroform	1.66		ug/m³	0.97	0.24	1	09/17/21	09/18/21 08:18	CMK
Chloromethane	1.05		ug/m³	0.41	0.10	1	09/17/21	09/18/21 08:18	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 08:18	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 08:18	СМК
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 08:18	СМК
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 08:18	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 08:18	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 08:18	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 08:18	CMK
Dichlorodifluoromethane	2.27		ug/m³	0.99	0.99	1	09/17/21	09/18/21 08:18	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 08:18	CMK
1,2-Dichloroethane	0.40	J	ug/m³	0.81	0.20	1	09/17/21	09/18/21 08:18	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 08:18	СМК
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 08:18	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 08:18	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 08:18	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 08:18	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 08:18	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 08:18	СМК
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 08:18	СМК
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 08:18	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 08:18	CMK
Freon 113	0.54	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 08:18	СМК

Mitante

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 24 of 43

Maryland **spectral** Services

Analytical Results

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-GYM 21091322-010 1091424-10 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) Pi	repared by	y TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 08:18	CMK
n-Heptane	0.25	J	ug/m³	0.82	0.21	1	09/17/21	09/18/21 08:18	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 08:18	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 08:18	CMK
2-Hexanone	0.20	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 08:18	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 08:18	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 08:18	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 08:18	CMK
Methyl ethyl ketone (2-Butanone)	1.15		ug/m³	0.59	0.34	1	09/17/21	09/18/21 08:18	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 08:18	CMK
Naphthalene	0.79	J	ug/m³	1.10	0.70	1	09/17/21	09/18/21 08:18	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 08:18	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 08:18	CMK
Styrene	0.26	J	ug/m³	0.85	0.15	1	09/17/21	09/18/21 08:18	СМК
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 08:18	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 08:18	CMK
Tetrahydrofuran	0.32	J	ug/m³	0.59	0.15	1	09/17/21	09/18/21 08:18	CMK
Toluene	2.34		ug/m³	0.75	0.35	1	09/17/21	09/18/21 08:18	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 08:18	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 08:18	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 08:18	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 08:18	CMK
Trichlorofluoromethane (Freon 11)	1.29		ug/m³	1.10	0.28	1	09/17/21	09/18/21 08:18	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 08:18	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 08:18	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 08:18	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 08:18	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 08:18	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 08:18	СМК
o-Xylene	0.26	J	ug/m ³	0.87	0.22	1	09/17/21	09/18/21 08:18	СМК
m- & p-Xylenes	0.65	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 08:18	СМК
Surrogate: 4-Bromofluorobenzene		73	8-115	95 %	09/17/21		09/18/21 08:18		

Wolunte

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 25 of 43

Version 1.000

Page 22 of 36

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-22 BAND 21091322-011 1091424-11 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15	(GC/MS) Pr	epared by	7 TO-15 H	rep					
Acetone	15.7		ug/m³	2.40	2.40	1	09/17/21	09/18/21 08:52	СМК
Benzene	0.29	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 08:52	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 08:52	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 08:52	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 08:52	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 08:52	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 08:52	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 08:52	CMK
Carbon tetrachloride	0.44	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 08:52	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 08:52	СМК
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 08:52	CMK
Chloroform	0.93	J	ug/m³	0.97	0.24	1	09/17/21	09/18/21 08:52	CMK
Chloromethane	1.14		ug/m³	0.41	0.10	1	09/17/21	09/18/21 08:52	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 08:52	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 08:52	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 08:52	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 08:52	СМК
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 08:52	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 08:52	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 08:52	CMK
Dichlorodifluoromethane	2.27		ug/m³	0.99	0.99	1	09/17/21	09/18/21 08:52	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 08:52	СМК
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 08:52	СМК
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 08:52	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 08:52	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 08:52	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 08:52	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 08:52	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 08:52	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 08:52	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 08:52	CMK
Ethylbenzene	0.26	J	ug/m³	0.87	0.22	1	09/17/21	09/18/21 08:52	СМК
4-Ethyltoluene	0.29	J	ug/m³	0.98	0.25	1	09/17/21	09/18/21 08:52	CMK
Freon 113	0.54	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 08:52	CMK

Willistingto

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its antiraty.

custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 26 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-22 BAND 21091322-011 1091424-11 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	GC/MS) Pi	repared b	y TO-15 F	Prep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 08:52	CMK
n-Heptane	ND		ug/m³	0.82	0.21	1	09/17/21	09/18/21 08:52	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 08:52	CMK
Hexane	ND		ug/m ³	14.0	14.0	1	09/17/21	09/18/21 08:52	CMK
2-Hexanone	0.20	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 08:52	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 08:52	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 08:52	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 08:52	CMK
Methyl ethyl ketone (2-Butanone)	1.27		ug/m³	0.59	0.34	1	09/17/21	09/18/21 08:52	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 08:52	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 08:52	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 08:52	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 08:52	CMK
Styrene	0.21	J	ug/m³	0.85	0.15	1	09/17/21	09/18/21 08:52	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 08:52	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 08:52	CMK
Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	09/17/21	09/18/21 08:52	CMK
Toluene	2.15		ug/m³	0.75	0.35	1	09/17/21	09/18/21 08:52	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 08:52	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 08:52	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 08:52	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 08:52	CMK
Trichlorofluoromethane (Freon 11)	1.29		ug/m ³	1.10	0.28	1	09/17/21	09/18/21 08:52	CMK
1,2,4-Trimethylbenzene	0.34	J	ug/m³	0.98	0.25	1	09/17/21	09/18/21 08:52	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 08:52	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 08:52	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 08:52	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 08:52	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 08:52	CMK
o-Xylene	0.35	J	ug/m³	0.87	0.22	1	09/17/21	09/18/21 08:52	CMK
m- & p-Xylenes	0.74	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 08:52	CMK
Surrogate: 4-Bromofluorobenzene		7.	3-115	95 %	09/17/21	I	09/18/21 08:52		

Williseige

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 27 of 43

Version 1.000

Page 24 of 36

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-LIBRARY 21091322-012 1091424-12 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (Ge	C/MS) Pi	repared by	y TO-15 F	Prep					
Acetone	15.0		ug/m³	2.40	2.40	1	09/17/21	09/18/21 09:26	CMK
Benzene	0.26	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 09:26	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 09:26	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 09:26	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 09:26	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 09:26	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 09:26	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 09:26	CMK
Carbon tetrachloride	0.50	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 09:26	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 09:26	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 09:26	CMK
Chloroform	0.73	J	ug/m³	0.97	0.24	1	09/17/21	09/18/21 09:26	CMK
Chloromethane	1.12		ug/m³	0.41	0.10	1	09/17/21	09/18/21 09:26	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 09:26	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 09:26	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 09:26	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 09:26	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 09:26	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 09:26	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 09:26	CMK
Dichlorodifluoromethane	2.27		ug/m³	0.99	0.99	1	09/17/21	09/18/21 09:26	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 09:26	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 09:26	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 09:26	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 09:26	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 09:26	СМК
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 09:26	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 09:26	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 09:26	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 09:26	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 09:26	CMK
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 09:26	СМК
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 09:26	CMK
Freon 113	0.54	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 09:26	СМК

Mitante

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 28 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-LIBRARY 21091322-012 1091424-12 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	GC/MS) Pi	repared b	<u>y TO-15 F</u>	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 09:26	CMK
n-Heptane	ND		ug/m³	0.82	0.21	1	09/17/21	09/18/21 09:26	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 09:26	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 09:26	CMK
2-Hexanone	0.16	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 09:26	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 09:26	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 09:26	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 09:26	CMK
Methyl ethyl ketone (2-Butanone)	0.94		ug/m³	0.59	0.34	1	09/17/21	09/18/21 09:26	CMK
Methyl isobutyl ketone	ND		ug/m ³	0.82	0.82	1	09/17/21	09/18/21 09:26	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 09:26	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 09:26	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 09:26	CMK
Styrene	ND		ug/m³	0.85	0.15	1	09/17/21	09/18/21 09:26	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 09:26	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 09:26	CMK
Tetrahydrofuran	0.18	J	ug/m³	0.59	0.15	1	09/17/21	09/18/21 09:26	CMK
Toluene	1.43		ug/m³	0.75	0.35	1	09/17/21	09/18/21 09:26	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 09:26	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 09:26	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 09:26	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 09:26	CMK
Trichlorofluoromethane (Freon 11)	1.29		ug/m³	1.10	0.28	1	09/17/21	09/18/21 09:26	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 09:26	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 09:26	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 09:26	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 09:26	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 09:26	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 09:26	CMK
o-Xylene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 09:26	CMK
m- & p-Xylenes	0.48	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 09:26	CMK
Surrogate: 4-Bromofluorobenzene		7	3-115	95 %	09/17/2	1	09/18/21 09:26		

73-115

But

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 29 of 43

Maryland **spectral** Services

Analytical Results

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-ROOM 14 21091322-013 1091424-13 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (Ge	C/MS) P	repared by	y TO-15 I	Prep					
Acetone	14.8		ug/m³	2.40	2.40	1	09/17/21	09/18/21 10:00	CMK
Benzene	0.26	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 10:00	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 10:00	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 10:00	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 10:00	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 10:00	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 10:00	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 10:00	CMK
Carbon tetrachloride	0.50	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 10:00	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 10:00	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 10:00	CMK
Chloroform	2.64		ug/m³	0.97	0.24	1	09/17/21	09/18/21 10:00	CMK
Chloromethane	0.95		ug/m³	0.41	0.10	1	09/17/21	09/18/21 10:00	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 10:00	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 10:00	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 10:00	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 10:00	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 10:00	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 10:00	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 10:00	CMK
Dichlorodifluoromethane	2.27		ug/m³	0.99	0.99	1	09/17/21	09/18/21 10:00	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 10:00	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 10:00	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 10:00	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 10:00	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 10:00	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 10:00	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 10:00	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 10:00	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 10:00	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 10:00	CMK
Ethylbenzene	0.30	J	ug/m³	0.87	0.22	1	09/17/21	09/18/21 10:00	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 10:00	CMK
Freon 113	0.54	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 10:00	CMK

Withut

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 30 of 43

Maryland **spectral** Services

Analytical Results

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-ROOM 14 21091322-013 1091424-13 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	repared by	7 TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 10:00	CMK
n-Heptane	0.61	J	ug/m³	0.82	0.21	1	09/17/21	09/18/21 10:00	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 10:00	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 10:00	CMK
2-Hexanone	0.16	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 10:00	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 10:00	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 10:00	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 10:00	CMK
Methyl ethyl ketone (2-Butanone)	1.18		ug/m³	0.59	0.34	1	09/17/21	09/18/21 10:00	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 10:00	CMK
Naphthalene	1.42		ug/m³	1.10	0.70	1	09/17/21	09/18/21 10:00	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 10:00	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 10:00	CMK
Styrene	ND		ug/m³	0.85	0.15	1	09/17/21	09/18/21 10:00	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 10:00	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 10:00	CMK
Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	09/17/21	09/18/21 10:00	CMK
Toluene	10.6		ug/m³	0.75	0.35	1	09/17/21	09/18/21 10:00	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 10:00	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 10:00	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 10:00	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 10:00	CMK
Trichlorofluoromethane (Freon 11)	1.35		ug/m³	1.10	0.28	1	09/17/21	09/18/21 10:00	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 10:00	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 10:00	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 10:00	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 10:00	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 10:00	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 10:00	CMK
o-Xylene	0.30	J	ug/m³	0.87	0.22	1	09/17/21	09/18/21 10:00	CMK
m- & p-Xylenes	0.83	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 10:00	СМК
Surrogate: 4-Bromofluorobenzene		73	-115	96 %	09/17/21	!	09/18/21 10:00		

Surrogate: 4-Bromojiuorobenzen

Williseight

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 31 of 43

Version 1.000

Page 28 of 36

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-ROOM 1 21091322-014 1091424-14 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (G	C/MS) P	repared b	y TO-15 I	Prep					
Acetone	20.7		ug/m³	2.40	2.40	1	09/17/21	09/18/21 10:34	CMK
Benzene	0.32	J	ug/m ³	0.64	0.16	1	09/17/21	09/18/21 10:34	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 10:34	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 10:34	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 10:34	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 10:34	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 10:34	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 10:34	CMK
Carbon tetrachloride	0.50	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 10:34	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 10:34	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 10:34	CMK
Chloroform	10.2		ug/m³	0.97	0.24	1	09/17/21	09/18/21 10:34	CMK
Chloromethane	1.05		ug/m ³	0.41	0.10	1	09/17/21	09/18/21 10:34	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 10:34	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 10:34	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 10:34	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 10:34	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 10:34	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 10:34	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 10:34	CMK
Dichlorodifluoromethane	2.13		ug/m³	0.99	0.99	1	09/17/21	09/18/21 10:34	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 10:34	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 10:34	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 10:34	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 10:34	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 10:34	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 10:34	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 10:34	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 10:34	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 10:34	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 10:34	CMK
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 10:34	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 10:34	CMK
Freon 113	0.46	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 10:34	СМК

Mitante

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 32 of 43

Maryland **spectral** Services

Analytical Results

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-ROOM 1 21091322-014 1091424-14 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (Ge	C/MS) Pi	epared b	y TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 10:34	CMK
n-Heptane	0.78	J	ug/m³	0.82	0.21	1	09/17/21	09/18/21 10:34	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 10:34	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 10:34	CMK
2-Hexanone	0.29	J	ug/m³	0.82	0.15	1	09/17/21	09/18/21 10:34	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 10:34	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 10:34	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 10:34	CMK
Methyl ethyl ketone (2-Butanone)	1.56		ug/m³	0.59	0.34	1	09/17/21	09/18/21 10:34	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 10:34	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 10:34	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 10:34	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 10:34	CMK
Styrene	0.21	J	ug/m³	0.85	0.15	1	09/17/21	09/18/21 10:34	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 10:34	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 10:34	CMK
Tetrahydrofuran	0.21	J	ug/m³	0.59	0.15	1	09/17/21	09/18/21 10:34	CMK
Toluene	9.87		ug/m³	0.75	0.35	1	09/17/21	09/18/21 10:34	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 10:34	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 10:34	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 10:34	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 10:34	CMK
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	09/17/21	09/18/21 10:34	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 10:34	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 10:34	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 10:34	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 10:34	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 10:34	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 10:34	CMK
o-Xylene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 10:34	CMK
m- & p-Xylenes	0.48	J	ug/m³	1.70	0.43	1	09/17/21	09/18/21 10:34	CMK
Surrogate: 4-Bromofluorobenzene		73	8-115	96 %	09/17/21		09/18/21 10:34		

Mitante

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 33 of 43

Maryland **spectral** Services

Project: 4920002

Project Number: [none] Project Manager: Amber Confer 1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported:

09/21/21 10:46

JP-OUTDOOR 21091322-015 1091424-15 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (Ge	C/MS) P	repared b	y TO-15 F	Prep					
Acetone	11.5		ug/m³	2.40	2.40	1	09/17/21	09/18/21 11:08	CMK
Benzene	0.26	J	ug/m³	0.64	0.16	1	09/17/21	09/18/21 11:08	CMK
Benzyl chloride	ND		ug/m³	1.00	0.25	1	09/17/21	09/18/21 11:08	CMK
Bromodichloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 11:08	CMK
Bromoform	ND		ug/m³	2.10	0.53	1	09/17/21	09/18/21 11:08	CMK
Bromomethane	ND		ug/m³	0.78	0.20	1	09/17/21	09/18/21 11:08	CMK
1,3-Butadiene	ND		ug/m³	0.44	0.44	1	09/17/21	09/18/21 11:08	CMK
Carbon disulfide	ND		ug/m³	1.56	1.56	1	09/17/21	09/18/21 11:08	CMK
Carbon tetrachloride	0.50	J	ug/m³	1.30	0.33	1	09/17/21	09/18/21 11:08	CMK
Chlorobenzene	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 11:08	CMK
Chloroethane	ND		ug/m³	0.53	0.27	1	09/17/21	09/18/21 11:08	CMK
Chloroform	0.29	J	ug/m³	0.97	0.24	1	09/17/21	09/18/21 11:08	CMK
Chloromethane	1.01		ug/m³	0.41	0.10	1	09/17/21	09/18/21 11:08	CMK
3-Chloropropene	ND		ug/m³	0.63	0.16	1	09/17/21	09/18/21 11:08	CMK
Cyclohexane	ND		ug/m³	0.69	0.17	1	09/17/21	09/18/21 11:08	CMK
Dibromochloromethane	ND		ug/m³	1.30	0.33	1	09/17/21	09/18/21 11:08	CMK
1,2-Dibromoethane (EDB)	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 11:08	CMK
1,2-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 11:08	CMK
1,3-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 11:08	CMK
1,4-Dichlorobenzene	ND		ug/m³	1.20	0.30	1	09/17/21	09/18/21 11:08	CMK
Dichlorodifluoromethane	2.32		ug/m³	0.99	0.99	1	09/17/21	09/18/21 11:08	CMK
1,1-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 11:08	CMK
1,2-Dichloroethane	ND		ug/m³	0.81	0.20	1	09/17/21	09/18/21 11:08	CMK
1,1-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 11:08	CMK
cis-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 11:08	CMK
trans-1,2-Dichloroethene	ND		ug/m³	0.79	0.20	1	09/17/21	09/18/21 11:08	CMK
1,2-Dichloropropane	ND		ug/m³	0.92	0.23	1	09/17/21	09/18/21 11:08	CMK
cis-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 11:08	CMK
trans-1,3-Dichloropropene	ND		ug/m³	0.91	0.23	1	09/17/21	09/18/21 11:08	CMK
1,4-Dioxane	ND		ug/m³	0.72	0.18	1	09/17/21	09/18/21 11:08	CMK
Ethyl acetate	ND		ug/m³	3.60	3.60	1	09/17/21	09/18/21 11:08	CMK
Ethylbenzene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 11:08	CMK
4-Ethyltoluene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 11:08	CMK
Freon 113	0.54	J	ug/m³	1.50	0.38	1	09/17/21	09/18/21 11:08	CMK

Withut

The results in this report apply to the samples analyzed in accordance with the chain of autody document. This analytical report must be reproduced in its artitudy.

custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 34 of 43

Maryland **spectral** Services

Project: 4920002

Project Manager: Amber Confer

Project Number: [none]

410-247-7600

Analytical Results

Baltimore MD 21227 www.mdspectral.com

Reported:

09/21/21 10:46

1500 Caton Center Dr Suite G

JP-OUTDOOR 21091322-015 1091424-15 (Vapor) Sample Date: 09/09/21

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Volatile Organics by EPA TO-15 (C	GC/MS) Pi	epared b	y TO-15 P	rep (continued)					
Freon 114	ND		ug/m³	1.40	1.40	1	09/17/21	09/18/21 11:08	CMK
n-Heptane	ND		ug/m³	0.82	0.21	1	09/17/21	09/18/21 11:08	CMK
Hexachlorobutadiene	ND		ug/m³	2.10	2.10	1	09/17/21	09/18/21 11:08	CMK
Hexane	ND		ug/m³	14.0	14.0	1	09/17/21	09/18/21 11:08	CMK
2-Hexanone	ND		ug/m³	0.82	0.15	1	09/17/21	09/18/21 11:08	CMK
Isopropylbenzene (Cumene)	ND		ug/m³	1.10	0.40	1	09/17/21	09/18/21 11:08	CMK
Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.72	0.21	1	09/17/21	09/18/21 11:08	CMK
Methylene chloride	ND		ug/m³	18.0	18.0	1	09/17/21	09/18/21 11:08	CMK
Methyl ethyl ketone (2-Butanone)	0.91		ug/m³	0.59	0.34	1	09/17/21	09/18/21 11:08	CMK
Methyl isobutyl ketone	ND		ug/m³	0.82	0.82	1	09/17/21	09/18/21 11:08	CMK
Naphthalene	ND		ug/m³	1.10	0.70	1	09/17/21	09/18/21 11:08	CMK
Propene	ND		ug/m³	0.34	0.34	1	09/17/21	09/18/21 11:08	CMK
n-Propylbenzene	ND		ug/m³	0.98	0.40	1	09/17/21	09/18/21 11:08	CMK
Styrene	ND		ug/m³	0.85	0.15	1	09/17/21	09/18/21 11:08	CMK
1,1,2,2-Tetrachloroethane	ND		ug/m³	1.40	0.35	1	09/17/21	09/18/21 11:08	CMK
Tetrachloroethene	ND		ug/m³	1.40	0.70	1	09/17/21	09/18/21 11:08	CMK
Tetrahydrofuran	ND		ug/m³	0.59	0.15	1	09/17/21	09/18/21 11:08	CMK
Toluene	0.45	J	ug/m³	0.75	0.35	1	09/17/21	09/18/21 11:08	CMK
1,2,4-Trichlorobenzene	ND		ug/m³	1.50	0.38	1	09/17/21	09/18/21 11:08	CMK
1,1,1-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 11:08	CMK
1,1,2-Trichloroethane	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 11:08	CMK
Trichloroethene	ND		ug/m³	1.10	0.28	1	09/17/21	09/18/21 11:08	CMK
Trichlorofluoromethane (Freon 11)	1.24		ug/m³	1.10	0.28	1	09/17/21	09/18/21 11:08	CMK
1,2,4-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 11:08	CMK
1,3,5-Trimethylbenzene	ND		ug/m³	0.98	0.25	1	09/17/21	09/18/21 11:08	CMK
2,2,4-Trimethylpentane	ND		ug/m³	0.93	0.23	1	09/17/21	09/18/21 11:08	CMK
Vinyl acetate	ND		ug/m³	0.70	0.70	1	09/17/21	09/18/21 11:08	CMK
Vinyl bromide	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 11:08	CMK
Vinyl chloride	ND		ug/m³	0.51	0.13	1	09/17/21	09/18/21 11:08	CMK
o-Xylene	ND		ug/m³	0.87	0.22	1	09/17/21	09/18/21 11:08	CMK
m- & p-Xylenes	ND		ug/m³	1.70	0.43	1	09/17/21	09/18/21 11:08	CMK
Surrogate: 4-Bromofluorobenzene		7	3-115	94 %	09/17/21	,	09/18/21 11:08		

Mitante

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 35 of 43

Maryland <u>spectral</u> Ser es

Analytical Chemistry Services

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 09/21/21 10:46

Project Number: [none] Project Manager: Amber Confer

Project: 4920002

Notes and Definitions

DETAnalyte DETECTEDNDAnalyte NOT DETECTED at or above the reporting limitNRNot ReporteddrySample results reported on a dry weight basisRPDRelative Percent Difference%-SolidsPrecent Solids is a supportive test and as such does not require accreditation	J	Detected but below the reporting limit; therefore, result is an estimated concentration (CLP J-Flag).
NR Not Reported dry Sample results reported on a dry weight basis RPD Relative Percent Difference	DET	Analyte DETECTED
dry Sample results reported on a dry weight basis RPD Relative Percent Difference	ND	Analyte NOT DETECTED at or above the reporting limit
RPD Relative Percent Difference	NR	Not Reported
	dry	Sample results reported on a dry weight basis
%-Solids Percent Solids is a supportive test and as such does not require accreditation	RPD	Relative Percent Difference
	%-Solids	Percent Solids is a supportive test and as such does not require accreditation

Withinte

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President All analyses performed at Maryland Spectral Services included in the report are TNI certified except as indicated at the end of the report

Page 36 of 43

Chain of Custody Form for Subcontracted Analyses

ase Separation Sci 30 Baltimore Nati Itimore, MD 2122 Ione: (410) 747-87 x: (410) 788-8723	onal Pike 18 70		Proj Proj). No. : ect Location ect Number	: 4920002	Mary 1500	bles Transferred To: And Spectral Service Caton Center Drive more, MD 21227		
or Questions or	issues please contact: Ar	nber Confer	-	ort To LOD Report D): <u>No</u> Due On :09/21/21 05:00	Phon	ie: 410-247-7600		
Lab Sample ID	Field Sample ID	Date Sampled	Time Sampled	Matrix	Analyses Required	Method	Type of Container	Preservative	
21091322-001	JP - 50 Class	09/09/21	18:50	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	
21091322-002	JP - 41 Class	09/09/21	18:54	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	- 0
21091322-003	JP - 38 Class	09/09/21	18:57	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	- 0
21091322-004	JP - 35 Hall	09/09/21	18:59	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	- 64
21091322-005	JP - Reception	09/09/21	19:04	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	- 0 5
21091322-006	JP - 53 Hall	09/09/21	19:09	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	
21091322-007	JP - 33 Class	09/09/21	19:13	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	- 15
1091322-008	JP - 26 Class	09/09/21	19:16	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	1-6
1091322-009	JP - Multi Purpose	09/09/21	19:20	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	- 6
1091322-010	JP - Gym	09/09/21	19:24	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	1 - 1
1091322-011	JP - 22 Band	09/09/21	19:04	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	- - -
21091322-012	JP - Library	09/09/21	19:07	Air	VOCs in Air by GC/MS (subbed)	. TO-15	Air Canister	NON	-1)
1091322-013	JP - Room 14	09/09/21	19:11	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	
21091322-014	JP - Room 1	09/09/21	19:18	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	
21091322-015	JP - Outdoor	09/09/21	19:21	Air	VOCs in Air by GC/MS (subbed)	TO-15	Air Canister	NON	
end Repor	rables Required: t Attn : reporting@ Ca	phaseonline.co	5		Perform Q.C. Send	•	invoicing@phasec	nline.com	
	ed By: the	Date : 9 / 1			Samples Received By :	fully all	1/21 14:07		
mples Relinquishe	ed By: van als	Date : <u>09/</u>			Samples Received By:	NKA all	7141 14:01		
mples Relinquishe	1.D	Date:	-	D'	_ Samples Received By:	-			

Version 1.000

Air Analysis by TO-15

••

.1

Chain of Custody

Client Contact Information	Project Manage	r: Anhe	lon fe-	Carrier:								of Z cocs
Company: PSS	Phone:	B DY		Samplers	Name(s)				Anal	ysis/	Matri	
	Site Contact;										Τ	
· · · · · · · · · · · · · · · · · · ·												
Project Name:	Analysis Turna			-								
Site: PO#	Standard (Speci Rush (Specify)_	ity Snary		4					Е		it Air	
Sample Client Sample ID Date Start	Time Start San	nple Time Stop Stop (24 hr clock)		Canister Pressure in Fleid ("Hg): (Stop)	incoming Canister Pressure ("Hg) (Lab)	Sample Regulator ID	Can ID	Can Size (L)	TO-15 FULL LIST	TO-15 ABREVIATED LIST	Indoor / Ambient Air Soll Gas / Subslab	Comments
21091322-001 919/21	1450 910	1/21 1850	29	0		14367	614	1.4	Х	ì	X	1091424 -
- 002	1455 1	1854	30	0		1	60587		-		1	-02
-003	1500	1857	31	2		03604	609				T	- 03
-004	1503	1859	31	0		03911	9334					- 04
- 005	1511	1904	31	0		04722						- 05
-006	1519	1909	31	0			00590				C DELINIANU	- 06
-007	1524	1913	30	2		OCHHIB				T		-07
-008	1529	1916	29	0		CHSON						- 08
-009	1538	1920		0	· ·	04503						- 0 9
-010	1542	1924		2		10278						-10
-011	1519	19041		0		14366	1					- 11
-012	1525	1907		1		03,05			\square			-12
-013	1531	1911	31			14029	-	1	\square			. 13
-014		1918	30	2	<u> </u>	03007	*				T	-14
Special Instructions/QC Requirements & Co				1	3	- I q-i		t		ų	. 	
Canisters Shipped by: Date/Time	; ;	· · · · · · · · · · · · · · · · · · ·	Canisters	Received p	y:		Date/Time	13/21	כן	40	1	
Samples Relinquished by: Date/Time	14/21 1	330	Received	by:	le		Date/Time	1/21	/3	3	:	
Relinquished by Date/Time	121, 14	07	Received	auf	AL.		Date/Time 9/14/	21	14	:2)7	

Page158 GP43KIs

Version 1.000

Page 35 of 36

ł

Air Analysis by TO-15

..

. x

.*

Chain of Custody

Client Contact Information	Project Manager: Aw	nber Conftr	Carrier:									<u></u>	2	COCs]	
Company: PSS	Phone:		Samplers N	ame(s)				An	olysis	î,Ma	unit: trix				1	
•	Site Contact:										-					
	-															
Project Name:	Analysis Turnaround Ti								ISI.							
Site:	Standard (Specify) 😏	, day							Ē	Åſ						
PO#	Rush (Specify)	1						IST	IAT	er	slat					
		Pressure in Field ("Hg)	Pressure in Field ("Hg):	Incoming Canister Pressure "Hg) (Lab) F	Sample Regulator ID	Can ID	Can Size (L)	TO-15 FULL LIST	TO-15 ABREV	Indoor / Ambient Air	Soli Gas / Subslab		Comments			
21091322-015 9/9/21	15410 9/9/21 1	921 30	Ð		10505	CARLY	1.4	X		Х		10	91	424]- 1	5
															1	
· · · · · · · · · · · · · · · · · · ·										-						
											-			· · ·	-	
											:				4	
								ļ							4	
															1	
															-	
										_			<u></u>		-	
· · · · · · · · · · · · · · · · · · ·						<u></u>					:					
											•				_	
							-								7	
							[┢──								
Special Instructions/QC Requirements & Co	mments:		l L				<u> </u>	L			i				-	
											:					
Canisters Shipped by: Date/Tim		Canisters	Received by	·		Date/Time 91/3	: 21 1	ζư							4	
Samples Relingnished by: Date/Tim	4/2 1331	Received	they to			Date/Time <i>ご</i> タ /14	! ///.		3		···					
Relinquished by: Date/Tim Un Exten 09/1	s\{`	Referred	With	4		Date/Time 9/14	2	<u>)4</u>	:D	7						

Page13900043xis

Version 1.000

.

Page 36 of 36

PHASE	
S EPARATION	
SCIENCE	

Case Narrative

Project Name: ACPS IAQ testing PSS Project No.: 21091322

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Soil gas indoor air not indicated on COC; samples are indoor air. Incoming pressures not recorded upon receipt. Pressures will be taken at subcontractor.

21091322: Analyses associated with analyst code 4010 were performed by

Maryland Spectral Services, Inc., 1500 Caton Center Drive, Suite G, Baltimore, MD 21227 - VA 460156

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

www.phaseonline.com

PHASE SEPARATION SCIENCE, INC.

email: info@phaseonline.com

ĩ		Total Environmental Concep	ts, Inc. *OFEI	CELOC LO	ton		183/316200000000	rk Order #:			PAGE 1		_ OF	2		
ł		T MGR: Karl Ford		02 200			2	10913	72							
İ		kford@teci.pro		PHONE NO:	703) 567-4	346										
		ACPS IAQ te			.: 4920002		* 3		* 2 ±	* 20	er	ab *	Air *			
ł	PROJEC	James K. Polk	ES					g. D	essul () Sta	ressul J) Sto	anist 'Hg) L	Subsl	bient	List	Ħ	
ł	SITE LOO	Channing Mai		P.O. NO.:			*	Sample Reg. ID	Canister Pressure in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab	Indoor/Ambient	TO-15 Full List	Special List	
1	SAMPLE	_{R(S):} Channing, Mar	*DATE	*Time Start	*DATE	*Time Stop	Can ID	Samp	Canis n fiel	Canis n fiel	ncon Press	Soil C	popul	1-1	Spec	REMARKS
í	LAB#	*SAMPLE IDENTIFICATION	START	(24hr clock) 14:50	<u>stop</u> 9/9/21	(24hr clock) 18:50	614	14367		0						1
ł	-	JP - 50 Class	9/9/21							-			H	V		
l	2	JP - 41 Class	9/9/21	14:55	9/9/21	18:54	00587			0				-	<u> </u>	
I	3	JP - 38 Class	9/9/21	15:00	9/9/21	18:57	609	03604		2					<u> </u>	1
I	ч	JP - 35 Hall	9/9/21	15:03	9/9/21	18:59	9334	03911		0						
I	5	JP - Reception	9/9/21	15:11	9/9/21	19:04	896	04722		0				2		
l	6	JP - 53 Hall	9/9/21	15:19	9/9/21	19:09	00590) 10228		0				2		
l	7	JP - 33 Class	9/9/21	15:24	9/9/21	19:13	3678	04446		2						
	8	JP - 26 Class	9/9/21	15:29	9/9/21	19:16	1018		-	0				2		
	9	JP - Multi Purpose	9/9/21	15:38	9/9/21	19:20	3685	04503		0				~		
	10	JP - Gym	9/9/21	15:42	9/9/21	19:24	9332	10278		2				~		
5	Relinqui	ished By: (1)	Date	Time	Received By:			4 2 5-1	quested TA Day	T (One T 3-Day	AT per Co	DC) 2-Da	ay	Ship	12.12	Carrier:
	Chan	ning Jackson	9/10/21	12:30		Λ		Ne	xt Day		gency	Oth	er		CI	turi
		ished By: (2)	Date	Time	Received By:	64	/	Data Delive	ables Req	uired:						
		ed Krans	9/13/2	11244	Received By:	Ne										
	Relinqu	ished By: (3)	Date	Time	Neceived by.			Special Inst	ructions:							
	Relinqu	ished By: (4)	Date	Time	Received By:											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com

email: info@phaseonline.com

Ļ	/ *CLIEN	Total Environmental Conce	pts, Inc. *OFF	FICE LOC.: LC	orton			k Order #:			PAGE	2	OF	2		
	*PROJE	_{ст мgr:} Karl Ford					ć	210913	97							
		kford@teci.pro		*PHONE NO:	(703) 567-4	4346										
		CT NAME: ACPS IAQ te			_{o.:} 492000		· 3	*	* *	* d	er _ab	ab *	Air *			
	SITE LC	CATION: James K. Poll	< ES	P.O. NO.:				eg. ID	^b ressu Ig) Sta	Pressu Ig) Sto	Canist ("Hg) I	Subsl	bient	l List	st	
	SAMPLE	_{R(S):} Channing, Ma	rgaret				*	Sample Reg. ID	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab	Indoor/Ambient Air	TO-15 Full List	Special List	
2)	LAB #	*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can ID	San	Can in fi	Can in fi	Inco Pre	Soil	Inde	TO.	Spe	REMARKS
10000	11	JP - 22 Band	9/9/21	15:19	9/9/21	19:04	883	14366	30	0				2		
00000	12	JP - Library	9/9/21	15:25	9/9/21	19:07	3053	03605	30	1				~		
C. Later	13	JP - Room 14	9/9/21	15:31	9/9/21	19:11	10189	14029	31	1				~		
100000	14	JP - Room 1	9/9/21	15:42	9/9/21	19:18	573	03607	30	2			\Box	~		
	15	JP - Outdoor	9/9/21	15:46	9/9/21	19:21	9844	10505	30	0				~		
								_]
100						+						H	Н	Н		
												H		Н		
Ţ																
1		shed By: (1)	Date	Time	Received By:		(4 Reque	sted TAT	[(One T/] 3-Day	AT per CC)C) 2-Da	v	Constanting of the second	Self Barries	Carrier:
		ning Jackson shed By: (2)	9/10/21	12:30				Next I		Emerg	ency	Othe	-	(212	vt
I			Date 9/13/ Z	Time (245	Received By	\mathcal{D}_{i}	G)ata Deliverabl	les Requi	ired:						
		shed By: (3)	Date	Time	Received By:		s	pecial Instruc	tions:							
	Relinquished By: (4) Date Time Received By:															

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Sample Receipt Checklist

SCIENCE

Project Name: ACPS IAQ testing PSS Project No.: 21091322

Client Name	Total Environmental Concepts -	Lorto	Rec	ceived By	Thomas V	Vingate
Disposal Date	10/18/2021		Dat	e Received	09/13/202	1 12:44:00 PM
			Del	ivered By	Client	
			Tra	cking No	Not Applica	able
			Log	ged In By	Thomas V	Vingate
Shipping Contai No. of Coolers	ner(s) 0					-
Custody Seal(s Seal(s) Signed		N/A N/A		lce Temp (deg Temp Blank	C)	N/A No
Documentation COC agrees wi Chain of Custo	th sample labels? dy	Yes Yes		Sampler Na MD DW Ce		<u>anning, Margaret</u> <u>A</u>
Sample Contain Appropriate for Intact? Labeled and La	Specified Analysis?	Yes Yes Yes		Custody Sea Seal(s) Sigr		Not Applicable Not Applicable
Holding Time				Total No. of	Samples R	eceived 15
All Samples Re	ceived Within Holding Time(s)?	Yes			-	Received 15
Orthophosphor Cyanides Sulfide TOC, DOC (fiel TOX, TKN, NH VOC, BTEX (V Do VOA vials h 624 VOC (Rcvo	Ils, filtered within 15 minutes of co us, filtered within 15 minutes of c d filtered), COD, Phenols 3, Total Phos OA Vials Rcvd Preserved) ave zero headspace? d at least one unpreserved VOA v d with trip blanks)	ollectio		lq) lq) lq) lq) lq) lq)	H<2) H<2) H>12) H>9) H<2) H<2) H<2) H<2)	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Soil gas indoor air not indicated on COC; samples are indoor air. Incoming pressures not recorded upon receipt. Pressures will be taken at subcontractor.

Samples Inspected/Checklist Completed By:

Date: 09/13/2021

PM Review and Approval: July J logy Am**Bage 43ferf 43**

Date: 09/13/2021 Version 1.000

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

www.phaseonline.com

PHASE SEPARATION SCIENCE, INC.

email: info@phaseonline.com

	*CLIENT	T: CT MGR:	*0FF	TICE LOC.:			PSS Work	Order #:			PAGE _		OF			
	EMAIL: *PROJE	CT NAME:		*PHONE NO: (PROJECT NO P.O. NO.:	0.:		Can ID *	Sample Reg. ID *	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab *	Indoor/Ambient Air *	TO-15 Full List	Special List	
2	LAB #	*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can	San	Can in fi	Can in fi	Incc Pre:	Soil	Inde	TO-	Spe	REMARKS
-				ļ				+				<u> </u>	'	!	<u> </u>	ļļ
Ì						ļ		_								
		ļ	 			 	 		ļļ	ļ'			 '	<u> </u> '	 	
				 		 	 		<u> </u>	 '			 '	 '	 	!
ł		ļ!	 	ļ!	 	<u> </u>	<u> </u>	_	 	'		<u> </u>	 '	 '	──	
				·!			<u> </u>		├ ───┤				<u> '</u>	<u> '</u>	 	'
										'			'	'	 	
Ţ					[]											
5) Relinqu	uished By: (1)	Date	Time	Received By:		(4 Reque 5-Day	sted TAT	(One T/] 3-Day] Emere	AT per CC)C) 2-Da] Oth	ıy er	Ship	ping C	Carrier:
	Relinqu	uished By: (2)	Date	Time	Received By:		C	Data Deliverabl	es Requi	ired:			<u>.</u>			
	Relinqu	uished By: (3)	Date	Time	Received By:		ະ	Special Instruct	tions:							
	Relinqu	uished By: (4)	Date	Time	Received By:											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

www.phaseonline.com

PHASE SEPARATION SCIENCE, INC.

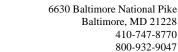
email: info@phaseonline.com

	*CLIENT	T: CT MGR:	*0FF	TICE LOC.:			PSS Work	Order #:			PAGE _		OF			
	EMAIL: *PROJE	CT NAME:		*PHONE NO: (PROJECT NO P.O. NO.:	0.:		Can ID *	Sample Reg. ID *	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab *	Indoor/Ambient Air *	TO-15 Full List	Special List	
2	LAB #	*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can	San	Can in fi	Can in fi	Incc Pre:	Soil	Inde	TO-	Spe	REMARKS
-				ļ				+				<u> </u>	'	!	<u> </u>	ļļ
Ì						ļ		_								
		ļ	 			 	 		ļļ	ļ'			 '	<u> </u> '	 	
				 		 	 		<u> </u>	 '			 '	 '	 	!
-		ļ!	 	ļ!	 	<u> </u>	<u> </u>	_	 	'		<u> </u>	 '	 '	──	
				·!			<u> </u>		├ ───┤			<u> </u>	<u> '</u>	<u> '</u>	 	'
										'			'	'	 	
Ţ					[]											
5) Relinqu	uished By: (1)	Date	Time	Received By:		(4 Reque 5-Day	sted TAT	(One T/] 3-Day] Emere	AT per CC)C) 2-Da] Oth	ıy er	Ship	ping C	Carrier:
	Relinqu	uished By: (2)	Date	Time	Received By:		C	Data Deliverabl	es Requi	ired:			<u>.</u>			
	Relinqu	uished By: (3)	Date	Time	Received By:		ະ	Special Instruct	tions:							
	Relinqu	uished By: (4)	Date	Time	Received By:											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Appendix D: Formaldehyde Analytical Results


Project Name: ACPS IAQ Testing PSS Project No.: 21091315

September 21, 2021

Karl Ford Total Environmental Concepts - Lorton 8382 Terminal Road, Suite B Lorton, VA 22079

Reference: PSS Project No: **21091315** Project Name: ACPS IAQ Testing Project Location: James K. Polk ES Project ID.: 4920002

Dear Karl Ford:

www.phaseonline.com

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21091315**.

Certificate of Analysis

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on October 18, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Project Name: ACPS IAQ Testing PSS Project No.: 21091315

Project ID: 4920002

The following samples were received under chain of custody by Phase Separation Science (PSS) on 09/13/2021 at 12:42 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
21091315-001	JP- Library	AIR	09/09/21 00:00	
21091315-002	JP- 41 Class	AIR	09/09/21 00:00	
21091315-003	JP- 22 Class/Band	AIR	09/09/21 00:00	
21091315-004	JP- Room 1	AIR	09/09/21 00:00	
21091315-005	JP- Gym	AIR	09/09/21 00:00	
21091315-006	JP- 14 Class	AIR	09/09/21 00:00	
21091315-007	JP- 50 Class	AIR	09/09/21 00:00	
21091315-008	JP- 38 Class	AIR	09/09/21 00:00	
21091315-009	JP- Reception	AIR	09/09/21 00:00	
21091315-010	JP- Hall 107	AIR	09/09/21 00:00	
21091315-011	JP- Hall 35	AIR	09/09/21 00:00	
21091315-012	JP- 33 Class	AIR	09/09/21 00:00	
21091315-013	JP- Multi Purpose	AIR	09/09/21 00:00	
21091315-014	JP- Hall 53	AIR	09/09/21 00:00	
21091315-015	JP- 26 Class	AIR	09/09/21 00:00	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].

7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.

8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Explanation of Qualifiers

SCIENCE

Project Name: ACPS IAQ Testing

PSS Project No.: 21091315

Standard Flags/Abbreviations:

- В A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- С Results Pending Final Confirmation.
- Е The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1. Fail
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- PSS Reporting Limit. RL
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Ms. Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228 September 21, 2021

Account# 15354

Login# L546486

Dear Amber Confer:

Enclosed are the analytical results for the samples received by our laboratory on September 14, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa-Luab

Lisa Swab Laboratory Director

Enclosure(s)

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,
			Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials
Texas	Texas Dept. of Licensing and	Lab ID: 1042	Mold Analysis Laboratory license
	Regulation		

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
I - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

```
Version 1.000
```


6601 Kirkville Road East Syracuse, NY 13057

FAX: (315) 437-0571

www.sgsgalson.com

(315) 432-5227

LABORATORY ANALYSIS REPORT

Client	: Phase Separation Science, Inc.	Account No.: 15354
Site	: JAMES K. POLK ES	Login No. : L546486
Project No.	: ACPS IAQ TESTING-4920002	
Date Sampled	: 09-SEP-21	Date Analyzed : 15-SEP-21
Date Received	: 14-SEP-21	Report ID : 1265194

Formaldehyde

		Time	Total	Conc	
Sample ID	<u>Lab ID</u>	minutes	ug	mg/m3	ppm
JP-LIBRARY	L546486-1	222	<0.4	<0.02	<0.01
JP-41 CLASS	L546486-2	242	<0.4	<0.01	<0.01
JP-22 CLASS/BAND	L546486-3	225	<0.4	<0.01	<0.01
JP-ROOM 1	L546486-4	216	<0.4	<0.02	<0.01
JP-GYM	L546486-5	222	<0.4	<0.02	<0.01
JP-14 CLASS	L546486-6	220	<0.4	<0.02	<0.01
JP-50 CLASS	L546486-7	245	<0.4	<0.01	<0.01
JP-38 CLASS	L546486-8	237	<0.4	<0.01	<0.01
JP-RECEPTION	L546486-9	233	<0.4	<0.01	<0.01
JP-HALL 107	L546486-10	218	<0.4	<0.02	<0.01
JP-HALL 35	L546486-11	236	<0.4	<0.01	<0.01
JP-33 CLASS	L546486-12	229	<0.4	<0.01	<0.01
JP-MULIT PURPOSE	L546486-13	222	<0.4	<0.02	<0.01
JP-HALL 53	L546486-14	230	<0.4	<0.01	<0.01
JP-26 CLASS	L546486-15	227	<0.4	<0.01	<0.01

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of Quantitatic	n: 0.4 ug	Submitted by: JLL	Approved by: NKP
Analytical Method	: mod. OSHA 1007; HPLC/UV	Date : 21-SEP-21	
Collection Media	: Assay 581	Supervisor : MWJ	

```
Version 1.000
```


LABORATORY FOOTNOTE REPORT

	Client Name : Phase Separation	Science, inc.
	Site : JAMES K. POLK ES	
	Project No. : ACPS IAQ TESTING-	-4920002
6601 Kirkville Road		
East Syracuse, NY 13057	Date Sampled : 09-SEP-21	Account No.: 15354
(315) 432-5227	Date Received: 14-SEP-21	Login No. : L546486
FAX: (315) 437-0571	Date Analyzed: 15-SEP-21	
www.sgsgalson.com		

L546486 (Report ID: 1265194):

Total ug corrected for a desorption efficiency of 96%. FORMALDEHYDE results have been corrected for the average background found on the media: 0.1178 ug for lot #4B21 (samples 1-15). SOPs: LC-SOP-4(23)

L546486 (Report ID: 1265194):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
Formaldehyde	+/-12.1%	95.3%

```
Version 1.000
```

	LS44	0486				21091	315					
SGS G	ALSON	New Client?		hase Sepa 330 Baltim altimore, N	ore Natio	nal Pike	Invoice T	•* : <u>Phase Se</u> 	eparation	Scier		
6601 Kirkvil	le Rd	<u> </u>				· · · ·	Phone N	lo.: 410-747-87	70			
East Syracu	ise, NY 13057		Phone No.* : <u>4</u>	10-747-877	<u></u>			ail : invoicing@p		e.com		
Tel: (315) 4 888-43	32-5227 2-LABS (5227)	E	Cell No. : mail Results to :_A					lo.: ODC 49200				<u></u>
www.sgsga	lson.com	E	Email address: re			e.com		rd : Card on File		for Credit	t Card Inf	o.
						4				- DodaooT	M Brogrom	~
Need Results By:	(surcharge)		V	Samples su		g the FreePumpLoan™		submitted using the		igbauges	riogram	Л
1 AM Standard		Site Name : James	K. Polk ES		Pro	ject : ACPS IAQ te	sting - 4920002 Sam	pled by: Karl Fo	ord			<u> </u>
4 Business Days	35%	Comments :										
3 Business Days	50%	Dosimeter cartri	ige # noted in t	he (Hexav	elent Chro	omium Process) o	colum					
2 Business Days	75%						State samples were	Please indicate wh	hich OF1 this	data will b	be used fo	
Next Day by 6pm	100%	List description of indu	ustry or Process/inter	rferences pres	ent in sampl	ing area :	collected in (e.g., NY)		ACGIH TL	-	Cal O	
Next Day by Noon	150%	Public grade s	chool building				VA	МЅНА [Other (spe	ecify):		
Same Day	200%				le Volume ple Time	Sample Units*:	Analysis Requ	ested*	Method Refe			t Chromiun .g., welding
Sample Identif (Maxmium of 20 C		Date Sampled	Collection Mediur	Samp	ole Area*	L, ml,min,in2,cm2,ft2	2,ft2 pl			plating, painting, etc.)* PD5199		
P - Library		09/09/21	Assay N581 Aldehyde Bad	_		Min	Formaldehyde					
IP - 41 Class		09/09/21	Assay N581 Aldehyde Bad	^{lge} 242		Min	Formaldehyde mod. OSHA 1007: T					
JP - 22 Class / Ba	ind	09/09/21	Assay N581 Aldehyde Bac	^{dge} 225		Min	Formaldehyde		mod. OSHA 1007			
JP - Room 1		09/09/21	Assay N581 Aldehyde Bad	^{1ge} 216		Min	Formaldehyde		mod. OSHA 1007			
JP - Gym		09/09/21	Assay N581 Aldehyde Bad	^{dge} 222		Min	Formaldehyde		mod. OSHA 1007	<u> </u>		
JP - 14 Class		09/09/21	Assay N581 Aldehyde Bar	^{dge} 220		Min	Formaldehyde		mod. OSHA 1007		PD457	
JP - 50 Class		09/09/21	Assay N581 Aldehyde Ba	^{dge} 245		Min	Formaldehyde		mod, OSHA 1007			
JP - 38 Class		09/09/21	Assay N581 Aldehyde Ba	^{dge} 237		Min	Formaldehyde		mod. OSHA 1007		PD498	
JP - Reception		09/09/21	Assay N581 Aldehyde Ba	^{dge} 233		Min	Formaldehyde		mod. OSHA 1007			
JP - Hall 107		09/09/21	Assay N581 Aldehyde Ba	^{dge} 218		Min	Formaldehyde		mod. OSHA 1007			
IR - Hall 35		09/09/21	Assay N581 Aldehyde Ba			Min	Formaldehyde		mod. OSHA 1007	7: TPLC/UV	PD549	4
AGalson Laboratories v	vill subsititute ou	r routine/preferred met	hod if it does not ma	tch the metho	d listed on th	ne COC unless this box	is checked: 🔽 Use method	(s) listed on COC				
For metals analysis: if r	equesting an ana	lyte with the option of	a lower LOQ, please	indicate if the	lower LOQ is	s required (only availab	le for certain analytes - see S	AG):				:
For crystalline silica: fo	rm(s) of silica nee	eded must be indicated	(Quartz, Cristobalite	, and/or Tridy	mite)* :			-		Dati		
Chain of Custody		int Name/Signature		Date	Time		Print Nar	ne/Signature		Date	<u> </u>	Time
Relinquished by : Ct				09/10/21	13:30	Received by: Z Received by:	anthe	VON	$\overline{1}$	a1131	$\frac{1}{2}$	124
Relinquished by :	Ted	Krans	Samı	7/13/21 ples received	12:4 d after 3pm	will be considered a	s next day's business		<u> </u>			of <u>2</u>
						C 1.1	delay in your samples be	ata a araaaaaad		r 6	ayo I	<u>لم</u> ال

SGS G	ALSON	New Client?	- D al	ase Separa 30 Baltimo timore, MI	10 110.000		Invoice T	•* : <u>Phase Se</u>	eparation Scie	
6601 Kirkvil	le Rd		 Phone No.* :41(-747-8770)		Phone Phone	No.: 410-747-87	70	
East Syracu Tel: (315) 4	se, NY 13057		Cell No. :				Em	ail: invoicing@	phaseonline.com	
888-43	2-LABS (5227)	F	mail Results to : <u>An</u>					No. : ODC 4920		
www.sgsga	lson.com	_	Email address: rep			e.com	Credit Ca	urd : 🚺 Card on Fil	e Call for Cree	dit Card Info.
						the FreePumpLoan™ F	Program Samples	submitted using the	e FreeSamplingBadge	s™Program
Need Results By:	(surcharge)					ect : ACPS IAQ te	sting - 4920002 San	npled by : Karl Fo	ord	
Standard	0%	Site Name : James	K. POIKES		Proje			<u> </u>		
4 Business Days 3 Business Days	35%	Comments :				mium Drocopo) o	olum			
3 Business Days	50%	Dosimeter cartri	ge # noted in th	e (Hexave	ient Chro	omium Process) c	Joium			
2 Business Days Next Day by 6pm	75%	List description of ind			nt in sampli	ng area :	State samples were		hich OEL this data wil	
Next Day by 6pm	100%	List description of ind	istry or Process/Intern	srences preser	nt in sampli	ng ulou l	collected in (e.g., NY)	🗹 OSHA PEL	ACGIH TLV	Cal OSHA
Next Day by Noon	150%	Public grade s	chool building				VA	MSHA	Other (specify):	
Same Day	200%	·····		Sample	Volume	Sample Units*:			Method Reference^	Hexavalent Chromium Process (e.g., welding
Sample Identii (Maxmium of 20 0		Date Sampled	Collection Medium Sample Time Sample Area			L, ml,min,in2,cm2,ft2	Analysis Req	uested*	Method Nelefence	plating, painting, etc.)
		00/00/21	Assay N581 Aldehyde Badg	000		Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4208
- 33 Class		09/09/21				Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4390
- Multi Purpose		09/09/21	Assay N581 Aldehyde Badg				Formaldehyde		mod. OSHA 1007: TPLC/UV	PD5331
P - Hall 53		09/09/21	Assay N581 Aldehyde Badg			Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4860
P - 26 Class		09/09/21	Assay N581 Aldehyde Badg	» 227		Min	Formationyte			
										<u> </u>
								_		
				_					1	
			<u> </u>				<u> </u>		<u> </u>	<u> </u>
AGalson Laboratories	vill subsititute o	ur routine/preferred me	hod if it does not mat	ch the method	l listed on th	e COC unless this box	is checked: 🔽 Use metho	a(s) listed on COC		
For metals analysis: if	requesting an an	alyte with the option of	a lower LOQ, please i	ndicate if the l	ower LOQ is	required (only availab	le for certain analytes - see	SAG):		
For opetalling silice fr	orm(s) of silica ne	eded must be indicated	(Quartz, Cristobalite,	and/or Tridyn	nite)* :					
		rint Name/Signature		Date	Time		Print Na	ame/Signature	Da	ate Time
Chain of Custody Relinquished by : C	hanning Jack		0	9/10/21	13:30	Received by :			AT	
	Tool			(13/2)	12:47		an	FUN	a 13	14/124
Relinquished by :			Samn	les received	after 3pm	will be considered a	is noxt day's business	holog pressoned		Page_2_ of _2_
		*	Required Reloc foil	ofe7to cBnep	lont Refe	fendem#vGenderlat	eleterisenterisenoles Thene krause Versio	neing processed.		

21091315-008

21091315-009

21091315-010

21091315-011

21091315-012

21091315-013

21091315-014

21091315-015

Chain of Custody Form for Subcontracted Analyses

Page 1 of 1

Preservative

NON NON NON NON NON NON

NON

NON

NON

NON

NON

NON

NON

NON

NON

Phase Separation So	cience, Inc		WC). No. :	21091315		oles Transferred T		
630 Baltimore Nat			w.c	J. INO. :	SGS North America				
Baltimore, MD 212			Proj	ect Location	1 : James K. Polk ES	6601	Kirkville Road		
Phone: (410) 747-8 Sax: (410) 788-872.			Proj	ect Number	: 4920002	East Syracuse, NY			
			Rep	ort To LOI	D: No	Old	SGS Galson Labs		
- Questions or	issues please contact:	Amber Confer		Report I	Due On :09/21/21 05:00	Phon	e : 315-432-522		
Lab Sample ID	Field Sample ID	Date Sampled	Time Sampled	Matrix	Analyses Required	Method	Type of Container		
21091315-001	JP- Library	09/09/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VADIOUS			
21091315-002	JP- 41 Class	09/09/21	00:00		/	VARIOUS	NONSC		
21091315-003			00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC		
21091313-003	JP-22 Class/Band	09/09/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC		
21091315-004	JP- Room 1	09/09/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)				
21091315-005	JP- Gym	09/09/21	00:00			VARIOUS	NONSC		
21001215 000			00.00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC		
21091315-006	JP-14 Class	09/09/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC		
21091315-007	JP- 50 Class	09/09/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)				
			4 I			VARIOUS	I NONSC		

Air

Air

Air

Air

Air

Air

Air

Air

d To: -NY

13057

bs. bsc 227

NONSC

NONSC

NONSC

NONSC

NONSC

NONSC

NONSC

NONSC

NONSC

Data Deliverables Required: COA

JP-38 Class

JP-Reception

JP- Hall 107

JP- Hall 35

JP-33 Class

JP- Multi Purpose

JP- Hall 53

JP-26 Class

Send Report Attn : reporting@phaseonline.com

09/09/21

09/09/21

09/09/21

09/09/21

09/09/21

09/09/21

09/09/21

09/09/21

00:00

00:00

00:00

00:00

00:00

00:00

00:00

00:00

Perform	Q.C.	on	Sample
---------	------	----	--------

Formaldehyde (mod. OSHA 1007; HPLC/UV)

Send InvoiceAttn : invoicing@phaseonline.com

VARIOUS

VARIOUS

VARIOUS

VARIOUS

VARIOUS

VARIOUS

VARIOUS

VARIOUS

Airbill No.:	rier: NAPS	Senu InvolceAttii:	<u>mvolcing@phaseonine.com</u>
Condition Upon Receipt :	<u>V(1 ></u>		1Z2313E40166036170 Date:09/14/21
Comments :			Shipper:UPS Initials:MAK
Samples Relinquished By :	Date : 9 13 2 Time: Samples	Received By :	Prep:UNKNOWN
Samples Relinquished By:	Date : Time : Samples	Received By:	
Samples Relinquished By:	Date: Page 7 of The: Report Reference	e:1 Genterater 21/25 EQ 21 98:21 Juchelle Received By:	- Knause 9/1419 000
	Page 10 c	of 14 Version 1.000	/

HASE	
SEPARATION	
SCIENCE	

Project Name:ACPS IAQ TestingPSS Project No.:21091315

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

2/09/315

	SGS	GALSO	New Clien	6630 Baltimore National Pike				Invoice T	^{o* :} Phase S	Separa	tion Sci	ence			
	ľ		Client Account	t No.*:	Ba	altimore,	MD 2122	8				- <u></u>			
	6601 I	Girkville Rd									<u></u>				
East Syracuse, NY 13057 Phone No.* : 410-747-8770								Phone N	No.: <u>410-747-8</u>	770					
		38-432-LABS (522)	7)		No. :					Email : <u>invoicing@phaseonline.com</u>					
	www.	gsgalson.com		Email Resul							lo. : <u>ODC 492(</u>		1		
	Email address: reporting@phaseonline.com Credit Card : Card on File Call for Credit Card Info.						Info.								
	Need Results By	: (surcharge)	harge) Samples submitted using the FreePumpLoan™Program Samples submitted using the FreeSamplingBadges™Program						ram						
	Stan		Site Name : Jame	s K. Polk E	S		Pr	oject : ACPS IAQ te	esting - 492	0002 Samp	oled by : Karl F	ord			
	4 Business [Comments :												
	3 Business (2 Business (Dosimeter cart	rige # note	ed in th	e (Hexa	velent Chr	omium Process)	colum						
	Next Day by 6	pm 100%	List description of in	dustry or Proce	ss/interfe	rences pre	sent in samp	ling area :	State sample	s were	Please indicate w	which OF			
	Next Day by N	oon 150%	7				•	5	collected in (OSHA PEL			Cal	
	Same	Day 200%		Public grade school building VA							MSHA	Other			
		entification* 20 Characters)	Date Sampled	Collection Medium Sample Volume Sample Units*: Sample Time L, ml,min,in2,cm2,ft2				Analysis Requested*		Method	Reference^	Process	ent Chromium (e.g., welding		
JP -	Library		09/09/21					Formaldehy	de		mod OSHA	1007: TPLC/UV	plating, PD51	painting, etc.)*	
JP -	41 Class		09/09/21	Assay N581 Alde	hyde Badge	242		Min	Formaldehyde				PD55		
JP -	22 Class	band	09/09/21	Assay N581 Alde	hyde Badge	225		Min	Formaldehyd						
	Room 1		09/09/21	Assay N581 Alde	hyde Badge	216		Min	Formaldehyd						
JP -	Gym		09/09/21	Assay N581 Alde	nyde Badge	222		Min	Formaldehyd						
JP -	14 Class		09/09/21	Assay N581 Alde	nyde Badge	220		Min	Formaldehyd						
JP -	50 Class		09/09/21	Assay N581 Alde	nyde Badge	245		Min	Formaldehyc	le				PD45	
	38 Class		09/09/21	Assay N581 Alde	nyde Badge	237		Min	Formaldehyc	le		mod. OSHA		PD49	
JP -	Reception		09/09/21	Assay N581 Alde	iyde Badge	233		Min	Formaldehyc	e		mod. OSHA 1	007: TPLC/UV	PD497	73
JP -	Hall 107		09/09/21	Assay N581 Aldel	iyde Badge	218		Min	Formaldehyd	e		mod. OSHA 1		PD508	
JP -	Hall 35		09/09/21	Assay N581 Aldel	yde Badge	236		Min	Formaldehyd	e		mod. OSHA 1	007: TPLC/UV	PD549)4
^Gal	son Laboratorie	s will subsititute our	routine/preferred meth	od if it does n	ot match	the method	i listed on the	COC unless this box is	checked:	Use method(s)	listed on COC				<u> </u>
	AGalson Laboratories will subsititute our routine/preferred method if it does not match the method listed on the COC unless this box is checked: 🔽 Use method(s) listed on COC For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG):														
	For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite)*:														
	of Custody		nt Name/Signature		D	ate	Time			Print Name	/Signature		Date	,	Time
Relin	quished by : (hanning Jacks			09/	10/21	13:30	Received by :			-				
Relin	quished by :	Tedl	Craus			3/21	12:47		an	ln ?	Com		a/131	2	1242
			* Re	equired fields	amples , failure	received a to comple	after 3pm w ete these fie Pag	rill be considered as elds may result in a c e 12 of 14	next day's bu lelay in your	isiness samples being	a processed.		Pa	ge_1	of _2_

2	100	113	15

SGS GALSON	Client Account No.	Dat	30 Baltin	aration So Tore Natio VID 21228	onal Pike		Invoice T	^{o* :} Phase S	eparation Sc	ience	
6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227 888-432-LABS (5227) www.sgsgalson.com	Ema	Cell No. : ail Results to : <u>Am</u> mail address <u>: rep</u>	to : <u>Amber Confer</u> ess: reporting@phaseonline.com				Phone No.: <u>410-747-8770</u> Email : <u>invoicing@phaseonline.com</u> P.O. No. : <u>ODC 4920002-001</u> Credit Card : Card on File Call for Credit Card Info.				Info.
Need Results By: (surcharge)	✓ Samples submitted using the FreePumpLoan [™] Program Samples submitted using the FreeSamplingBadges [™] Program										
Standard 0% Sit	te Name : James K.	Polk ES		Pro	ject : ACPS IAQ te	sting - 492000	2 Samı	oled by: Karl F	ord		
4 Business Days 35% Co	omments :										
3 Business Days 50%	Dosimeter cartrige	# noted in the	(Hexav	elent Chro	omium Process) o	olum					
2 Business Days 75%			`								
	st description of industry	y or Process/interfer	ences pres	ent in sampli	ing area :	State samples we			hich OEL this data w	rill be usec	l for :
Next Day by Noon 150%	Public grade sch	ool building				collected in (e.g.,	NY)	OSHA PEL	ACGIH TLV	Cal	OSHA
Same Day 200%						VA		MSHA	Other (specify):		
Sample Identification* (Maxmium of 20 Characters)	Date Sampled C	Collection Medium	Samp	e Volume Ie Time Ie Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Ana	ysis Reque	ested*	Method Reference	Process	ent Chromium (e.g., welding painting, etc.)*
JP - 33 Class	09/09/21 Assa	ay N581 Aldehyde Badge	229		Min	Formaldehyde			mod. OSHA 1007: TPLC/U		
JP - Multi Purpose	09/09/21 Assa	ay N581 Aldehyde Badge	dehyde Badge 222 Min Formaldehyde			mod. OSHA 1007: TPLC/U	v PD43	90			
JP - Hall 53	09/09/21 Assi	ay N581 Aldehyde Badge									
JP - 26 Class	09/09/21 Assa	ay N581 Aldehyde Badge	227		Min	Formaldehyde			mod. OSHA 1007: TPLC/U		
			an i i _{ne}								
	····	······									
*** /*** /**///			· · ·		·						
										<u> </u>	
							<u> </u>			<u> </u>	
AGalson Laboratories will subsititute our rout	tine/oreferred method if	f it does not match t	he method	listed on the	COC unless this box is	checked:	method/a	listed on COC			
For metals analysis: if requesting an analyte w										·	
For crystalline silica: form(s) of silica needed r					ogeneo (ony available			+/• ·			
	lame/Signature		ate	Time		p	rint Name	e/Signature		ate	Time
Relinguished by : Channing Jackson	tanio orginataro		0/21	13:30	Received by :			soignature		116	inne
	fra-s		13/21	12:47	Received by :	are	~ ~	han	a 13	121	1242
<u> </u>		Samples	received a	after 3pm w	ill be considered as Ids may result in a c 13 of 14	next day's busin	ess			f	of 2

SCIENCE

Project Name: ACPS IAQ Testing PSS Project No.: 21091315

Client Name	Total Environmental Concepts -	Lorto	Received By	Amber Co	nfer
Disposal Date	10/18/2021		Date Receive	d 09/13/202 ⁻	1 12:42:00 PM
			Delivered By	Client	
			Tracking No	Not Applica	ble
			Logged In By	Amber Co	ofer
Shipping Conta	iner(s)				
No. of Coolers	0				
			Ice	Ν	I/A
Custody Seal(s		N/A	Temp (de		
Seal(s) Signed	/ Dated?	N/A	Temp Blar	nk Present N	lo
Documentation			Sampler N	lame <u>Kar</u>	I Ford
COC agrees w	ith sample labels?	Yes	MD DW C	ert. No. <u>N/A</u>	<u>\</u>
Chain of Custo	dy	Yes			
Sample Contain	er		Custody S	eal(s) Intact?	Not Applicable
Appropriate for	Specified Analysis?	Yes	Seal(s) Si	gned / Dated	Not Applicable
Intact?		Yes		gried, Dated	not applicable
Labeled and La	abels Legible?	Yes			
Holding Time			Total No.	of Samples R	eceived 15
All Samples Re	eceived Within Holding Time(s)?	Yes	Total No.	of Containers	Received 15
Preservation					
Total Metals				pH<2)	N/A
	als, filtered within 15 minutes of co			pH<2)	N/A
	rus, filtered within 15 minutes of c	ollection			N/A
Cyanides				pH>12)	N/A
Sulfide				pH>9)	N/A
	ld filtered), COD, Phenols			pH<2)	N/A
TOX, TKN, NH	-			pH<2)	N/A
	OA Vials Rcvd Preserved)		(pH<2)	N/A N/A
	have zero headspace? d at least one unpreserved VOA v	(ial)			N/A N/A
•	d with trip blanks)	ndi)		pH<2)	N/A N/A
524 VOC (RCV	u with the blanks		(prisz)	IN/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:

Date: 09/13/2021

PM Review and Approval:

NY Hackson

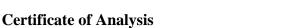
Amber Confer

Lynn Jackson Page 14 of 14 Date: 09/13/2021

Version 1.000

	SGS	GALSON	New Client?	Report To* :					Invoice T	o* :				
		UALUUT	Client Account N											
	6601 Kir	kville Rd		-										
	East Syı	acuse, NY 13057		Phone No.* :					Phone I	No.:				
		5) 432-5227 -432-LABS (5227)		Cell No. :					Em	ail :				
		. ,	E	mail Results to :					P.O. N	lo. :				
	www.sg	sgalson.com		Email address:					Credit Ca	rd : 📃 Card on Fi	ile 🗌 C	all for Cre	dit Card Ir	nfo.
	Need Results By:	(surcharge)		[Samples	submitted usir	ng the FreePumpLoan™	Program	Samples	submitted using th	e FreeSamp	lingBadge	es™Progra	am
	Standa	rd 0%	Site Name :			Pro	oject :		Sam	pled by :				
	4 Business Da	ys 35%	Comments :											
	3 Business Da	ys 50%												
	2 Business Da	ys 75%												
	Next Day by 6p	m 100%	List description of indu	stry or Process/int	erferences pr	esent in samp	ling area :	State samp		Please indicate w			l be used	for :
	Next Day by No	on 150%						collected in	(e.g., NY)	OSHA PEL	ACGIH	TLV	Cal	OSHA
	Same Da	ay 200%								MSHA	Other (s	pecify):		
	Sample Ide (Maxmium of 2		Date Sampled	Collection Media	ım Sar	ple Volume nple Time nple Area*	Sample Units*: L, ml,min,in2,cm2,ft2		Analysis Requ	ested*	Method Re	eference^	Process (nt Chromium e.g., welding painting, etc.)*
^Ga	Ison Laboratories	will subsititute our	routine/preferred metho	od if it does not ma	I Itch the meth	od listed on th	l ne COC unless this box i	s checked:	Use method(s) listed on COC				
For	metals analysis: i	f requesting an anal	yte with the option of a	lower LOQ, please	indicate if the	e lower LOQ is	s required (only availabl	e for certain a						
For	crystalline silica:	form(s) of silica need	ded must be indicated (0	Quartz, Cristobalite	, and/or Trid	ymite)* :								
Chai	n of Custody	Pri	nt Name/Signature		Date	Time			Print Nam	ne/Signature		Da	te	Time
<u> </u>	nquished by :		-				Received by :			-				
L	nquished by :						Received by :							
	I		* Re			•	will be considered as fields may result in a			ing processed.	1	F	Page	of

Appendix E: 4-PCH Analytical Results


Project Name: ACPS IAQ Testing PSS Project No.: 21091314

September 21, 2021

Karl Ford Total Environmental Concepts - Lorton 8382 Terminal Road, Suite B Lorton, VA 22079

Reference: PSS Project No: **21091314** Project Name: ACPS IAQ Testing Project Location: Jakes K. Polk ES Project ID.: 4920002

Dear Karl Ford:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21091314**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on October 18, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Version 1.000

Project Name: ACPS IAQ Testing PSS Project No.: 21091314

Project ID: 4920002

The following samples were received under chain of custody by Phase Separation Science (PSS) on 09/13/2021 at 12:42 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
21091314-001	JP-Library	AIR	09/09/21 00:00	
21091314-002	JP-41 Class	AIR	09/09/21 00:00	
21091314-003	JP-22 Class/Band	AIR	09/09/21 00:00	
21091314-004	JP-Room 1	AIR	09/09/21 00:00	
21091314-005	JP-Gym	AIR	09/09/21 00:00	
21091314-006	JP-Class 14	AIR	09/09/21 00:00	
21091314-007	JP-Class 50	AIR	09/09/21 00:00	
21091314-008	JP-Class 38	AIR	09/09/21 00:00	
21091314-009	JP-Reception	AIR	09/09/21 00:00	
21091314-010	JP-Hall 107	AIR	09/09/21 00:00	
21091314-011	JP-Hall 35	AIR	09/09/21 00:00	
21091314-012	JP-Class 33	AIR	09/09/21 00:00	
21091314-013	JP-Multi Purpose	AIR	09/09/21 00:00	
21091314-014	JP-Hall 53	AIR	09/09/21 00:00	
21091314-015	JP-Class 26	AIR	09/09/21 00:00	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].

7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.

8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Explanation of Qualifiers

SCIENCE

Project Name: ACPS IAQ Testing

PSS Project No.: 21091314

Standard Flags/Abbreviations:

- В A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- С Results Pending Final Confirmation.
- Е The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1. Fail
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- PSS Reporting Limit. RL
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Ms. Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228

September 21, 2021

Account# 15354

Login# L546497

Dear Amber Confer:

Enclosed are the analytical results for the samples received by our laboratory on September 14, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa-Luab

Lisa Swab Laboratory Director

Enclosure(s)

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,
			Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials
Texas	Texas Dept. of Licensing and	Lab ID: 1042	Mold Analysis Laboratory license
	Regulation		

Legend

 < - Less than > - Greater than - Liters LOQ - Limit of Quantitation ft2 - Square Feet mg - Milligrams mg - Micrograms mg - Micrograms mg - Cubic Meters kg - Kilograms cm2 - Square Centimeter 	NA - Not Applicable ppn NS - Not Specified ppb ND - Not Detected ppn	9 - Parts per Billion n - Parts per Million w - ppb Volume nv - ppm Volume • Nanograms
--	--	--

```
Version 1.000
```


6601 Kirkville Road East Syracuse, NY 13057

FAX: (315) 437-0571 www.sgsgalson.com

(315) 432-5227

LABORATORY ANALYSIS REPORT

Client	: Phase Separation Science, Inc.	Account No.: 15354
Site	: JAMES K. POLK ES	Login No. : L546497
Project No.	: ACPS IAQ TESTING - 4920002	
Date Sampled	: 09-SEP-21	Date Analyzed : 17-SEP-21
Date Received	: 14-SEP-21	Report ID : 1265461

4-Phenylcyclohexene (4PCH low LOQ)

Sample ID	Lab ID	Air Vol liter	Front ug	Back uq	Total uq	Conc mg/m3	ppm
JP - LIBRARY	L546497-1	44.4	<0.2	<0.2	<0.2	<0.005	<0.0007
JP - 41 CLASS	L546497-2	48.4	<0.2	<0.2	<0.2	<0.004	<0.0007
JP - 22 CLASS/BAND	L546497-3	45	<0.2	<0.2	<0.2	<0.005	<0.0007
JP - ROOM 1	L546497-4	43.2	<0.2	<0.2	<0.2	<0.005	<0.0007
JP - GYM	L546497-5	44.4	<0.2	<0.2	<0.2	<0.005	<0.0007
JP - CLASS 14	L546497-6	44	<0.2	<0.2	<0.2	<0.005	<0.0007
JP - CLASS 50	L546497-7	49	<0.2	<0.2	<0.2	<0.004	<0.0007
JP - CLASS 38	L546497-8	47.4	<0.2	<0.2	<0.2	<0.004	<0.0007
JP - RECEPTION	L546497-9	46.6	<0.2	<0.2	<0.2	<0.004	<0.0007
JP - HALL 107	L546497-10	43.6	<0.2	<0.2	<0.2	<0.005	<0.0007
JP - HALL 35	L546497-11	47.2	<0.2	<0.2	<0.2	<0.004	<0.0007
JP - CLASS 33	L546497-12	45.8	<0.2	<0.2	<0.2	<0.005	<0.0007
JP - MULTI PURPOSE	L546497-13	44.4	<0.2	<0.2	<0.2	<0.005	<0.0007
JP - HALL 53	L546497-14	46	<0.2	<0.2	<0.2	<0.004	<0.0007
JP - CLASS 26	L546497-15	45.4	<0.2	<0.2	<0.2	<0.005	<0.0007

<u>COMMENTS:</u> Please see attached lab footnote report for any applicable footnotes.

Level of Quantitation: 0.2 ug	Submitted by: ECB	Approved by: MLN
Analytical Method : mod. NIOSH 1501; GC/PID Collection Media : 226-01	Date : 20-SEP-21 Supervisor : KAG	

```
Version 1.000
```


LABORATORY FOOTNOTE REPORT

Client Name : Phase Separation Science, Inc. Site : JAMES K. POLK ES Project No. : ACPS IAQ TESTING - 4920002 6601 Kirkville Road East Syracuse, NY 13057 Date Sampled : 09-SEP-21 Account No.: 15354 (315) 432-5227 Date Received: 14-SEP-21 Login No. : L546497 FAX: (315) 437-0571 Date Analyzed: 17-SEP-21 www.sgsgalson.com

L546497 (Report ID: 1265461):

Total ug corrected for a desorption efficiency of 97%. SOPs: GC-SOP-16(26), GC-SOP-8(27), GC-SOP-12(20)

L546497 (Report ID: 1265461):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter			Accuracy	Mean Recovery		
4-Phenylcyclohexene	(4PCH low	LOQ)	+/-18%	88.2%		

```
Version 1.000
```

1Z2	2313E40165206989	9	1546	497				21091	1314						
Sh.	e:09/14/21 ipper:UPS itials:BGF		New Client? Report To* : Phase Separation Science 6630 Baltimore National Pike						Invoice To* : Phase Separation Science						
Pr	ep : UNKNOWN		Client Account N	lo.*:	- Balti	more, N	4D 21228								
саят Syracuse, NY 13057 Tel: (315) 432-5227 888-432-LABS (5227) www.sgsgalson.com		Phone No.* :410-747-8770 Cell No. : Email Results to : <u>Amber Confer</u> Email address: <u>reporting@phaseonline.com</u>							Phone No.: 410-747-8770 Email : invoicing@phaseonline.com P.O. No. : ODC 4920002-001 Credit Card : Card on File Call for Credit Card Info.						
-	Need Results By:	(surcharge)	Samples submitted using the FreePumpLoan [™] Program Samples submitted using the FreeSamplingBadges [™] Program												
I		0%	Site Name : James	K. Polk ES			Pro	ect : ACPS IAQ te	sting - 492	0002 Samp	led by: Karl F	ord			
	4 Business Days	35%	Comments : Y	id "He	11 1	0-7"						_			
	3 Business Days	50%	-					a 1							
	2 Business Days	75%	<u> </u>	V Id	<u> </u>	ALL	37"	B6F 91	· · · · · · · · · · · · · · · · · · ·						
	Next Day by 6pm	100%	List description of ind	List description of industry or Process/interferences present in sampling area : State samples were collected in (e.g., NY) Version OSHA PEL ACGIH TLV								ed for : al OSHA			
	Next Day by Noon	150%	Public grade school								Other (specify):				
	Same Day Sample Identifi (Maxmium of 20 C		Date Sampled	Collection Me	edium	Samp	e Volume le Time le Area*	Sample Units*: L, ml,min,in2,cm2,ft2		Analysis Reque		Method Refere	nce^ Proce	valent Chromium ss (e.g., welding g, painting, etc.)*	
	P - Library		09/09/21	Sm Charcoal tubes	/ 226-01 4	44.4		L	4-Phenylcy	clohexene		mod. NIOSH	1501		
	- 41 Class		09/09/21	Sm Charcoal tubes	/ 226-01	48.4		L	4-Phenylcy	lohexene		mod. NIOSH	1501		
J	- 22 Class / Ba	nd	09/09/21	Sm Charcoal tubes	/ 226-01	45.0		L	4-Phenylcy	clohexene		mod. NIOSH	1501		
	- Room 1	<u> </u>	09/09/21	Sm Charcoal tubes	/ 226-01	43.2		L	4-Phenylcy	clohexene		mod. NIOSH	1501		
-	⊃ - Gym		09/09/21	Sm Charcoal tubes	/ 226-01	44.4		L	4-Phenylcy	clohexene		mod. NIOSH	1501		
	P - Class 14		09/09/21	Sm Charcoal tubes	/ 226-01	44.0		L	4-Phenylcy	clohexene		mod. NIOSH	1501		
	P - Class 50		09/09/21	Sm Charcoal tubes	bes / 226-01 49.0			L	4-Phenylcyclohexene		mod. NIOSH 1501				
⊢ ⊢	P - Class 38		09/09/21	Sm Charcoal tubes / 226-01 47.4		L	4-Phenylcyclohexene		mod. NIOSH 1501						
- H-	P - Reception		09/09/21	Sm Charcoal tubes	harcoal tubes / 226-01 46.6 harcoal tubes / 226-01 43.6		L	4-Phenylcyclohexene		mod. NIOSH 1501					
1		6/19/21	09/09/21	Sm Charcoal tubes				L	4-Phenylcyclohexene		mod. NIOSH 1501				
	JP - Hall 107 09/09/21 Sm Charcoal tubes / 22 JP - Hall 35, 19 09/09/21 Sm Charcoal tubes / 22									mod. NIOSH 1501					
	Galson Laboratories wi	ill subsititute ou		l nod if it does not	match tl	he method	l listed on the	e COC unless this box is	s checked: 🕨	Use method(s	s) listed on COC	L			
	For metals analysis: if re									-					
	For crystalline silica: for										1	<u></u> . <u></u>			
- H	hain of Custody					Time		Print Name/Signature				Date			
	lelinguished by : Cha				09/1	0/21	13:30	Received by :							
	lelinquished by :		Krans			3/21	1246	Received by: Men 705 9			13/21	1242			
			* R					vill be considered as elds may result in a ence: I Generate		rsamples bei 21 08.25	ng processed.			<u>1</u> of <u>2</u>	

|--|

SGS	GALSO	New Client	? Report To	663	30 Baltim	ore Natio	nal Pike	I	nvoice To	o* : Phase S	eparation S	Science	
		Client Account	No.*:	Bat	timore, N	1D 21228							
East Sy Tel: (3 88	irkville Rd rracuse, NY 13057 15) 432-5227 8-432-LABS (5227 gsgalson.com)	— Phone No. Cell No Email Results t Email addre	o. : to : <u>Am</u>	ber Confe	er	e.com		Ema P.O. No	lo.: <u>410-747-83</u> ail : <u>invoicing@</u> o. : <u>ODC 4920</u> rd : Card on Fi	phaseonline. 002-001	COM r Credit Card	info.
Need Results By	: (surcharge)	1		/ :	Samples sub	omitted usin	g the FreePumpLoan™	Program	Samples s	submitted using th	e FreeSamplingE	adges™Prog	ram
Stand		Site Name : James	s K. Polk			Pro	ject : ACPS IAQ te	sting - 4920002		oled by : Karl F	ord		
4 Business D		Comments :											
] 3 Business D	·												
 2 Business D		1											
Next Day by 6		List description of ind	lustry or Process	/interfer	rences prese	ent in sampl	ng area :	State samples we	re	Please indicate w	vhich OEL this da	ta will be used	d for :
Next Day by N	oon 150%	Dublic made	achaol					collected in (e.g., I	NY)	OSHA PEL	ACGIH TLV	Cal	OSHA
Same [Day 200%	Public grade	school					VA		🔲 МЅНА	Other (specif	y):	
•	entification* f 20 Characters}	Date Sampled	Collection M	edium	Samp	e Volume le Time e Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Anal	ysis Reque	ested*	Method Refere	nce^ Process	ent Chromium (e.g., welding painting, etc.)*
P - Class 33		09/09/21	Sm Charcoal tubes	/ 226-01	45.8		L	4-Phenylcyclohe		mod. NIOSH	1501		
P - Multi Purpo	se	09/09/21	Sm Charcoal tubes	/ 226-01	44.4		L	4-Phenylcyclohe	xene		mod. NIOSH	1501	
- Hall 53		09/09/21	Sm Charcoal tubes	/ 226-01	46.0		L	4-Phenylcyclohe	xene		mod. NIOSH	1501	
P - Class 26		09/09/21	Sm Charcoal tubes	/ 226-01	45.4		L	4-Phenylcyclohe	xene		mod. NIOSH	1501	
<u></u>													
		Ir routine/preferred met	had 16 is -1	6 m c 4 a l-	*ha m=*hc =	listed on th	COC unloss this have		mathadia	a) listed on COC			
		lyte with the option of a					required (only availabl	e for certain analyte	s - see SA				:
hain of Custody		rint Name/Signature		•	Date	Time		 P	Print Nam	ne/Signature		Date	Time
	Channing Jack		ł	_	10/21	13:30	Received by :						
elinguished by :	÷	(rang			18/21	12:00		α	ten	700	1	112121	1242
				amples	received	after 3pm v	will be considered as	s next day's busir	ness			<i>*</i> '	

1

Chain of Custody Form for Subcontracted Analyses

hase Separation Sci 630 Baltimore Natio altimore, MD 2122 hone: (410) 747-87	onal Pike 8		Proj). No. : ect Location ect Number	21091314 Jakes K. Polk ES 4920002	SGS 6601	Samples Transferred To: SGS North America - NY 6601 Kirkville Road East Syracuse, NY 13057				
ax: (410) 788-8723			Rep	ort To LOD): No	Old S	SGS Galson Labs. t	sc			
or Questions or i	issues please contact: A	mber Confer	_		Due On :09/21/21 05:00	Phon	Phone : 315-432-5227				
Lab Sample ID	Field Sample ID	Date Sampled	Time Sampled	Matrix	Analyses Required	Method	Type of Container	Preservative			
21091314-001	JP-Library	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-002	JP-41 Class	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-003	JP-22 Class/Band	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-004	JP-Room 1	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-005	JP-Gym	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-006	JP-Class 14	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-007	JP-Class 50	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-008	JP-Class 38	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-009	JP-Reception	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-010	JP-Hall 107	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-011	JP-Hall 35	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-012	JP-Class 33	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-013	JP-Multi Purpose	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-014	JP-Hall 53	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
21091314-015	JP-Class 26	09/09/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
Send Report	rables Required t Attn : reporting(@phaseonline.cc	m MPS		Perform Q.C. Send I	-	nvoicing@phasec	nline.com			

Comments :						
Samples Relinquished By :	Date : 9 13 12	Time:	Samples Received By :	Brett Grenert-Fischer	Brith Munut - Fischer	
Samples Relinquished By:	Date :	Time :	Samples Received By:			0944
Samples Relinquished By:	Date: Page 7 of	_	erence:1 Generated:21			
		- Pa	ige 10 of 14	Version 1.000		

PHASE
SEPARATION
SCIENCE

Project Name: ACPS IAQ Testing PSS Project No.: 21091314

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

21091314

	SGS GALSON New Client? Report To* : P						aration S	cience		Invoice T	°*∶ <u>Phase S</u>	Separat	ion Scie	ence	
		GAL20					nore Natio MD 2122								
			Client Account	No.*:											
6601 Kirkville Rd											•				
		yracuse, NY 13057 15) 432-5227				0-747-87	70				No.: <u>410-747-8</u>				
		38-432-LABS (5227)	Cell f			-		·····		ail : <u>invoicing@</u>		nline.com		
	www.s	gsgalson.com		Email Results					<u> </u>		0.: <u>ODC 492(</u>				
				Email addi	ess <u>: re</u> p	oorting@	phaseonlii	ne.com		Credit Ca	rd : 🔲 Card on F	ile	Call for Cre	dit Card I	nfo.
Need Results By: (surcharge)								ng the FreePumpLoan™	Program	Samples s	submitted using th	ne FreeSam	plingBadge	s™Progr	am
Standard 0% Site Name : James K. Polk ES							Pro	oject : ACPS IAQ te	esting - 492	0002 Samj	oled by: Karl F	ord			
4 Business Days 35% Comments :								<u>,</u>							
3 Business Days 50%															
2 Business Days 75%															
Next Day by 6pm 100% List description of industry or Process/interferences present in sampling area :									State sample		Please indicate v			be used	for :
Next Day by Noon 150% Public grade school									collected in (e.g., NY)	🗹 OSHA PEL	. 🔲 ACGIH TLV		Cal	OSHA
Same Day 200%												Other (specify):		
Sample Identification* Date Sampled Collect (Maxmium of 20 Characters)					Aedium	Sam	le Volume ple Time ple Area*	Sample Units*: L, ml,min,in2,cm2,ft2		Analysis Reque	ested*	Method F	eference^	Process (ent Chromium e.g., welding painting, etc.)*
JP -	Library		09/09/21	Sm Charcoal tube	s / 226-01	44.4		L	4-Phenylcyc	lohexene		mod. NIC	DSH 1501		
JP -	41 Class		09/09/21	Sm Charcoal tube	s / 226-01	48.4		L	4-Phenylcyc	lohexene		mod. NIC	OSH 1501		
JP -	22 Class	Band	09/09/21	Sm Charcoal tube	s / 226-01	45.0		L	4-Phenylcyc	lohexene		mod. NIC	OSH 1501		
JP -	Room 1		09/09/21	Sm Charcoal tube	s / 226-01	5-01 43.2 L 4-Ph			4-Phenylcyclohexene			mod. NIC	OSH 1501		
JP -	Gym		09/09/21	Sm Charcoal tube	s / 226-01	44.4		L	4-Phenylcyclohexene			mod. NIOSH 1501			
JP -	Class 14		09/09/21	Sm Charcoal tube	s / 226-01	44.0		L	4-Phenylcyclohexene mod. NIOSH 1501						
JP -	Class 50		09/09/21	Sm Charcoal tube	\$ / 226-01	49.0		L	4-Phenylcyc	ohexene		mod. NIC	SH 1501		
JP -	Class 38		09/09/21	Sm Charcoal tube	s / 226-01	47.4		L	4-Phenylcyc	ohexene	-	mod. NIC	SH 1501		
JP -	Reception		09/09/21	Sm Charcoal tube	5 / 226-01	46.6		L	4-Phenylcyc	ohexene		mod. NIOSH 1501			
JP -	Hall 107 o	na/1214	09/09/21	Sm Charcoal tube	s / 226-01	43.6		L	4-Phenylcyc	ohexene		mod. NIC	SH 1501		
JP - Hall 35, 15 09/09/21 Sm Charcoal tu						47.2		L	4-Phenylcycl	ohexene	· · · · · · · · · · · · · · · · · · ·	mod, NIC	SH 1501		
AGalson Laboratories will subsititute our routine/preferred method if it does not match the method listed on the COC unless this box is checked: 🔽 Use method(s) listed on COC															
For n	For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG):														
For c	For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite)* :														
Chair	of Custody	Pri	nt Name/Signature		0	Date	Time			Print Name	e/Signature	Т	Dat	e	Time
Relin	quished by :	Channing Jacks	on		09/	10/21	13:30	Received by :	·						
Relin	quished by :	Jed 6	Krans		2/1	13/21	1246	Received by :	N	th 1	505		91131	$\overline{\mathcal{M}}$	1247_
							after 3pm v	vill be considered as elds may result in a d	next day's b					age_1_	of _2_
							Page	e 12 of 14		Version	.000				

21091314

	SGS	GALSO	New Client		66	30 Baltin	earation Senation MD 21228	onal Pike		Invoice T 	[•] o*∶ <u>Phase S</u> 	eparation Sc	ence			
	6601	(irkville Rd		_							·····					
	East S	yracuse, NY 13057		Phone No	.* : <u>41</u> (0-747-87	70			Phone No.: 410-747-8770						
		15) 432-5227 38-432-LABS (5227)		Cell N						Email : <u>invoicing@phaseonline.com</u>						
				Email Results						P.O. No. : ODC 4920002-001						
	~~~~~	sgsgalson.com		Email addro	ess: rep	orting@	phaseonlir	ne.com		Credit Ca	rd : 🚺 Card on Fi	ile 🗌 Call for Cr	edit Card I	nfo.		
	Need Results B	/: (surcharge)			2	Samples su	ubmitted usin	ig the FreePumpLoan™								
V	Stan	dard 0%	Site Name : James	s K. Polk			Pro	ject : ACPS IAQ te	esting - 49	20002 Samj	pled by : Karl F	ord				
	4 Business	Days 35%	Comments :													
	3 Business	Days 50%														
	2 Business	Days 75%	_													
	Next Day by	Spm 100%	List description of inc	lustry or Proces	s/interfe	rences pres	sent in sampl	ing area :	State samp	les were	Please indicate w	hich OEL this data w	ll be used	for :		
	Next Day by N	loon 150%	Public grade	school					collected in	(e.g., NY)	🗹 OSHA PEL					
	Same	Day 200%		SCHOOL					VA 🗌 MSHA			Other (specify):				
Sample Identification* Date Sampled Collectio						Sam	le Volume ple Time ple Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*			Method Reference^	Process	ent Chromium (e.g., welding painting, etc.)*		
JP -	Class 33		09/09/21	Sm Charcoal tubes	/ 226-01	45.8		L	4-Phenylcy	clohexene		mod. NIOSH 150				
JP -	- Multi Purpo	ose	09/09/21	Sm Charcoal tubes	/ 226-01	44.4		L.	4-Phenylcy	clohexene	·······	mod. NIOSH 1501				
JP -	Hall 53		09/09/21	Sm Charcoal tubes	s / 226-01	46.0		L	4-Phenylcyclohexene			mod. NIOSH 1501	<u> </u>			
JP -	Class 26		09/09/21	Sm Charcoal tubes	/ 226-01	45.4		L	4-Phenylcyclohexene			mod, NIOSH 1501	1			
					<u> </u>											
					·								ļ			
													ļ			
													-			
^Ga	Ison Laboratori	es will subsititute our	routine/preferred meth	nod if it does no	t match	the method	l listed on the	COC unless this box is	s checked:	Use method(s	) listed on COC					
For	metals analysis	if requesting an analy	te with the option of a	lower LOQ, ple	ase indi	cate if the lo	ower LOQ is i	required (only available	e for certain a	nalytes - see SA(	G):					
For	crystalline silica	: form(s) of silica need	ed must be indicated	Quartz, Cristoba	alite, an	d/or Tridym	nite)* :				F.					
Chai	n of Custody	Prir	nt Name/Signature		D	ate	Time			Print Name	e/Signature	Da	te	Time		
Relir	quished by :	Channing Jackso	on		09/	10/21	13:30	Received by :								
Relir	quished by :	TedK	ranj		9/1	5/21	12:46	Received by :	•••••••••••••••••••••••••••••••••••••••	ain	PUM	0/12	14	1242		
			* R					vill be considered as elds may result in a			ng processed.			of _2_		



SCIENCE

Project Name: ACPS IAQ Testing PSS Project No.: 21091314

Client Name	Total Environmental Concepts -	Lorto	Rec	eived By	Amber Cor	lfer	
Disposal Date	10/18/2021		Dat	e Received	09/13/2021	12:42:00 P	М
			Del	ivered By	Client		
				cking No	Not Applicat	ole	
			Loc	ged In By	Amber Cor	nfer	
Shipping Contai	ner(s)			,			
No. of Coolers	0						
Custody Seal(s Seal(s) Signed	•	N/A N/A		Ice Temp (deg Temp Blank			
Documentation COC agrees wi Chain of Custor	th sample labels? dy	Yes Yes		Sampler Na MD DW Cei		Ford	
Sample Containe	er			Custody Sea	al(s) Intact?	Not Applica	able
Intact?	Specified Analysis?	Yes Yes		Seal(s) Sigr	ned / Dated	Not Applica	able
Labeled and La	bels Legible?	Yes					
Holding Time				Total No. of	Samples Re	ceived 1	5
All Samples Re	ceived Within Holding Time(s)?	Yes		Total No. of	Containers I	Received 1	5
Orthophosphor Cyanides Sulfide TOC, DOC (fiel TOX, TKN, NH3 VOC, BTEX (V0 Do VOA vials h	OA Vials Rcvd Preserved) ave zero headspace?	ollectio		lq) lq) lq) lq) lq) lq)	H<2) H<2) H>12) H>9) H<2) H<2) H<2)	N/A N/A N/A N/A N/A N/A N/A	
•	l at least one unpreserved VOA v I with trip blanks)	/ial)		(pł	H<2)	N/A N/A	

## Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

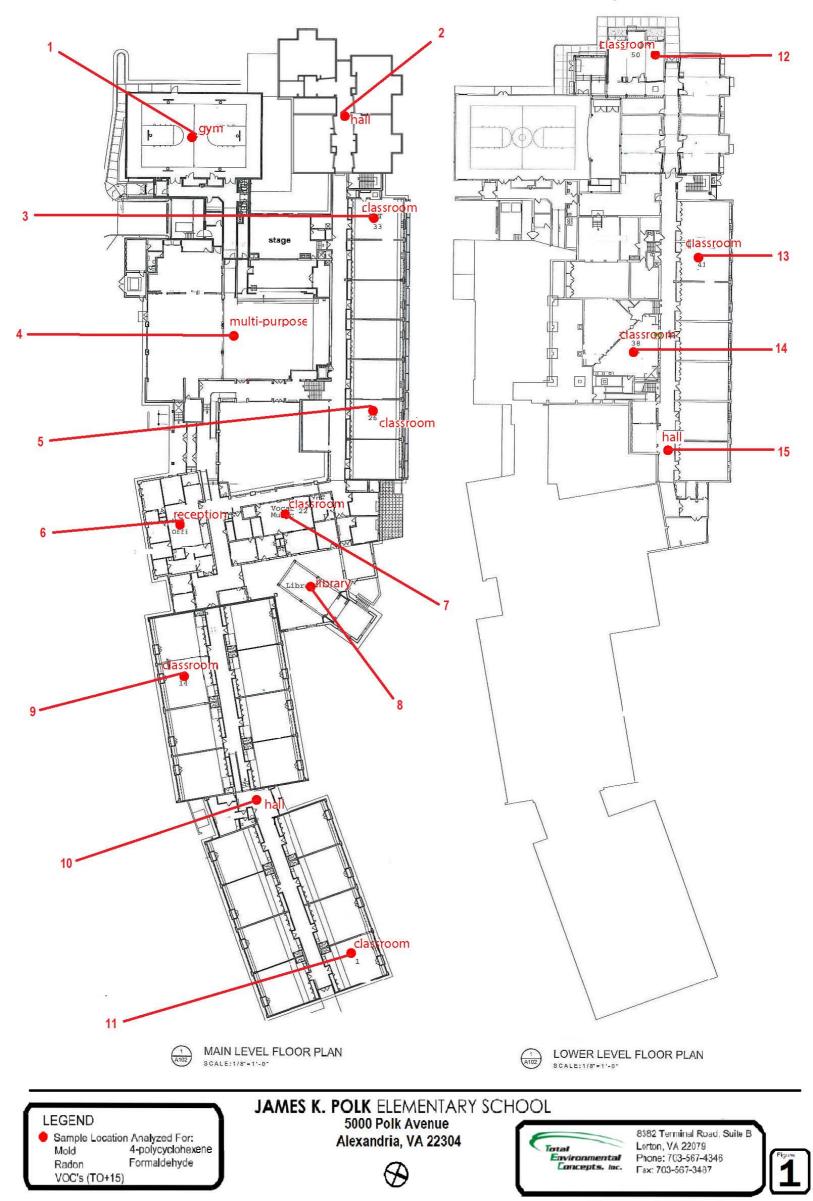
Samples Inspected/Checklist Completed By:

Date: 09/13/2021

PM Review and Approval:

NY Jackson

Amber Confer


Lynn Jackson Page 14 of 14 Date: 09/13/2021

Version 1.000

	SGS	GALSON	New Client?	Report To* :					Invoice T	ō*:				
		UALUUT	Client Account N						-					
	6601 Kir	kville Rd		-					-					
	East Syı	acuse, NY 13057		Phone No.* :					Phone I	No.:				
		5) 432-5227 -432-LABS (5227)		Cell No. :					_ Em	ail :				
		. ,	E	mail Results to :					P.O. N	lo. :				
	www.sg	sgalson.com		Email address:					Credit Ca	rd : 🗌 Card on Fi	ile 🗌 C	Call for Cre	dit Card Ir	nfo.
	Need Results By:	(surcharge)		[	Samples	submitted usi	ng the FreePumpLoan™	Program	Samples	submitted using th	e FreeSamp	olingBadge	es™Progra	am
	Standa	rd 0%	Site Name :			Pro	oject :		Sam	pled by :				
	4 Business Da	ys 35%	Comments :											
	3 Business Da	ys 50%												
	2 Business Da	ys 75%												
	Next Day by 6p	m 100%	List description of indu	stry or Process/int	erferences pi	resent in samp	ling area :	State samp		Please indicate w	/hich OEL th	is data wil	l be used	for :
	Next Day by No	on 150%						collected in	(e.g., NY)	OSHA PEL	ACGIH	TLV	Cal	OSHA
	Same Da	ay 200%								MSHA	Other (s	specify):		
Sample Identification* Date Sampled Collect					ım Sa	nple Volume mple Time mple Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requ	ested*	Method Re	eference^	Process (	ent Chromium (e.g., welding painting, etc.)*	
<u> </u>														
<u> </u>														
^Ga	Ison Laboratories	will subsititute our	routine/preferred metho	od if it does not ma	I Itch the meth	nod listed on th	L ne COC unless this box i	s checked:	Use method(	s) listed on COC				
For	metals analysis: i	f requesting an anal	yte with the option of a	lower LOQ, please	indicate if th	e lower LOQ is	s required (only availabl	e for certain						
For	crystalline silica:	form(s) of silica need	ded must be indicated (0	Quartz, Cristobalite	, and/or Trid	lymite)* :								
Chai	in of Custody	Pri	nt Name/Signature		Date	Time			Print Nan	ne/Signature		Da	te	Time
<u> </u>	nquished by :		-				Received by :			-				
<u> </u>	nquished by :						Received by :							
	<b>I</b>		* Re			•	will be considered as fields may result in a	-		ing processed.	<b>I</b>	F	Page	of

	SGS	GALSON	New Client?	Report To* :					Invoice T	ō*:				
		UALUUT	Client Account N						-					
	6601 Kir	kville Rd		-					-					
	East Syı	acuse, NY 13057		Phone No.* :					Phone I	No.:				
		5) 432-5227 -432-LABS (5227)		Cell No. :					_ Em	ail :				
		. ,	E	mail Results to :					P.O. N	lo. :				
	www.sg	sgalson.com		Email address:					Credit Ca	rd : 🗌 Card on Fi	ile 🗌 C	Call for Cre	dit Card Ir	nfo.
	Need Results By:	(surcharge)		[	Samples	submitted usi	ng the FreePumpLoan™	Program	Samples	submitted using th	e FreeSamp	olingBadge	es™Progra	am
	Standa	rd 0%	Site Name :			Pro	oject :		Sam	pled by :				
	4 Business Da	ys 35%	Comments :											
	3 Business Da	ys 50%												
	2 Business Da	ys 75%												
	Next Day by 6p	m 100%	List description of indu	stry or Process/int	erferences pi	resent in samp	ling area :	State samp		Please indicate w	/hich OEL th	is data wil	l be used	for :
	Next Day by No	on 150%						collected in	(e.g., NY)	OSHA PEL	ACGIH	TLV	Cal	OSHA
	Same Da	ay 200%								MSHA	Other (s	specify):		
Sample Identification* Date Sampled Collect					ım Sa	nple Volume mple Time mple Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requ	ested*	Method Re	eference^	Process (	ent Chromium (e.g., welding painting, etc.)*	
<u> </u>														
<u> </u>														
^Ga	Ison Laboratories	will subsititute our	routine/preferred metho	od if it does not ma	I Itch the meth	nod listed on th	L ne COC unless this box i	s checked:	Use method(	s) listed on COC				
For	metals analysis: i	f requesting an anal	yte with the option of a	lower LOQ, please	indicate if th	e lower LOQ is	s required (only availabl	e for certain						
For	crystalline silica:	form(s) of silica need	ded must be indicated (0	Quartz, Cristobalite	, and/or Trid	lymite)* :								
Chai	in of Custody	Pri	nt Name/Signature		Date	Time			Print Nan	ne/Signature		Da	te	Time
<u> </u>	nquished by :		-				Received by :			-				
<u> </u>	nquished by :						Received by :							
	<b>I</b>		* Re			•	will be considered as fields may result in a	-		ing processed.	<b>I</b>	F	Page	of

Appendix F: Sampling Locations



Appendix G: Photographs





James K Polk, Library

James K Polk, Cafetorium



James K Polk, Band Room



James K Polk, Classroom



James K Polk, Gym



James K Polk, Hallway