

15 Park Avenue Gaithersburg, MD 20877 PHONE: 301-548-0382 FAX: 301-527-0248

Setting the Standard in Comprehensive Environmental Solutions

Indoor Air Quality Assessment Report

at

Cora Kelly School for Math, Science, and Technology 3600 Commonwealth Ave, Alexandria, VA 22305

<u>Report Prepared for.</u> John Contreras Alexandria City Public Schools 2601 Cameron Mills Rd, Alexandria, VA 22302

Dated: October 14, 2021

Toll Free: 877.457.TECI • www.totalenvironmental.net Gaithersburg • Baltimore • Lorton • Richmond

TABLE OF CONTENTS

1	Executive Summary 1							
2	Asses	sment Methods	3					
3	Visual	Observations	6					
4	Condi	tions for Human Occupancy	8					
	4.1	Temperature	8					
	4.2	Relative Humidity	8					
	4.3	Carbon Dioxide	8					
	4.4	Carbon Monoxide	8					
	4.5	Multi-Gas	9					
5	Mold \$	Sampling Results	10					
6	Rador	o Gas Sampling Results	10					
7	Forma	Idehyde Gas Sampling Results	10					
8	TO+15	5 (VOCs) Sampling Results	10					
9	4-PCH	Sampling Results	11					
10	Multi-	Gas detector (MSA Altair Multi-gas) Readings – Oxygen, VOCs, Hydrog	gen					
	Sulfid	e	11					
11	Qualit	y Control Program	13					

APPENDICES

- Appendix A: Mold Analytical Results
- Appendix B: Radon Analytical Results
- Appendix C: VOCs (TO+15) Analytical Results
- **Appendix D:** Formaldehyde Analytical Results
- Appendix E: 4-PCH Analytical Results
- Appendix F: Sampling Locations
- Appendix G: Photographs

ABBREVIATIONS AND ACRONYMS

AHU AIHA	Air-Handling Unit American Industrial Hygiene Association
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning
	Engineers
ASTM	American Society for Testing and Materials
CO	Carbon Monoxide
CO2	Carbon Dioxide
EMLAP	Environmental Microbiology Laboratory Accreditation Program
HVAC	Heating, Ventilating, And Air-Conditioning
IAQ	Indoor Air Quality
NIST	National Institute for Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
RH	Relative Humidity

Abbreviations involving scientific volume and measurements involving media or water sampling

- Spores/m3 Mold spores per cubic meter of air
- LPM Liters Per Minute
- NTE Not to exceed
- **°F** degree Fahrenheit
- **PPM** Parts Per Million

1. Executive Summary

Total Environmental Concepts (TEC) was contracted by Alexandria City Public Schools (ACPS) to perform Indoor Air Quality (IAQ) assessments at 19 schools. Douglas MacArthur Elementary was out of service and assessed last. The original list included:

- Alexandria City High School (AC)
- AC Satellie Campus, Central Offices (CO)
- Charles Barrett Elementary School (BC)
- Cora Kelly School for Math (CK)
- Frances C. Hammond Elementary School (FH)
- George Mason Elementary School (GM)
- George Mason Elementary School (GW)
- James Polk Elementary School (JP)
- John Adams Elementary School (JA)
- Lyles-Crouch Elementary School (LC)
- Minnie Howard High School (MH)
- Naomi Brooks Elementary School (NB)
- Samuel Tucker Elementary School (ST)
- William Ramsey Elementary School (WR)
- Douglas MacAurthur Elementary School (DM)
- Jefferson-Houston Elementary School (JH)
- Ferdinand T. Day Elementary School (FD)
- Patrick Henry Elementary School (PH)
- Mount Vernon Community School (MV)

This IAQ assessment was conducted at Cora Kelly School for Math on Thursday, August 12, 2021. ACPS required that the testing to be based on the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) guidelines. ACPS provided site plans and fifteen (15) sampling locations per school. Only (12) sampling locations were provided for this location. ACPS chose sampling locations based on maintanance records and a review of facilities maintenance related issues. These sampling locations were selected to collect representative IAQ data in these specific areas and to document any areas of potential concern observed during the site assessment. ACPS required that TEC test for the following major indoor air pollutants:

- Mold
- Radon
- TO+15 (VOCs)
- Formaldehyde
- 4-polycyclohexene (4-PCH)

In accordance with ASHRAE, TEC also took measurements of the following at each school:

- Carbon Monoxide
- Carbon Dioxide
- Humidity
- Temperature

Oxygen

Summary of findings and recommendaitons during this limited IAQ investigation:

 Mold – TEC conducted site-specific mold sampling outside at Cora Kelly to obtain a baseline of the number and types of fungal spores in the air. This baseline was compared to the spores collected inside at the sampling locations since inside spore counts above baseline could indicate internal sources of mold.

Findings:

The number of spores in the air were within acceptable ranges in all locations as compared to background outside air mold spore counts. Photographs can be found in Section 3, Visual Observations.

Recommendations:

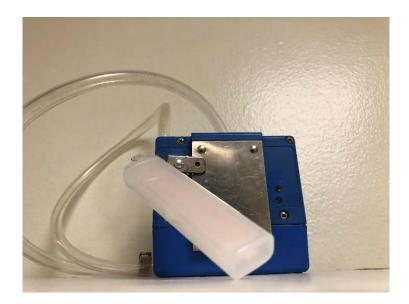
- Moving forward, any suspected mold growth should be inspected by qualified professional.
- Investigate sources of water leaks and any evidence of water staining.
- Inspect above drop ceilings and replace stained ceiling tiles.
- Inspect areas around the building foundation.
- For all HVAC and associated building systems, a detailed schedule of maintenance should be established and adhered to.

None of the results from the twelve sampling locations at Cora Kelly Elementary School were indicative of mold issues.

- **Radon** levels recorded in all locations were less than 4pCi/L, as recommended by EPA and HUD.
- **VOCs** The levels of volitile organic compounds (VOCs) recorded at each location were within acceptable ranges, when compared to EPA Regional Screening Levels (RSLs).
- **4-PCH** levels recorded during this investigation were within the LEED (Leadership of Energy and Environmental Design) IAQ guideline of 6.5 ug/m3.
- **Formaldehyde** the levels of formaldehyde recorded at each location were within an acceptable range, compared to EPA Regional Screening Level (RSLs) of 1ug/m3.
- **Carbon monoxide** concentrations in all areas were less than the EPA and ASHRAE recommended limit of 9 ppm.
- **Carbon dioxide** concentrations in all tested spaces were less than the ASHRAE limit of 1,092 ppm.
- **RH** the relative humidity in all tested spaces was within the ASHRAE guidelines of ≤ 67%, and for the purposes of this investigation ≤ 65%. None of the tested locations had a relative humidity greater than 65%.
- **Temperature** none of the tested spaces had a temperatures greater than the ASHRAE recommended summer range of 75°F-80.5°F.

2. Assesment Methods

Under the direction of TEC Industrial Hygienist Nikki Satari; Margaret Stanger, Victoria Powers, and Channing Jackson, also of TEC, conducted IAQ inspections and air sampling on August 12, 2021. All air samples were collected three-six feet from floor level, the typical breathing zone for adults.


Mold air samples were collected with a field calibrated Environmental Monitoring Systems High Volume Sampling Pump on Allergenco-D Disposable IAQ Air Monitoring Cassettes at a flow rate of 10 liters per minute for a sample volume of 75 liters during the assessment (photograph below). The Hayes Microbial Consulting laboratory reports are included in Appendix A.

Radon gas samples were collected by securing Air Chek Radon Test Kits (photograph below). Samples were collected within the breathing zone (4-6ft from ground level) at each sample location. In accordance with Air Chek's Radon Test Kit Instructions, kits were secured to walls inside the building and away from, open windows, doors to the outside, or interior air ventilation systems. Sampling time was 72 hours. Radon analytical results can be found in Appendix B.

Formaldehyde gas air samples were collected using static Aldehyde TraceAir II Monitors (photograph below). Samples were secured to surrounding testing equipment to expose the full surface area of the sampling device for the full four (4) hours of sampling time. Monitors were collected after four (4) hours and processed for shipment to Phase Separation Science located in Catonsville, MD. Formaldehyde analytical results can be found in Appendix D.

The 4-polycyclohexene (4-PCH) samples were collected in SKC's Anasorb CSC sorbent tubes through Gilian GilAir3 Air Sampling Pumps (photograph below). Pumps were placed within the breathing zone (4-6ft from ground level). Run times were eight (8) hours or time weighted four (4) hour runs. 4-PCH analytical results can be found in Appendix E.

TO+15 (VOCs) samples were collected using ENTECH Instruments 1.4L SUMMA canisters with an ENTECH regulator attachment (photograph below). Canisters were deployed at each location for a run time of eight (8) hours or a time weighted run time of four (4) hours. Internal pressure readings were recorded at the start and end of each sample run time. TO+15 (VOCs) analytical results can be found in Appendix C.

The temperature and relative humidity were taken with the AcuRite Digital Indoor Temperature and Humidity Monitor in the lobby of each school. Teperature and relative humidity readings can be found in Section 5 Mold Sampling Results, below.

Real-time measurements for oxygen, carbon dioxide, carbon monoxide, VOC, hydrogen sulfides were taken with multi-gas detector. These measurements can be found in Section 10 Multi-gas Detector (MSA Altair Multi-gas) Readings. This information can be found in Table 1 below.

3. Visual Observations

Sample Location	August 12, 2021	Visual Observations
Classroom 11	TEC observed standard classroom materials in storage in classrooms 11 during sampling.	

Cafeteria	Entrance to the cafeteria of Cora Kelly.	
Cafeteria	TEC observed a portion of cafeteria materials were in storage during sampling.	
Second Floor Hallway	The second floor hallway of Cora Kelly which hosts rooms 38-46.	

4. <u>Conditions for Human Occupancy</u>

Conditions for Human Occupancy are addressed in ASHRAE Standard 55-2017. These standards are designed to provide comfort for an estimated 80% of occupants. The standard provides for a temperature range from between approximately 67 and 82 °F. A more specific range based on relative humidity, season, clothing worn, activity levels, and other factors can be determined. For example, the standard does not specify a lower humidity range, but notes that issues of comfort, skin irritation, dry mucous membranes, and static electricity may arise when the relative humidity is less than 30%. ASHRAE Standard 62.1-2016 does recommend an upper limit of 67% humidity to avoid conditions conducive to microbial growth. For the purposes of this investigation, TEC used a conservative upper limit of 65%. The recommended ASHRAE temperature range for schools and office spaces in summer is 75°F-80.5°F.

4.1 Temperature

The recommended ASHRAE temperature range for schools and office spaces in summer is 75°F-80.5°F. The recorded relative humidity in all locations was below 65% and average indoor temperature can be found in Table 2.

4.2 Relative Humidity

ASHRAE Standard 62.1-2016 recommends a relative humidity no greater than 67% to avoid conditions conducive to microbial growth. The relative humidity observed by TEC during this investigation was observed to be below 65% in all locations. Average relative humidity can be found in Table 2.

4.3 Carbon Dioxide

Carbon dioxide (CO2) is a byproduct of combustion burning engines. Generators, furnaces, boilers, idling automobile engines. High CO2 measurements may indicate engine maintenance issues. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

4.4 Carbon Monoxide

Carbon monoxide (CO) is a byproduct of the combustion of fossil fuels. Generators, furnaces, boilers, idling automobile engines, may all produce CO. High CO measurements may indicate engine maintenance issues. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

4.5 Multi-gas Detector Readings

Multi-gas readings were taken at each location to document current conditions at the time of the sampling efforts and to monitor the environment between sampling locations. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

5. Mold Sampling Results

TEC conducted mold sampling outside to obtain a baseline spore count. This baseline was compared to inside mold spore counts at the designated sampling locations.

The number of spores in the air was within acceptable ranges in all locations compared to background outside air mold spore counts.

In conclusion, federal standards for the number of fungal spores present in the indoor environment don't exist. The widely accepted guideline in the indoor air quality field, requires that the number and types of spores present in the indoor environment, not exceed those present outdoors at any given time.

Mold is carried indoors through building entrances, open windows, loading docks, foot traffic into buildings, and the HVAC system. To thrive indoors, mold requires a food source, proper temperature, and humidity to foster its growth.

There will always be some mold spores present in "normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and, if it does, to help pinpoint the area of contamination.

There will also be mold spores present in "normal" outdoor environments. In any environment, excess mold growth may arise as a result of excess moisture, and indoors this may indicate water leaks or high indoor humidity.

Interior spore counts above baseline readings may indicate internal sources of mold, and this would indicate a requirement for further investigation and potential mitigation

TEC recommends that ACPS investigate all areas where there are obvious signs of water intrusion. Care should be taken to look above drop ceilings and around the building foundation. Any hidden suspected mold should be tested and verified by a qualified professional. The mold in air results do not indicate a need for mold abatement at this time, but conditions may worsen if the issues with leaks and water intrusion are not addressed. The observed ratio anomalies are most likely caused by a combination of the normal fluctuation in daily spore counts and the issues with water intrusion.

Findings:

The number of spores in the air were within acceptable ranges in all locations as compared to background outside air mold spore counts. Photographs can be found in Section 3, Visual Observations.

Recommendations:

- Moving forward, any suspected mold growth should be inspected by qualified professional.
- Investigate sources of water leaks and any evidence of water staining.
- Inspect above drop ceilings and replace stained ceiling tiles.
- Inspect areas around the building foundation.
- For all HVAC and associated building systems, a detailed schedule of maintenance should be established and adhered to.

None of the results from the twelve sampling locations at Cora Kelly Elementary School were indicative of mold issues.

Mold analytical results can be found in Appendix A.

6. <u>Radon Gas Sampling Results</u>

Radon forms as the result of the radioactive decay of uranium. Uranium is a naturally occurring radioactive by product that occurs when rock and soil breaks down. Some building materials, such as granite, may be a source of radon. Sampling areas were provided by ACPS. This did not allow for TEC to utilize the sampling protocol provided by Air Chek for performing a comprehensive survey. Air Chek Radon Test Kits collection times were a minimum of 72 hours. Test kits were then retrieved and shipped to Air Chek Inc. located in Mills River, NC. Air Chek laboratories are National Institute of Standards and Technology's (NIST) National Voluntary Laboratory Accreditation Program (NVLAP), and American Industrial Hygiene Association (AIHA) for Environmental Microbial Laboratory Accreditation Program (EMLAP) certified. Analytical results can be found in Appendix B.

7. Formaldehyde Gas Sampling Results

Sources of formaldehyde are similar to sources of carbon monoxide. They include gas-burning engines and space heaters. Other sources include smoking, household products, pressed wood products, and adhesives. Analytical results can be found in Appendix D.

8. TO+15 (VOC) Sampling Results

Volatile organic compounds (VOCs), are organic chemicals emitted as gases. Carpets, flooring materials, cleaning agents, disinfectants, air fresheners, and vinyl furnishings, may all be sources of VOCs in indoor air. Analytical results can be found in Appendix E.

9. 4-PCH Sampling Results

4-polycyclohexene is a common indoor air contaminant most commonly associated with "newcarpet" smell complaints. 4-PCH is a byproduct of carpet manufacturing and has been associated with adverse health effects. None of the areas investigated during this study indictated elevated levels of PCH. Analytical results can be found in Appendix C.

10. Multi-Gas Detector (MSA Altair Multi-gas) Readings

Multi-gas readings were taken at each location to document current conditions at the time of the sampling efforts and to monitor the environment between sampling locations. There were no exceedances in real-time during the IAQ investigation. Multi-gas results can be found below in Table 1.

	Multi-Gas Detector Readings									
Location	VOC	CO	OXYGEN	H2S						
Cafeteria	0.0	0.0	20.8	0.0						
Media Center	0.0	0.0	20.8	0.0						
40	0.0	0.0	20.8	0.0						
Hallway 38/40 Stairs	0.0	0.0	20.8	0.0						
Hallway 46	0.0	0.0	20.8	0.0						
Office	0.0	0.0	20.8	0.0						
8	0.0	0.0	20.8	0.0						
11	0.0	0.0	20.8	0.0						
Hallway 18	0.0	0.0	20.8	0.0						
26	0.0	0.0	20.8	0.0						
Hallway 20	0.0	0.0	20.8	0.0						
29	0.0	0.0	20.8	0.0						

Table 1

Table 2

	Results of Analytes by Location									
Location	Radon	Mold AVG: 77 F AVG: 62 %	TO+15 VOCs	4PCH	Formaldehyde					
Cafeteria	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
Media Center	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
40	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
Hallway 38/40 Stairs	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
Hallway 46	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
Office	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
8	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
11	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
Hallway by 18	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
26	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
Hallway by 20	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					
29	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL					

11. Quality Control Program

- TEC recognizes the importance of quality assurance (QA) and quality control (QC) measures as they relate to the performance of sample collection and processing.
- To ensure compliance with QA/QC measures, SOPs have been developed for field sample collection techniques, field sample screening procedures, multi-media sampling, and the accurate presentation of findings/reporting.
- All staff are provided with these SOPs and are trained in these procedures before conducting work activities. TEC's Program Manager and the on-site PM/QCM will manage the quality control program.
- The PM will work closely with field technicians to ensure the success of the quality control program. All team members will receive copies of and abide by the quality control plan.
- Daily records will be kept of all operations, activities, and tests performed in the quality control program.
- All samples collected during this IAQ assessment were collected, processed, and shipped under the strictest chain of custody (CoC) guidelines.
- All samples were shipped for analysis by a National Voluntary Laboratory Accreditation Program (NVLAP) accredited laboratory.

Appendix A: Mold Analytical Results

#21029733

Analysis Report prepared for

Total Environmental Concepts, Inc.

8382 Terminal Road Suite B Lorton, VA 22079

Phone: (571) 289-2173

Cora Kelly School for Math 3600 Common Wealth Ave

Collected: August 12, 2021 Received: August 13, 2021 Reported: August 13, 2021 We would like to thank you for trusting Hayes Microbial for your analytical needs! We received 14 samples by FedEx in good condition for this project on August 13th, 2021.

The results in this analysis pertain only to this job, collected on the stated date, and should not be used in the interpretation of any other job. This report may not be duplicated, except in full, without the written consent of Hayes Microbial Consulting, LLC..

This laboratory bears no responsibility for sample collection activities, analytical method limitations, or your use of the test results. Interpretation and use of test results are your responsibility. Any reference to health effects or interpretation of mold levels is strictly the opinion of Hayes Microbial. In no event, shall Hayes Microbial or any of its employees be liable for lost profits or any special, incidental or consequential damages arising out of the use of these test results.

plien N. Hoyces

Steve Hayes, BSMT(ASCP) Laboratory Director Hayes Microbial Consulting, LLC.

EPA Laboratory ID: VA01419

DPH License: #PH-0198

3005 East Boundary Terrace, Suite F. Midlothian, VA. 23112

(804) 562-3435

Gary Lewis Total Environmental Concepts, Inc.

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

#21029733

SOP - HMC#101

Sample Number	1	4318	3860	2	4318	3849	3	4318		4	4318	3859
Sample Name		Cafeteria			Cafeteria		N	ledia Cente	r		40	
Sample Volume		75.00 liter		75.00 liter			75.00 liter			75.00 liter		
Reporting Limit		13 spores/m ³	3		13 spores/m ³	1		13 spores/m ³	1	13 spores/m ³		
Background		2			2			2			2	
Fragments		ND			ND			ND			ND	
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Tot
Alternaria												
Ascospores	2	27	50.0%	3	40	75.0%	2	27	100.0%	2	27	50.0
spergillus Penicillium												
Basidiospores				1	13	25.0%				1	13	25.0
Bipolaris Drechslera												
Chaetomium												
Cladosporium										1	13	25.0
Curvularia												
Epicoccum												
Fusarium												
Memnoniella												
Myxomycetes	1	13	25.0%									
Pithomyces	1	13	25.0%									
Stachybotrys												
Stemphylium												
Torula												
Ulocladium												
Total	4	53	100%	4	53	100%	2	27	100%	4	53	100
Water Damage Indicato	r	Commo	on Allergen		Slightly Higher	than Baseline	Signi	ficantly Higher	than Baseline		Ratio Abnormal	ity
		Collected: Aug	12, 2021	Rece	eived: Aug 13, 2	021	Reported:	Aug 13, 2021				
	ES	Project Analyst: Ramesh Poluri,		Came	Shy	Date: 08 - 13 - 202	Reviewe 21 Steve H	ed By: layes, BSMT 🏒	Itephen 1	1. Hoyes	Date:	3 - 2021
MICROBIAL CC	NSULTING	3005 East Bo					(804) 562-34		/	nicrobial.com		Page: 2

Gary Lewis Total Environmental Concepts, Inc.

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

#21029733

SOP - HMC#101

Sample Number	5	4318	3854	6	4318	3845	7	4318	3828	8	4318	3823	
Sample Name	Hallw	Hallway 38/40 Stairs		Hallway by 46			P Office			8			
Sample Volume		75.00 liter		75.00 liter			75.00 liter			75.00 liter			
Reporting Limit		13 spores/m ³	1		13 spores/m ³	}		13 spores/m ³			13 spores/m ³	}	
Background		2			2			2			2		
Fragments		ND			ND			ND			ND		
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Tota	
Alternaria													
Ascospores	4	53	66.7%	3	40	75.0%	2	27	50.0%	2	27	100.0%	
spergillus Penicillium													
Basidiospores	1	13	16.7%										
Bipolaris Drechslera													
Chaetomium													
Cladosporium	1	13	16.7%				1	13	25.0%				
Curvularia							1	13	25.0%				
Epicoccum													
Fusarium													
Memnoniella													
Myxomycetes													
Pithomyces				1	13	25.0%							
Stachybotrys													
Stemphylium													
Torula													
Ulocladium													
Total	6	79	100%	4	53	100%	4	53	100%	2	27	100%	
Water Damage Indicato	r	Commo	on Allergen		Slightly Higher	than Baseline	Signi	ificantly Higher	than Baseline		Ratio Abnormal	ity	
		Collected: Aug	12, 2021	Rece	eived: Aug 13, 2	021	Reported:	Aug 13, 2021					
	E S	Project Analyst: Bamesh Poluri	PhD P. R	Zamer	An	Date: 08 - 13 - 202	Review	ed By:	Honlan 7	1. Hayes	Date:	3 - 2021	

3005 East Boundary Terrace, Suite F. Midlothian, VA. 23112

(804) 562-3435

contact@hayesmicrobial.com

Page: 3 of 8

Gary Lewis Total Environmental Concepts, Inc.

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

#21029733

Sop - HMC#101

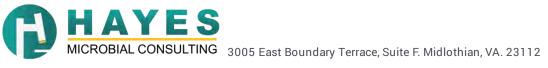
Sample Number	9	4318	3821	10	4318	8818	11	4318	3827	12		8822	
Sample Name		11		H	allway by 1	8		26			allway by 2	0	
Sample Volume		75.00 liter			75.00 liter			75.00 liter			75.00 liter		
Reporting Limit		13 spores/m ³	3		13 spores/m ³			13 spores/m ³	1	13 spores/m ³			
Background		2			2			2			1		
Fragments		ND			ND			ND			ND		
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Tot	
Alternaria													
Ascospores	1	13	50.0%	4	53	80.0%	3	40	75.0%	1	13	100.0	
Aspergillus Penicillium													
Basidiospores	1	13	50.0%	1	13	20.0%	1	13	25.0%				
Bipolaris Drechslera													
Chaetomium													
Cladosporium													
Curvularia													
Epicoccum													
Fusarium													
Memnoniella													
Myxomycetes													
Pithomyces													
Stachybotrys													
Stemphylium													
Torula													
Ulocladium										-			
Total	2	26	100%	5	66	100%	4	53	100%	1	13	100	
Water Damage Indicato	r	Commo	on Allergen		Slightly Higher	than Baseline	Signi	ficantly Higher	than Baseline		Ratio Abnormal	lity	
		Collected: Aug	12, 2021	Rece	eived: Aug 13, 2	2021	Reported:	Aug 13, 2021					
		Project Analyst: Ramesh Poluri,		Came	Shy	Date: 08 - 13 - 202	Reviewe 21 Steve H	ed By: layes, BSMT 🏒	Stephen 7	1. Hayes	Date:	3 - 2021	
		3005 East Bo	oundary Terra	ce, Suite F. Mic	dlothian, VA. 2	23112	(804) 562-34	35 cor	ntact@hayesr	nicrobial.com		Page: 4	

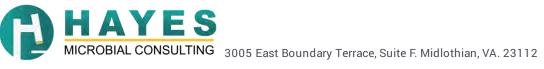
Gary Lewis Total Environmental Concepts, Inc. 8382 Terminal Road Suite B

Lorton, VA 22079 (571) 289-2173

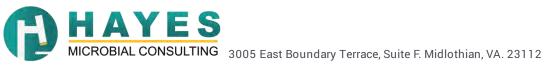
#21029733

SOP - HMC#101


Sample Number	13	4318	3844	14	4318	3823		
Sample Name	29		Ou	tside of Ca	fe			
Sample Volume		75.00 liter		75.00 liter				
Reporting Limit		13 spores/m ³	}		13 spores/m ³			
Background		2			2			
Fragments		ND			ND			
		3			3			
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total		
Alternaria		07	100.00	5	67	<1%		
Ascospores	2	27	100.0%	224	2987	34.2%		
pergillus Penicillium				3	40	<1%		
Basidiospores				160	2133	24.4%		
Bipolaris Drechslera				2	27	<1%		
Chaetomium								
Cladosporium				256	3413	39.1%		
Curvularia								
Epicoccum				2	27	<1%		
Fusarium								
Memnoniella								
Myxomycetes				1	13	<1%		
Pithomyces				1	13	<1%		
Stachybotrys								
Stemphylium								
Torula				1	13	<1%		
Ulocladium								
Total	2	27	100%	655	8733	100%		
Water Damage Indicato	r internet	Comme	on Allergen		Slightly Higher	than Baseline	Significantly Higher than Baseline	Ratio Abnormality


	Collected: Aug 12, 2021	Received: Aug 13, 2	2 021 F	Reported: Aug 13, 2021	
G	Project Analyst: Ramesh Poluri, PhD	Ramesh	Date: 08 - 13 - 2021	Reviewed By: Steve Hayes, BSMT Stephen N. Hoycs	Date: 08 - 13 - 2021
-	3005 East Boundary T	errace, Suite F. Midlothian, VA.	23112 (804)	562-3435 contact@hayesmicrobial.com	Page: 5 of 8

Gary Lewis Total Environmental Concepts, Inc. 8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173	Cora Kelly School for Math 3600 Common Wealth Ave
(571) 289-2173	


Reporting Limit	The Reporting Limit is the lowest number of spores that can be detected based on the total volume of the sample collected and the percentage of the slide that is counted. At Hayes Microbial, 100% of the slide is read so the LOD is based solely on the total volume. Raw spore counts that exceed 500 spores will be estimated.
Blanks	Results have not been corrected for field or laboratory blanks.
Background	The Background is the amount of debris that is present in the sample. This debris consists of skin cells, dirt, dust, pollen, drywall dust and other organic and non-organic matter. As the background density increases, the likelihood of spores, especially small spores such as those of Aspergillus and Penicillium may be obscured. The background is rated on a scale of 1 to 5 and each level is determined as follows:
	 NBD: No background detected due to possible pump or cassette malfunction. Recollect sample. (Field Blanks will display NBD) 1: <5% of field occluded. No spores will be uncountable. 2: 5-25% of field occluded. 3: 25-75% of field occluded. 4: 75-90% of field occluded. 5: >90% of field occluded. Suggested recollection of sample.
Fragments	Fragments are small pieces of fungal mycelium or spores. They are not identifiable as to type and when present in very large numbers, may indicate the presence of mold amplification.
Control Comparisons	There are no national standards for the numbers of fungal spores that may be present in the indoor environment. As a general rule and guideline that is widely accepted in the indoor air quality field, the numbers and types of spores that are present in the indoor environment should not exceed those that are present outdoors at any given time. There will always be some mold spores present in "normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination. Spore counts should not be used as the sole determining factor of mold contamination. There are many factors that can cause anomalies in the comparison of indoor and outdoor samples due to the dynamic nature of both of those environments.
Water Damage Indicator	Blue: These molds are commonly seen in conditions of prolonged water intrusion and usually indicate a problem.
Common Allergen	Green: Although all molds are potential allergens, these are the most common allergens that may be found indoors.
Slightly Higher than Baseline	Orange: The spore count is slightly higher than the outside count and may or may not indicate a source of contamination.
	Red: The spore count is significantly higher than the baseline count and probably indicates a source of contamination.
Significantly Higher than Baseline Ratio Abnormality	Violet: The types of spores found indoors should be similar to the ones that were identified in the baseline sample. Significant increases (more than 25%) in the ratio of a particular spore type may indicate the presence of abnormal levels of mold, even if the total number of spores of that type is lower in the indoor environment than it was outdoors.
Color Coding	Fungi that are present in indoor samples at levels lower than 200 per cubic meter are not color coded on the report, unless they are one of the water damage indicators.

Gary Lewis Total Environmental C	Concepts, I	nc. Cora Kelly School for Math #21029733
3382 Terminal Road Suite B .orton, VA 22079 571) 289-2173		Organism Descriptions
Alternaria	Habitat:	Commonly found outdoors in soil and decaying plants. Indoors, it is commonly found on window sills and other horizontal surfaces.
	Effects:	A common allergen and has been associated with hypersensitivity pneumonitis. Alternaria is capable of producing toxic metabolites which may be associated with disease in humans or animals. Occasionally an agent of onychomycosis, ulcerated cutaneous infection and chronic sinusitis, principally in the immunocompromised patient.
Ascospores	Habitat:	A large group consisting of more than 3000 species of fungi. Common plant pathogens and outdoor numbers become very high following rain. Most of the genera are indistinguishable by spore trap analysis and are combined on the report.
	Effects:	Health affects are poorly studied, but many are likely to be allergenic.
Aspergillus Penicillium	Habitat:	The most common fungi isolated from the environment. Very common in soil and on decaying plant material. Are able to grow well indoors on a wide variety of substrates.
	Effects:	This group contains common allergens and many can cause hypersensitivity pneumonitis. They may cause extrinsic asthma, and many are opportunistic pathogens. Many species produce mycotoxins which may be associated with disease in humans and other animals. Toxin production is dependent on the species, the food source, competition with other organisms, and other environmental conditions.
Basidiospores	Habitat:	A common group of Fungi that includes the mushrooms and bracket fungi. They are saprophytes and plant pathogens. In wet conditions they can cause structural damage to buildings.
	Effects:	Common allergens and are also associated with hypersensitivity pneumonitis.
Bipolaris Drechslera	Habitat:	They are found in soil and as plant pathogens. Can grow indoors on a variety of substrates.
	Effects:	They may be allergenic and are very commonly involved in allergic fungal sinusitis. They are opportunistic pathogens but occasionally infect healthy individuals, causing keratitis, sinusitis and osteomyelitis.
Cladosporium	Habitat:	One of the most common genera worldwide. Found in soil and plant debris and on the leaf surfaces of living plants. The outdoor numbers are lower in the winter and often relatively high in the summer, especially in high humidity. The outdoor numbers often spike in the late afternoon
	F ffeeter	and evening. Indoors, it can be found growing on textiles, wood, sheetrock, moist window sills and in HVAC supply ducts.
	Effects:	A common allergen, producing more than 10 allergenic antigens and a common cause of hypersensitivity pneumonitis.

Gary Lewis Total Environmental (Concepts, In		#21029733
8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173			m Descriptions
Curvularia	Habitat:	They exist in soil and plant debris, and are plant pathogens.	
	Effects:	They are allergenic and a common cause of allergic fungal sinusitis. An occasional cause of human infection, including keratitis, onychomycosis, mycetoma, pneumonia, endocarditis and desseminated infection, primarily in the immunocompromised.	sinusitis,
Epicoccum	Habitat:	It is found in soil and plant litter and is a plant pathogen. It can grow indoors on a variety of substrates, including paper and texti commonly found on wet drywall.	les and is
	Effects:	It is a common allergen. No cases of infection have been reported in humans.	
Myxomycetes	Habitat:	Found on decaying plant material and as a plant pathogen.	
	Effects:	Some allergenic properties reported, but generally pose no health concerns to humans.	
Pithomyces	Habitat:	Common fungus isolated from soil, decaying plant material. Rarely found indoors.	
- monyees	Effects:	Allergenic properties are poorly studied. No cases of infection in humans.	
	Habitat:	Found in soil and on wood and grasses. Occasionally found growing indoors on cellulose containing materials.	
Torula	Habitat.	round in son and on wood and grasses. Occasionally found growing indoors on cendiose containing materials.	

NA Total Environmental Concepts, Inc. Location/ room Sample: wheteria applesi Media Leni 43 8859 40 Hallway 38/40. \$ 54 43 43 (A) nallway cc' 0++1 2223 hallway by 8827 887 ngllwa

2

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	JSchool	for match		Vold)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	JUOJUM	Placement Date Address 2600 COM		have
	2 75L 1 er 3 stars by 46 2 10 10 10 10 10 10 10 10 10 10		$ \begin{array}{r} 1:36pm \\ 1:53pm \\ 2:12pm \\ 2:2pm \\ 2:27 \\ 2:28 \\ 2:28 \\ 237 \\ 257 \\ 254 \\ 306pm \\ 316 \\ 329 \\ 307 \\ 307 \\ \end{array} $	210 234 234 234 234 235 235 315 323 323 323 328 328

n. 400-> 8/16/21 1840F Comments tem ~ 1965

.

Appendix B: Radon Analytical Results

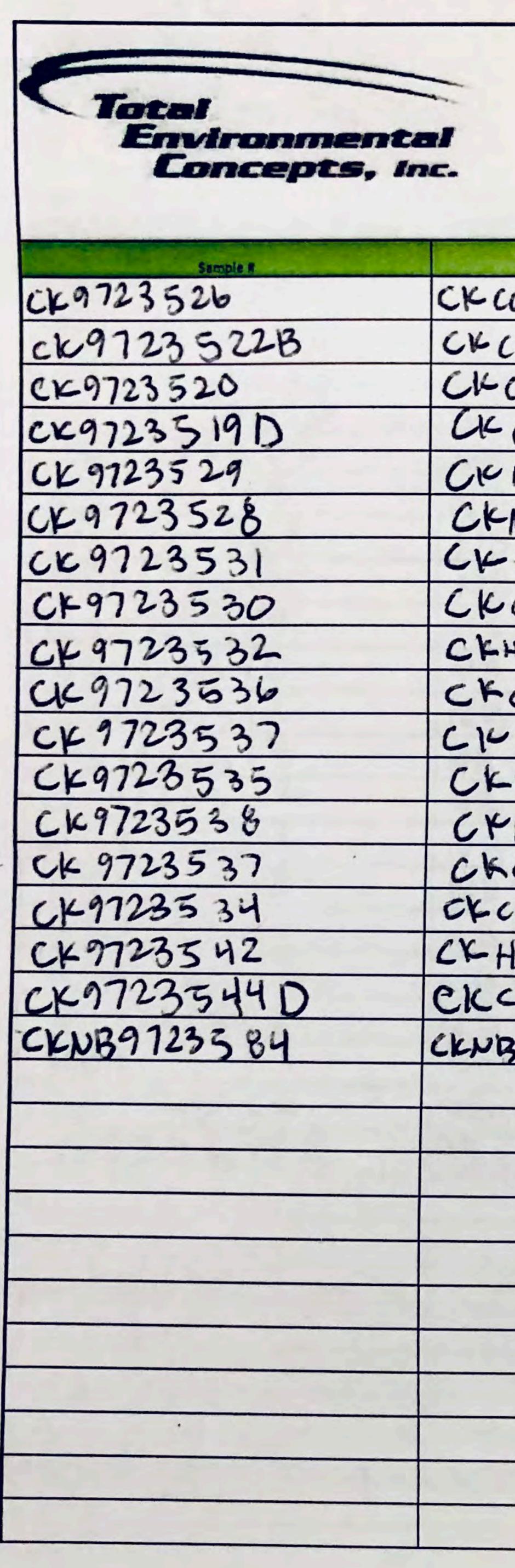
August 17, 2021 ** LABORATORY A	NALYSIS REPORT ** Pg 5 of 7				
Attention: P8184 / LEILA DEAN / TOTAL ENVIRONM	MENTAL CONCEPTS				
Kit #: 9723528 Result: 1.5 ± 0.3 pCi/l	Analysis Note :				
Location: media center-N	Analyzed : 2021-08-17 at 2:00 pm				
	Started : 2021-08-12 at 2:00 pm				
CK	Ended : 2021-08-16 at 2:00 pm Hours/MST% : 96 hours 13.9% 70°F				
,	Hours/10151% : 96 hours 15.9% 70 F				
Kit #: 9723529 Result: 1.3 ± 0.3 pCi/l	Analysis Note :				
Location: media center - S	Analyzed : 2021-08-17 at 2:00 pm				
	Started : 2021-08-12 at 2:00 pm				
CK	Ended : 2021-08-16 at 2:00 pm				
	Hours/MST% : 96 hours 15.1% 70°F				
Kit #: 9723530 Result: < 0.3 pCi/l	Analysis Note :				
Location: CIASS 40	Analyzed : 2021-08-17 at 2:00 pm				
en de construir (° 1, 1, 2, 2, 1, 1, 2, 1)	Started : 2021-08-12 at 2:00 pm				
Var de la companya de	Ended : 2021-08-16 at 3:00 pm				
,cK	Hours/MST% : 97 hours 14.0% 70°F				
Kit #: 9723531 Result: < 0.3 pCi/l	Analysis Note :				
Location: Hallway R39 R40	Analyzed : 2021-08-17 at 2:00 pm				
	Started : 2021-08-12 at 3:00 pm				
CK	Ended : 2021-08-16 at 3:00 pm				
,	Hours/MST% : 96 hours 11.3% 70°F				
Kit #: 9723532 Result: < 0.3 pCi/l	Analysis Note :				
Location: Hallway R45 R46	Analyzed : 2021-08-17 at 2:00 pm				
	Started : 2021-08-14 at 2:00 pm				
CV	Ended : 2021-08-16 at 3:00 pm				
, ^C F	Hours/MST% : 49 hours 13.5% 70°F				
Kit #: 9723533 Result: 0.5 ± 0.3 pCi/l	Analysis Note :				
Location:	Analyzed : 2021-08-17 at 2:00 pm				
2.024-2.02.04.02022	Started : 2021-08-12 at 3:00 pm				
	Ended : 2021-08-16 at 2:00 pm				
	Hours/MST% : 95 hours 17.5% 70°F				

Air Chek 1936 Butler Bridge Rd, Mills River, NC 28759-3892 Phone: (828) 684-0893 Fax: (828) 684-8498

August 17, 2021

**** LABORATORY ANALYSIS REPORT ****

Pg 6 of 7


Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS

Kit #: 9723534 Result: 0.6 ± 0.3 pCi/l Analysis Note : Location: Class 11-1 Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 3:00 pm Ended : 2021-08-16 at 2:00 pm CK Hours/MST%: 95 hours 16.4% 70°F Kit #: 9723535 Result: $0.6 \pm 0.3 \text{ pCi/l}$ Analysis Note : Location: principal office Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 3:00 pm Ended : 2021-08-16 at 3:00 pm .ck Hours/MST%: 96 hours 14.2% 70°F Kit #: 9723536 Result: 0.7 ± 0.3 pCi/l Analysis Note : Location: Class 29 Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 3:00 pm Ended : 2021-08-16 at 2:00 pm ck Hours/MST%: 95 hours 17.4% 70°F Kit #: 9723537 Result: 0.9 ± 0.3 pCi/l Analysis Note : Location: Class Analyzed : 2021-08-17 at 2:00 pm 26 Started : 2021-08-12 at 3:00 pm Ended : 2021-08-16 at 2:00 pm CK Hours/MST%: 95 hours 15.7% 70°F Kit #: 9723538 Result: 0.6 ± 0.3 pCi/l Analysis Note : Location: Hallway R20R24 Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 3:00 pm Ended : 2021-08-16 at 2:00 pm CE Hours/MST% : 95 hours 16.7% 70°F Kit #: 9723542 Result: 0.5 ± 0.3 pCi/l Analysis Note : Location: Hallway R15 R17 Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 3:00 pm Ended : 2021-08-16 at 2:00 pm CK Hours/MST%: 95 hours 17.4% 70°F

Air Chek 1936 Butler Bridge Rd, Mills River, NC 28759-3892 Phone: (828) 684-0893 Fax: (828) 684-8498

August 17, 2021 ** LABORATORY A	ANALYSIS REPORT ** Pg 7 of 7			
Attention: P8184 / LEILA DEAN / TOTAL ENVIRONM	MENTAL CONCEPTS			
Kit #: 9723544 Result: 0.6 ± 0.3 pCi/l Location: Location: Location:	Analysis Note : Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 3:00 pm			
, CK	Ended : 2021-08-16 at 2:00 p Hours/MST% : 95 hours 17.5% 70			
Kit #: 9723584 Result: ???? Location: Travel Blank	Analysis Note : MI Analyzed : 2021-08-17 at 2:00 pm Started : 0000-00-00 at Ended : 0000-00-00 at Hours/MST% : 0 hours 4.5% 70°F			
Kit #: 9723519 Result: 0.6 \pm 0.3 pCi/l Location: Cafe_4 , CK	Analysis Note : Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 2:00 pm Ended : 2021-08-16 at 2:00 pm Hours/MST% : 96 hours 15.4% 70°F			
Kit #: 9723520 Result: < 0.3 pCi/l Location: cafe - 3 , CK	Analysis Note : Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 2:00 pm Ended : 2021-08-16 at 2:00 pm Hours/MST% : 96 hours 14.8% 70°F			
Kit #: 9723522 Result: < 0.3 pCi/l Location: Cafe-B/Cafe-2 。 、	Analysis Note : Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 1:00 pm Ended : 2021-08-16 at 2:00 pm Hours/MST% : 97 hours 5.8% 70°F			
Kit #: 9723526 Result: $0.6 \pm 0.3 \text{ pCi/l}$ Location: $c_{\alpha} \neq e_{-1}$ CK	Analysis Note : Analyzed : 2021-08-17 at 2:00 pm Started : 2021-08-12 at 1:00 pm Ended : 2021-08-16 at 2:00 pm Hours/MST% : 97 hours 13.3% 70°F			

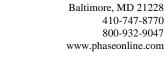
Air Chek 1936 Butler Bridge Rd, Mills River, NC 28759-3892 Phone: (828) 684-0893 Fax: (828) 684-8498

Placement Tech		Sample Type Radon	Pickup Tech	
Placement Date	8112121	Sample Media	Pickup Date	8/1
Address	3600 commonwealth Al	re	Email	KF

Location/ room	THE WORLD	A CONTRACTOR OF A CONTRACT			Contraction of the	Part of the second second	F
Location/ room Cafeterial	SQFT >2000	HVAC Y/N	Window Y/N	Fan Y/N N	Time In 13:33	Time out	and the second
cafeteria 2		1	Ý	1	13: 44		
Cafeteria3			N		13: 48		
- cafeteria 4			N		13:48		
mediacenters			N		14:11		
-Media centerN			N		14=11		
-Hallway 1239 1240			7		19:30		
1 Class 40			Y		14:28		
Hallway RH5 RH6			N		14 = 35		
class 2			Y		15:00		
- CIA5526			Y		13:09		
-principal office			N		14:54		
Hanway ROOR 24			N		151 19		
iclass B			Y		15:30		
c1ass11-1			Y		15:33		
Hallway 1213 1217 Class 11-2			N		15:38		
class 11-2			Y	V	15:44		
B trave Bianic		×	-	-	120000m		
				a series			
			Sector Sel				

6/21	-		
b121 ord@tecin	0177		
organice's	pio		
	Comment		
	Comment		 the second
		-	
		-	
	-		
-			
de la competition de la compet			

Appendix C: VOCs (TO+15) Analytical Results


Project Name: ACPS IAQ Testing PSS Project No.: 21092007

September 27, 2021

Karl Ford Total Environmental Concepts - Lorton 8382 Terminal Road, Suite B Lorton, VA 22079

Reference: PSS Project No: **21092007** Project Name: ACPS IAQ Testing Project Location: Cora Kelly Project ID.: 4920002

Dear Karl Ford:

6630 Baltimore National Pike

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21092007**.

Certificate of Analysis

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on October 25, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Project ID: 4920002

The following samples were received under chain of custody by Phase Separation Science (PSS) on 09/20/2021 at 03:10 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
21092007-001	CK - Outdoor	AIR	09/17/21 19:11
21092007-002	CK - Office	AIR	09/17/21 19:13
21092007-003	CK - Library	AIR	09/17/21 19:18
21092007-004	CK - Cafeteria	AIR	09/17/21 19:21
21092007-005	CK - Class 29	AIR	09/17/21 19:41
21092007-007	CK - 20 - 19	AIR	09/17/21 19:47
21092007-008	CK - Class 8	AIR	09/17/21 19:51
21092007-009	CK - Class 11	AIR	09/17/21 19:55
21092007-010	CK - Hall 15-17	AIR	09/17/21 19:58
21092007-011	CK - Hall 38-39	AIR	09/17/21 19:25
21092007-012	CK - Class 40	AIR	09/17/21 19:26
21092007-013	CK - Hall 45-46	AIR	09/17/21 19:29

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Explanation of Qualifiers

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Date/Time Sampled: 09/17/2021 19:11

PSS Sample ID: 21092007-001

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Outdoor

Sample ID. CR - Outdoor	L		Sampleu.	03/1//202	13.11	r 55 Sampi	CID. 2103200	1-001
Matrix: AIR	Γ	Date/Time	Received:	09/20/2021	15:10			
VOCs in Air by GC/MS	Analytica	I Method: E	PA TO-15			Preparation Met	hod: TO-15P	
Qualifier(s): See Batch 187911 on Case N	Narrative.							
	Result	Units	ים	Flag Dil		Prepared	Analyzed	Analyst
Acetone	<u>Result</u>	ug/M3	9.5		1	09/24/21		
Benzene	ND	ug/M3	0.32		1	09/24/21	09/24/21 04:2	
Benzyl Chloride	ND	ug/M3	1.0		1	09/24/21	09/24/21 04:2	
Bromodichloromethane	ND	ug/M3	1.0		1	09/24/21	09/24/21 04:2	
Bromoform	ND	ug/M3	2.1		1		09/24/21 04:2	
Bromomethane	ND	ug/M3	0.78		1	09/24/21	09/24/21 04:2	
1,3-Butadiene	ND	ug/M3	0.78		1	09/24/21		
		-			1	09/24/21		
2-Butanone (MEK) Carbon Disulfide	1.8 ND	ug/M3 ug/M3	1.5 12		1		09/24/21 04:2	
Carbon Tetrachloride	ND	ug/M3	1.3		1	09/24/21		
Chlorobenzene	ND	ug/M3	0.92		1		09/24/21 04:2	
Chloroethane	ND	ug/M3	0.92		1		09/24/21 04:2	
Chloroform	ND	ug/M3	0.53		1		09/24/21 04:2	
Chloromethane		ug/M3	0.98		1		09/24/21 04:2	
Allyl Chloride (3-Chloropropene)	0.85 ND	ug/M3	0.41		1		09/24/21 04:2	
Cyclohexane	ND	ug/M3	0.63		1		09/24/21 04:2	
Dibromochloromethane	ND	ug/M3	1.7		1		09/24/21 04:2	
	ND	ug/M3	1.7		1	09/24/21		
1,2-Dibromoethane		-						
1,2-Dichlorobenzene	ND	ug/M3	1.2		1		09/24/21 04:2	
1,3-Dichlorobenzene	ND	ug/M3	1.2		1		09/24/21 04:2	
1,4-Dichlorobenzene	ND	ug/M3	1.2		1		09/24/21 04:2	
Dichlorodifluoromethane	1.2	ug/M3	0.99		1		09/24/21 04:2	
1,1-Dichloroethane	ND	ug/M3	0.81		1	09/24/21		
1,2-Dichloroethane	ND	ug/M3	0.81		1		09/24/21 04:2	
1,1-Dichloroethene	ND	ug/M3	0.79		1		09/24/21 04:2	
cis-1,2-Dichloroethene	ND	ug/M3	0.79		1		09/24/21 04:2	
trans-1,2-dichloroethene	ND	ug/M3	0.79		1		09/24/21 04:2	
1,2-Dichloropropane	ND	ug/M3	1.8		1		09/24/21 04:2	
cis-1,3-Dichloropropene	ND	ug/M3	0.91		1		09/24/21 04:2	
trans-1,3-dichloropropene	ND	ug/M3	0.91		1		09/24/21 04:2	
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4		1		09/24/21 04:2	
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6		1		09/24/21 04:2	
Ethyl Acetate	ND	ug/M3	0.72		1		09/24/21 04:2	
Ethylbenzene	ND	ug/M3	0.43		1		09/24/21 04:2	
4-Ethyltoluene	ND	ug/M3	0.98		1	09/24/21	09/24/21 04:2	3 1055

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Outdoor

Matrix: AIR

PSS Sample ID: 21092007-001

VOCs in Air by GC/MS	Analytica	I Method:	EPA TO-15	15 Preparation Method: TO-15P				
Qualifier(s): See Batch 187911 on Case Narra	ative.							
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82		1	09/24/21	09/24/21 04:23	1055
Hexachlorobutadiene	ND	ug/M3	2.1		1	09/24/21	09/24/21 04:23	1055
n-Hexane	ND	ug/M3	14		1	09/24/21	09/24/21 04:23	1055
2-Hexanone (MBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 04:23	1055
Isopropylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 04:23	1055
Methylene Chloride	ND	ug/M3	14		1	09/24/21	09/24/21 04:23	1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 04:23	1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36		1	09/24/21	09/24/21 04:23	1055
Naphthalene	0.63	ug/M3	0.52		1	09/24/21	09/24/21 04:23	1055
Propylene	ND	ug/M3	1.7		1	09/24/21	09/24/21 04:23	1055
n-Propylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 04:23	1055
Styrene	ND	ug/M3	4.3		1	09/24/21	09/24/21 04:23	1055
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4		1	09/24/21	09/24/21 04:23	1055
Tetrachloroethene	ND	ug/M3	1.4		1	09/24/21	09/24/21 04:23	1055
Tetrahydrofuran	ND	ug/M3	0.59		1	09/24/21	09/24/21 04:23	1055
Toluene	2.8	ug/M3	0.38		1	09/24/21	09/24/21 04:23	1055
1,2,4-Trichlorobenzene	ND	ug/M3	1.5		1	09/24/21	09/24/21 04:23	1055
1,1,1-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 04:23	1055
1,1,2-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 04:23	1055
Trichloroethene	ND	ug/M3	1.1		1	09/24/21	09/24/21 04:23	1055
Trichlorofluoromethane	1.1	ug/M3	1.1		1	09/24/21	09/24/21 04:23	1055
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5		1	09/24/21	09/24/21 04:23	1055
1,2,4-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 04:23	1055
1,3,5-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 04:23	1055
2,2,4-Trimethylpentane	ND	ug/M3	0.93		1	09/24/21	09/24/21 04:23	1055
Vinyl acetate	ND	ug/M3	1.8		1	09/24/21	09/24/21 04:23	1055
Bromoethene	ND	ug/M3	0.87		1	09/24/21	09/24/21 04:23	1055
Vinyl chloride	ND	ug/M3	0.51		1	09/24/21	09/24/21 04:23	1055
m&p-Xylene	ND	ug/M3	0.87		1	09/24/21	09/24/21 04:23	1055
o-Xylene	ND	ug/M3	0.43		1	09/24/21	09/24/21 04:23	1055
Surrogate(s)	Recovery		Limits					
4-Bromofluorobenzene	112	%	87-120		1	09/24/21	09/24/21 04:23	3 1055

Date/Time Sampled: 09/17/2021 19:11

Date/Time Received: 09/20/2021 15:10

Project Name: ACPS IAQ Testing

PSS Project No.: 21092007

1,3-Dichlorobenzene

1.4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

trans-1,2-dichloroethene

cis-1,3-Dichloropropene

trans-1,3-dichloropropene

1,4-Dioxane (P-Dioxane)

Ethyl Acetate

Ethylbenzene

4-Ethyltoluene

1,2-Dichlorotetrafluoroethane

Dichlorodifluoromethane

Sample ID: CK - Office	I	Date/Time	e Sampled:	09/17/2021 19	:13 PSS Sample ID: 21092007-002					
Matrix: AIR	I	Date/Time	e Received:	09/20/2021 15	:10					
VOCs in Air by GC/MS	Analytica	al Method:	EPA TO-15	Preparation Method: TO-15P						
Qualifier(s): See Batch 187911 on Case Narrati	ve.									
	Result	Units	RL	Flag Dil	Prepared Analyzed Analys					
Acetone	15	ug/M3	9.5	1	09/24/21 09/24/21 05:17 1055					
Benzene	ND	ug/M3	0.32	1	09/24/21 09/24/21 05:17 1055					
Benzyl Chloride	ND	ug/M3	1.0	1	09/24/21 09/24/21 05:17 1055					
Bromodichloromethane	ND	ug/M3	1.3	1	09/24/21 09/24/21 05:17 1055					
Bromoform	ND	ug/M3	2.1	1	09/24/21 09/24/21 05:17 1055					
Bromomethane	ND	ug/M3	0.78	1	09/24/21 09/24/21 05:17 1055					
1,3-Butadiene	ND	ug/M3	0.44	1	09/24/21 09/24/21 05:17 1055					
2-Butanone (MEK)	ND	ug/M3	1.5	1	09/24/21 09/24/21 05:17 1055					
Carbon Disulfide	ND	ug/M3	12	1	09/24/21 09/24/21 05:17 1055					
Carbon Tetrachloride	ND	ug/M3	1.3	1	09/24/21 09/24/21 05:17 1055					
Chlorobenzene	ND	ug/M3	0.92	1	09/24/21 09/24/21 05:17 1055					
Chloroethane	ND	ug/M3	0.53	1	09/24/21 09/24/21 05:17 1055					
Chloroform	0.98	ug/M3	0.98	1	09/24/21 09/24/21 05:17 1055					
Chloromethane	0.87	ug/M3	0.41	1	09/24/21 09/24/21 05:17 1055					
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	09/24/21 09/24/21 05:17 1055					
Cyclohexane	ND	ug/M3	0.69	1	09/24/21 09/24/21 05:17 1055					
Dibromochloromethane	ND	ug/M3	1.7	1	09/24/21 09/24/21 05:17 1055					
1,2-Dibromoethane	ND	ug/M3	1.5	1	09/24/21 09/24/21 05:17 1055					
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21 09/24/21 05:17 1055					

1.2

1.2

0.99

0.81

0.81

0.79

0.79

0.79

1.8

0.91

0.91

1.4

3.6

0.72

0.43

0.98

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ND

ND

1.3

ND

ug/M3

Page 6 of 40

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 09/24/21 05:17 1055

09/24/21 05:17 1055

09/24/21

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Office		Date/Time S	ampled:	09/17/2	021 19:13	PSS Sample	e ID: 2109200	7-002
Matrix: AIR	I	Date/Time R	Received:	09/20/2	021 15:10			
VOCs in Air by GC/MS	Analytica	al Method: EP	A TO-15			Preparation Met	hod: TO-15P	
Qualifier(s): See Batch 187911 on Case N	Narrative.							
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82		1	09/24/21	09/24/21 05:1	7 1055
Hexachlorobutadiene	ND	ug/M3	2.1		1	09/24/21	09/24/21 05:1	7 1055
n-Hexane	ND	ug/M3	14		1	09/24/21	09/24/21 05:1	7 1055
2-Hexanone (MBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 05:1	7 1055
Isopropylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 05:1	7 1055
Methylene Chloride	ND	ug/M3	14		1	09/24/21	09/24/21 05:1	7 1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 05:1	7 1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36		1	09/24/21	09/24/21 05:1	7 1055
Naphthalene	0.79	ug/M3	0.52		1	09/24/21	09/24/21 05:1	7 1055
Pronylene	ND	ua/M3	17		1	09/24/21	09/24/21 05:1	7 1055

Methyle	ene Chloride	ND	ug/M3	14	1	09/24/21	09/24/21 05:17	1055
4-Meth	yl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	09/24/21	09/24/21 05:17	1055
Methyl-	-t-Butyl Ether	ND	ug/M3	0.36	1	09/24/21	09/24/21 05:17	1055
Naphth	alene	0.79	ug/M3	0.52	1	09/24/21	09/24/21 05:17	1055
Propyle	ene	ND	ug/M3	1.7	1	09/24/21	09/24/21 05:17	1055
n-Prop	ylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 05:17	1055
Styrene	e	ND	ug/M3	4.3	1	09/24/21	09/24/21 05:17	1055
1,1,2,2	-Tetrachloroethane	ND	ug/M3	1.4	1	09/24/21	09/24/21 05:17	1055
Tetrach	nloroethene	ND	ug/M3	1.4	1	09/24/21	09/24/21 05:17	1055
Tetrahy	/drofuran	ND	ug/M3	0.59	1	09/24/21	09/24/21 05:17	1055
Toluen	e	2.8	ug/M3	0.38	1	09/24/21	09/24/21 05:17	1055
1,2,4-T	richlorobenzene	ND	ug/M3	1.5	1	09/24/21	09/24/21 05:17	1055
1,1,1-T	richloroethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 05:17	1055
1,1,2-T	richloroethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 05:17	1055
Trichlo	roethene	ND	ug/M3	1.1	1	09/24/21	09/24/21 05:17	1055
Trichlo	rofluoromethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 05:17	1055
1,1,2-T	richlorotrifluoroethane	ND	ug/M3	1.5	1	09/24/21	09/24/21 05:17	1055
1,2,4-T	rimethylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 05:17	1055
1,3,5-T	rimethylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 05:17	1055
2,2,4-T	rimethylpentane	ND	ug/M3	0.93	1	09/24/21	09/24/21 05:17	1055
Vinyl a	cetate	ND	ug/M3	1.8	1	09/24/21	09/24/21 05:17	1055
Bromoe	ethene	ND	ug/M3	0.87	1	09/24/21	09/24/21 05:17	1055
Vinyl cł	hloride	ND	ug/M3	0.51	1	09/24/21	09/24/21 05:17	1055
m&p-X	ylene	ND	ug/M3	0.87	1	09/24/21	09/24/21 05:17	1055
o-Xyler	ne	ND	ug/M3	0.43	1	09/24/21	09/24/21 05:17	1055
	Surrogate(s)	Recovery		Limits				
	4-Bromofluorobenzene	111	%	87-120	1	09/24/21	09/24/21 05:17	1055

Project Name: ACPS IAQ Testing

PSS Project No.: 21092007

cis-1,2-Dichloroethene

1,2-Dichloropropane

trans-1,2-dichloroethene

cis-1,3-Dichloropropene

trans-1,3-dichloropropene

1,4-Dioxane (P-Dioxane)

Ethyl Acetate

Ethylbenzene

4-Ethyltoluene

1,2-Dichlorotetrafluoroethane

Sample ID: CK - Library

Date/Time Sampled: 09/17/2021 19:18 PSS Sample ID: 21092007-003

	•		ampica.	03/11/2021 13		. ID. 2103200	1-005
Matrix: AIR	I	Date/Time F	Received:	09/20/2021 15:	:10		
VOCs in Air by GC/MS	Analytica	I Method: EP	PA TO-15		Preparation Metl	nod: TO-15P	
Qualifier(s): See Batch 187911 on Case	Narrative.						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analys
Acetone	16	ug/M3	9.5	1	09/24/21	09/24/21 07:5	0 1055
Benzene	ND	ug/M3	0.32	1	09/24/21	09/24/21 07:5	0 1055
Benzyl Chloride	ND	ug/M3	1.0	1	09/24/21	09/24/21 07:5	0 1055
Bromodichloromethane	ND	ug/M3	1.3	1	09/24/21	09/24/21 07:5	0 1055
Bromoform	ND	ug/M3	2.1	1	09/24/21	09/24/21 07:5	0 1055
Bromomethane	ND	ug/M3	0.78	1	09/24/21	09/24/21 07:5	0 1055
1,3-Butadiene	ND	ug/M3	0.44	1	09/24/21	09/24/21 07:5	0 1055
2-Butanone (MEK)	ND	ug/M3	1.5	1	09/24/21	09/24/21 07:5	0 1055
Carbon Disulfide	ND	ug/M3	12	1	09/24/21	09/24/21 07:5	0 1055
Carbon Tetrachloride	ND	ug/M3	1.3	1	09/24/21	09/24/21 07:5	0 1055
Chlorobenzene	ND	ug/M3	0.92	1	09/24/21	09/24/21 07:5	0 1055
Chloroethane	ND	ug/M3	0.53	1	09/24/21	09/24/21 07:5	0 1055
Chloroform	ND	ug/M3	0.98	1	09/24/21	09/24/21 07:5	0 1055
Chloromethane	0.97	ug/M3	0.41	1	09/24/21	09/24/21 07:5	0 1055
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	09/24/21	09/24/21 07:5	0 1055
Cyclohexane	ND	ug/M3	0.69	1	09/24/21	09/24/21 07:5	0 1055
Dibromochloromethane	ND	ug/M3	1.7	1	09/24/21	09/24/21 07:5	0 1055
1,2-Dibromoethane	ND	ug/M3	1.5	1	09/24/21	09/24/21 07:5	0 1055
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 07:5	0 1055
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 07:5	0 1055
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 07:5	0 1055
Dichlorodifluoromethane	1.6	ug/M3	0.99	1	09/24/21	09/24/21 07:5	0 1055
1,1-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 07:5	0 1055
1,2-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 07:5	0 1055
1,1-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 07:5	0 1055
air 4.0 Diabhann ath an a			0.70	4	00/04/04	00/04/04 07-5	

0.79

0.79

1.8

0.91

0.91

1.4

3.6

0.72

0.43

0.98

1

1

1

1

1

1

1

1

1

1

ND

ug/M3

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Library

1,3,5-Trimethylbenzene

2,2,4-Trimethylpentane

Vinyl acetate

Bromoethene

Vinyl chloride

m&p-Xylene

o-Xylene

Matrix: AIR

Date/Time Sampled: 09/17/2021 19:18

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-003

	-		Receiveu.	03/20/2021	10.10		
VOCs in Air by GC/MS	Analytica	I Method: E	PA TO-15		Preparation Met	hod: TO-15P	
Qualifier(s): See Batch 187911 on Case Na	arrative.						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82		1 09/24/21	09/24/21 07:50	0 1055
Hexachlorobutadiene	ND	ug/M3	2.1		1 09/24/21	09/24/21 07:50	0 1055
n-Hexane	ND	ug/M3	14		1 09/24/21	09/24/21 07:50	0 1055
2-Hexanone (MBK)	ND	ug/M3	2.0		1 09/24/21	09/24/21 07:50	0 1055
Isopropylbenzene	ND	ug/M3	0.98		1 09/24/21	09/24/21 07:50) 1055
Methylene Chloride	ND	ug/M3	14		1 09/24/21	09/24/21 07:50	0 1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0		1 09/24/21	09/24/21 07:50	0 1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36		1 09/24/21	09/24/21 07:50	0 1055
Naphthalene	0.68	ug/M3	0.52		1 09/24/21	09/24/21 07:50	0 1055
Propylene	ND	ug/M3	1.7		1 09/24/21	09/24/21 07:50	0 1055
n-Propylbenzene	ND	ug/M3	0.98		1 09/24/21	09/24/21 07:50	0 1055
Styrene	ND	ug/M3	4.3		1 09/24/21	09/24/21 07:50	0 1055
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4		1 09/24/21	09/24/21 07:50	0 1055
Tetrachloroethene	ND	ug/M3	1.4		1 09/24/21	09/24/21 07:50	0 1055
Tetrahydrofuran	ND	ug/M3	0.59		1 09/24/21	09/24/21 07:50	0 1055
Toluene	2.3	ug/M3	0.38		1 09/24/21	09/24/21 07:50	0 1055
1,2,4-Trichlorobenzene	ND	ug/M3	1.5		1 09/24/21	09/24/21 07:50	0 1055
1,1,1-Trichloroethane	ND	ug/M3	1.1		1 09/24/21	09/24/21 07:50	0 1055
1,1,2-Trichloroethane	ND	ug/M3	1.1		1 09/24/21	09/24/21 07:50	0 1055
Trichloroethene	ND	ug/M3	1.1		1 09/24/21	09/24/21 07:50	0 1055
Trichlorofluoromethane	1.2	ug/M3	1.1		1 09/24/21	09/24/21 07:50	0 1055
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5		1 09/24/21	09/24/21 07:50	0 1055
1,2,4-Trimethylbenzene	ND	ug/M3	0.98		1 09/24/21	09/24/21 07:50) 1055

0.98

0.93

1.8

0.87

0.51

0.87

0.43

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

ug/M3

ug/M3

ug/M3

ug/M3

ug/M3

ug/M3

ug/M3

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

09/24/21 09/24/21 07:50 1055

Certificate of Analysis

Date/Time Sampled: 09/17/2021 19:21

PSS Sample ID: 21092007-004

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Cafeteria

Campie ID. OK - Calcteria	•		oumpicu.	03/11/2021	13.21 1 00 0amp	IC ID. 2105200	7-004
Matrix: AIR	[Date/Time	Received:	09/20/2021	15:10		
VOCs in Air by GC/MS	Analytica	I Method: I	EPA TO-15		Preparation Me	thod: TO-15P	
Qualifier(s): See Batch 187911 on Case	Narrative.						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	12	ug/M3	9.5			1 09/24/21 08:4	_
Benzene	ND	ug/M3	0.32	1	09/24/2	1 09/24/21 08:4	5 1055
Benzyl Chloride	ND	ug/M3	1.0	1	09/24/2	1 09/24/21 08:4	5 1055
Bromodichloromethane	ND	ug/M3	1.3	1	09/24/2	1 09/24/21 08:4	5 1055
Bromoform	ND	ug/M3	2.1	1	09/24/2	1 09/24/21 08:4	5 1055
Bromomethane	ND	ug/M3	0.78	1	09/24/2	1 09/24/21 08:4	5 1055
1,3-Butadiene	ND	ug/M3	0.44	1	09/24/2	1 09/24/21 08:4	5 1055
2-Butanone (MEK)	ND	ug/M3	1.5	1	09/24/2	1 09/24/21 08:4	5 1055
Carbon Disulfide	ND	ug/M3	12	1	09/24/2	1 09/24/21 08:4	5 1055
Carbon Tetrachloride	ND	ug/M3	1.3	1	09/24/2	1 09/24/21 08:4	5 1055
Chlorobenzene	ND	ug/M3	0.92	1	09/24/2	1 09/24/21 08:4	5 1055
Chloroethane	ND	ug/M3	0.53	1	09/24/2	1 09/24/21 08:4	5 1055
Chloroform	ND	ug/M3	0.98	1	09/24/2	1 09/24/21 08:4	5 1055
Chloromethane	0.78	ug/M3	0.41	1	09/24/2	1 09/24/21 08:4	5 1055
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	09/24/2	1 09/24/21 08:4	5 1055
Cyclohexane	ND	ug/M3	0.69	1	09/24/2	1 09/24/21 08:4	5 1055
Dibromochloromethane	ND	ug/M3	1.7	1	09/24/2	1 09/24/21 08:4	5 1055
1,2-Dibromoethane	ND	ug/M3	1.5	1	09/24/2	1 09/24/21 08:4	5 1055
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/2	1 09/24/21 08:4	5 1055
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/2	1 09/24/21 08:4	5 1055
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/2	1 09/24/21 08:4	5 1055
Dichlorodifluoromethane	1.2	ug/M3	0.99	1	09/24/2	1 09/24/21 08:4	5 1055
1,1-Dichloroethane	ND	ug/M3	0.81	1	09/24/2	1 09/24/21 08:4	5 1055
1,2-Dichloroethane	ND	ug/M3	0.81	1	09/24/2	1 09/24/21 08:4	5 1055
1,1-Dichloroethene	ND	ug/M3	0.79	1	09/24/2	1 09/24/21 08:4	5 1055
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	09/24/2	1 09/24/21 08:4	5 1055
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	09/24/2	1 09/24/21 08:4	5 1055
1,2-Dichloropropane	ND	ug/M3	1.8	1	09/24/2	1 09/24/21 08:4	5 1055
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	09/24/2	1 09/24/21 08:4	5 1055
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	09/24/2	1 09/24/21 08:4	5 1055
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	09/24/2	1 09/24/21 08:4	5 1055
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	09/24/2	1 09/24/21 08:4	5 1055
Ethyl Acetate	ND	ug/M3	0.72	1	09/24/2	1 09/24/21 08:4	5 1055
Ethylbenzene	ND	ug/M3	0.43	1	09/24/2	1 09/24/21 08:4	5 1055
4-Ethyltoluene	ND	ug/M3	0.98	1	09/24/2	1 09/24/21 08:4	5 1055

Date/Time Sampled: 09/17/2021 19:21

PSS Sample ID: 21092007-004

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Cafeteria

Matrix: AIR	r)ato/Timo	Received:	09/20/2021	15.10		
VOCs in Air by GC/MS				05/20/2021		had TO 45D	
Qualifier(s): See Batch 187911 on Case Nar	-	I Method: E	PA 10-15		Preparation Met	noa: 10-15P	
Quaimer(s). See Batch 187911 On Case Nai	ralive.						
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	09/24/21	09/24/21 08:45	5 1055
Hexachlorobutadiene	ND	ug/M3	2.1	1	09/24/21	09/24/21 08:45	5 1055
n-Hexane	ND	ug/M3	14	1	09/24/21	09/24/21 08:45	5 1055
2-Hexanone (MBK)	ND	ug/M3	2.0	1	09/24/21	09/24/21 08:45	5 1055
Isopropylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 08:45	5 1055
Methylene Chloride	ND	ug/M3	14	1	09/24/21	09/24/21 08:45	5 1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	09/24/21	09/24/21 08:45	5 1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	09/24/21	09/24/21 08:45	5 1055
Naphthalene	0.58	ug/M3	0.52	1	09/24/21	09/24/21 08:45	5 1055
Propylene	ND	ug/M3	1.7	1	09/24/21	09/24/21 08:45	5 1055
n-Propylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 08:45	5 1055
Styrene	ND	ug/M3	4.3	1	09/24/21	09/24/21 08:45	5 1055
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	09/24/21	09/24/21 08:45	5 1055
Tetrachloroethene	ND	ug/M3	1.4	1	09/24/21	09/24/21 08:45	5 1055
Tetrahydrofuran	ND	ug/M3	0.59	1	09/24/21	09/24/21 08:45	5 1055
Toluene	3.1	ug/M3	0.38	1	09/24/21	09/24/21 08:45	5 1055
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	09/24/21	09/24/21 08:45	5 1055
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 08:45	5 1055
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 08:45	5 1055
Trichloroethene	ND	ug/M3	1.1	1	09/24/21	09/24/21 08:45	5 1055
Trichlorofluoromethane	1.1	ug/M3	1.1	1	09/24/21	09/24/21 08:45	5 1055
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	09/24/21	09/24/21 08:45	5 1055
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 08:45	5 1055
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 08:45	5 1055
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	09/24/21	09/24/21 08:45	5 1055
Vinyl acetate	ND	ug/M3	1.8	1	09/24/21	09/24/21 08:45	5 1055
Bromoethene	ND	ug/M3	0.87	1	09/24/21	09/24/21 08:45	5 1055
Vinyl chloride	ND	ug/M3	0.51	1	09/24/21	09/24/21 08:45	5 1055
m&p-Xylene	ND	ug/M3	0.87	1	09/24/21	09/24/21 08:45	5 1055
o-Xylene	ND	ug/M3	0.43	1	09/24/21	09/24/21 08:45	5 1055
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	111	%	87-120	1	09/24/21	09/24/21 08:4	5 1055
					"= "		

Date/Time Sampled: 09/17/2021 19:41

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-005

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Class 29

Matrix: AIR

VOCs in Air by GC/MS	Analytical Method: EPA TO-15 Preparation Method: TO-15P						
Qualifier(s): See Batch 187911 on Case I	Narrative.						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	19	ug/M3	9.5		1 09/24/21	09/24/21 09:40	1055
Benzene	ND	ug/M3	0.32		1 09/24/21	09/24/21 09:40	1055
Benzyl Chloride	ND	ug/M3	1.0		1 09/24/21	09/24/21 09:40	1055
Bromodichloromethane	ND	ug/M3	1.3		1 09/24/21	09/24/21 09:40	1055
Bromoform	ND	ug/M3	2.1		1 09/24/21	09/24/21 09:40	1055
Bromomethane	ND	ug/M3	0.78		1 09/24/21	09/24/21 09:40	1055
1,3-Butadiene	ND	ug/M3	0.44		1 09/24/21	09/24/21 09:40	1055
2-Butanone (MEK)	1.7	ug/M3	1.5		1 09/24/21	09/24/21 09:40	1055
Carbon Disulfide	ND	ug/M3	12		1 09/24/21	09/24/21 09:40	1055
Carbon Tetrachloride	ND	ug/M3	1.3		1 09/24/21	09/24/21 09:40	1055
Chlorobenzene	ND	ug/M3	0.92		1 09/24/21	09/24/21 09:40	1055
Chloroethane	ND	ug/M3	0.53		1 09/24/21	09/24/21 09:40	1055
Chloroform	ND	ug/M3	0.98		1 09/24/21	09/24/21 09:40	1055
Chloromethane	0.91	ug/M3	0.41		1 09/24/21	09/24/21 09:40	1055
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63		1 09/24/21	09/24/21 09:40	1055
Cyclohexane	ND	ug/M3	0.69		1 09/24/21	09/24/21 09:40	1055
Dibromochloromethane	ND	ug/M3	1.7		1 09/24/21	09/24/21 09:40	1055
1,2-Dibromoethane	ND	ug/M3	1.5		1 09/24/21	09/24/21 09:40	1055
1,2-Dichlorobenzene	ND	ug/M3	1.2		1 09/24/21	09/24/21 09:40	1055
1,3-Dichlorobenzene	ND	ug/M3	1.2		1 09/24/21	09/24/21 09:40	1055
1,4-Dichlorobenzene	ND	ug/M3	1.2		1 09/24/21	09/24/21 09:40	1055
Dichlorodifluoromethane	1.5	ug/M3	0.99		1 09/24/21	09/24/21 09:40	1055
1,1-Dichloroethane	ND	ug/M3	0.81		1 09/24/21	09/24/21 09:40	1055
1,2-Dichloroethane	ND	ug/M3	0.81		1 09/24/21	09/24/21 09:40	1055
1,1-Dichloroethene	ND	ug/M3	0.79		1 09/24/21	09/24/21 09:40	1055
cis-1,2-Dichloroethene	ND	ug/M3	0.79		1 09/24/21	09/24/21 09:40	1055
trans-1,2-dichloroethene	ND	ug/M3	0.79		1 09/24/21	09/24/21 09:40	1055
1,2-Dichloropropane	ND	ug/M3	1.8		1 09/24/21	09/24/21 09:40	1055
cis-1,3-Dichloropropene	ND	ug/M3	0.91		1 09/24/21	09/24/21 09:40	1055
trans-1,3-dichloropropene	ND	ug/M3	0.91		1 09/24/21	09/24/21 09:40) 1055
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4		1 09/24/21	09/24/21 09:40) 1055
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6		1 09/24/21	09/24/21 09:40) 1055
Ethyl Acetate	ND	ug/M3	0.72		1 09/24/21	09/24/21 09:40) 1055
Ethylbenzene	ND	ug/M3	0.43		1 09/24/21	09/24/21 09:40) 1055
4-Ethyltoluene	ND	ug/M3	0.98		1 09/24/21	09/24/21 09:40	1055
-		-					

Date/Time Sampled: 09/17/2021 19:41

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-005

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Class 29

Matrix: AIR

VOCs in Air by GC/MS	Analytica	I Method: E	PA TO-15			Preparation Met	hod: TO-15P	
Qualifier(s): See Batch 187911 on Case Narr	ative.							
	Result	Units	RL	Flag D	il	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82		1	09/24/21	09/24/21 09:40	1055
Hexachlorobutadiene	ND	ug/M3	2.1		1	09/24/21	09/24/21 09:40	1055
n-Hexane	ND	ug/M3	14		1	09/24/21	09/24/21 09:40	1055
2-Hexanone (MBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 09:40	1055
Isopropylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 09:40	1055
Methylene Chloride	ND	ug/M3	14		1	09/24/21	09/24/21 09:40	1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 09:40	1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36		1	09/24/21	09/24/21 09:40	1055
Naphthalene	2.0	ug/M3	0.52		1	09/24/21	09/24/21 09:40	1055
Propylene	ND	ug/M3	1.7		1	09/24/21	09/24/21 09:40	1055
n-Propylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 09:40	1055
Styrene	ND	ug/M3	4.3		1	09/24/21	09/24/21 09:40	1055
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4		1	09/24/21	09/24/21 09:40	1055
Tetrachloroethene	ND	ug/M3	1.4		1	09/24/21	09/24/21 09:40	1055
Tetrahydrofuran	ND	ug/M3	0.59		1	09/24/21	09/24/21 09:40	1055
Toluene	4.0	ug/M3	0.38		1	09/24/21	09/24/21 09:40	1055
1,2,4-Trichlorobenzene	ND	ug/M3	1.5		1	09/24/21	09/24/21 09:40	1055
1,1,1-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 09:40	1055
1,1,2-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 09:40	1055
Trichloroethene	ND	ug/M3	1.1		1	09/24/21	09/24/21 09:40	1055
Trichlorofluoromethane	1.1	ug/M3	1.1		1	09/24/21	09/24/21 09:40	1055
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5		1	09/24/21	09/24/21 09:40	1055
1,2,4-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 09:40	1055
1,3,5-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 09:40	1055
2,2,4-Trimethylpentane	ND	ug/M3	0.93		1	09/24/21	09/24/21 09:40	1055
Vinyl acetate	ND	ug/M3	1.8		1	09/24/21	09/24/21 09:40) 1055
Bromoethene	ND	ug/M3	0.87		1	09/24/21	09/24/21 09:40	1055
Vinyl chloride	ND	ug/M3	0.51		1	09/24/21	09/24/21 09:40) 1055
m&p-Xylene	1.0	ug/M3	0.87		1	09/24/21	09/24/21 09:40) 1055
o-Xylene	ND	ug/M3	0.43		1	09/24/21	09/24/21 09:40) 1055
Surrogate(s)	Recovery		Limits					
4-Bromofluorobenzene	110	%	87-120		1	09/24/21	09/24/21 09:40	0 1055

Page 13 of 40

Date/Time Sampled: 09/17/2021 19:47

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-007

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - 20 - 19

Matrix: AIR

VOCs in Air by GC/MS	Analytical Method: EPA TO-15 Preparation Method: TO-15P							
Qualifier(s): See Batch 187911 on Case Narra	tive.							
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst	
Acetone	18	ug/M3	9.5	1	09/24/21	09/24/21 10:35	5 1055	
Benzene	ND	ug/M3	0.32	1	09/24/21	09/24/21 10:35	5 1055	
Benzyl Chloride	ND	ug/M3	1.0	1	09/24/21	09/24/21 10:35	5 1055	
Bromodichloromethane	ND	ug/M3	1.3	1	09/24/21	09/24/21 10:35	5 1055	
Bromoform	ND	ug/M3	2.1	1	09/24/21	09/24/21 10:35	5 1055	
Bromomethane	ND	ug/M3	0.78	1	09/24/21	09/24/21 10:35	5 1055	
1,3-Butadiene	ND	ug/M3	0.44	1	09/24/21	09/24/21 10:35	5 1055	
2-Butanone (MEK)	1.6	ug/M3	1.5	1	09/24/21	09/24/21 10:35	5 1055	
Carbon Disulfide	ND	ug/M3	12	1	09/24/21	09/24/21 10:35	5 1055	
Carbon Tetrachloride	ND	ug/M3	1.3	1	09/24/21	09/24/21 10:35	5 1055	
Chlorobenzene	ND	ug/M3	0.92	1	09/24/21	09/24/21 10:35	5 1055	
Chloroethane	ND	ug/M3	0.53	1	09/24/21	09/24/21 10:35	5 1055	
Chloroform	2.2	ug/M3	0.98	1	09/24/21	09/24/21 10:35	5 1055	
Chloromethane	0.95	ug/M3	0.41	1	09/24/21	09/24/21 10:35	5 1055	
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	09/24/21	09/24/21 10:35	5 1055	
Cyclohexane	ND	ug/M3	0.69	1	09/24/21	09/24/21 10:35	5 1055	
Dibromochloromethane	ND	ug/M3	1.7	1	09/24/21	09/24/21 10:35	5 1055	
1,2-Dibromoethane	ND	ug/M3	1.5	1	09/24/21	09/24/21 10:35	5 1055	
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 10:35	5 1055	
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 10:35	5 1055	
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 10:35	5 1055	
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	09/24/21	09/24/21 10:35	5 1055	
1,1-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 10:35	5 1055	
1,2-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 10:35	5 1055	
1,1-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 10:35	5 1055	
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 10:35	5 1055	
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 10:35	5 1055	
1,2-Dichloropropane	ND	ug/M3	1.8	1	09/24/21	09/24/21 10:35	5 1055	
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 10:35	5 1055	
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 10:35	5 1055	
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	09/24/21	09/24/21 10:35	5 1055	
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	09/24/21	09/24/21 10:35	5 1055	
Ethyl Acetate	ND	ug/M3	0.72	1	09/24/21	09/24/21 10:35	5 1055	
Ethylbenzene	ND	ug/M3	0.43	1	09/24/21	09/24/21 10:35	5 1055	
4-Ethyltoluene	ND	ug/M3	0.98	1	09/24/21	09/24/21 10:35	5 1055	

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Matrix: AIR	I	Date/Time F	Received:	09/20/2021 15	5:10		
VOCs in Air by GC/MS	Analytica	al Method: EP	A TO-15		Preparation Met	nod: TO-15P	
Qualifier(s): See Batch 187911 on Case I	Narrative.						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	2.5	ug/M3	0.82	1	09/24/21	09/24/21 10:3	5 1055
Hexachlorobutadiene	ND	ug/M3	2.1	1	09/24/21	09/24/21 10:3	5 1055
n-Hexane	ND	ug/M3	14	1	09/24/21	09/24/21 10:3	5 1055
2-Hexanone (MBK)	ND	ug/M3	2.0	1	09/24/21	09/24/21 10:3	5 1055
Isopropylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 10:3	5 1055
Methylene Chloride	17	ug/M3	14	1	09/24/21	09/24/21 10:3	5 1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	09/24/21	09/24/21 10:3	5 1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	09/24/21	09/24/21 10:3	5 1055
Naphthalene	1.00	ug/M3	0.52	1	09/24/21	09/24/21 10:3	5 1055
Propylene	ND	ug/M3	1.7	1	09/24/21	09/24/21 10:3	5 1055
n-Propylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 10:3	5 1055
Styrene	ND	ug/M3	4.3	1	09/24/21	09/24/21 10:3	5 1055
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	09/24/21	09/24/21 10:3	5 1055
Tetrachloroethene	ND	ug/M3	1.4	1	09/24/21	09/24/21 10:3	5 1055
Tetrahydrofuran	ND	ug/M3	0.59	1	09/24/21	09/24/21 10:3	5 1055
Toluene	4.7	ug/M3	0.38	1	09/24/21	09/24/21 10:3	5 1055
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	09/24/21	09/24/21 10:3	5 1055
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 10:3	5 1055
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 10:3	5 1055
Trichloroethene	ND	ug/M3	1.1	1	09/24/21	09/24/21 10:3	5 1055

Sample ID: CK - 20 - 19	Date/Time Sampled: 09/17/20	021 19:47 PSS Sample ID: 21092007-007
Matrix: AIR	Date/Time Received: 09/20/20	021 15:10
VOCs in Air by GC/MS	Analytical Method: EPA TO-15	Preparation Method: TO-15P
Qualifier(s): See Batch 187911 on Case I	Varrative.	

Trichloroethene ug/M3 1.1 09/24/21 09/24/21 10:35 1055 ND 1 1 09/24/21 09/24/21 10:35 1055 Trichlorofluoromethane ug/M3 1.1 1.1 1,1,2-Trichlorotrifluoroethane ND ug/M3 1.5 1 09/24/21 09/24/21 10:35 1055 1,2,4-Trimethylbenzene ND ug/M3 0.98 1 09/24/21 09/24/21 10:35 1055 1,3,5-Trimethylbenzene ND ug/M3 0.98 1 09/24/21 09/24/21 10:35 1055 2,2,4-Trimethylpentane ND ug/M3 0.93 1 09/24/21 09/24/21 10:35 1055 Vinyl acetate ND ug/M3 1.8 1 09/24/21 09/24/21 10:35 1055 Bromoethene ND ug/M3 0.87 1 09/24/21 09/24/21 10:35 1055 Vinyl chloride ND ug/M3 0.51 1 09/24/21 09/24/21 10:35 1055 m&p-Xylene ND ug/M3 0.87 1 09/24/21 09/24/21 10:35 1055 o-Xylene ND ug/M3 0.43 1 09/24/21 09/24/21 10:35 1055 Surrogate(s) Limits Recovery 87-120 4-Bromofluorobenzene 110 % 1 09/24/21 09/24/21 10:35 1055

Date/Time Sampled: 09/17/2021 19:51

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-008

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Class 8

Matrix: AIR

			Receiveu.						
VOCs in Air by GC/MS	•	I Method: E	PA TO-15			Preparation Method: TO-15P			
Qualifier(s): See Batch 187911 on Case	Narrative.								
	Result	Units	RL	Flag D	il	Prepared	Analyzed	Analysi	
Acetone	21	ug/M3	9.5		1	09/24/21	09/24/21 11:3 ²	1055	
Benzene	ND	ug/M3	0.32		1	09/24/21	09/24/21 11:3 ²	1055	
Benzyl Chloride	ND	ug/M3	1.0		1	09/24/21	09/24/21 11:3 ²	1055	
Bromodichloromethane	ND	ug/M3	1.3		1	09/24/21	09/24/21 11:3 ²	1055	
Bromoform	ND	ug/M3	2.1		1	09/24/21	09/24/21 11:3 ²	1055	
Bromomethane	ND	ug/M3	0.78		1	09/24/21	09/24/21 11:3 ²	1055	
1,3-Butadiene	ND	ug/M3	0.44		1	09/24/21	09/24/21 11:3 ²	l 1055	
2-Butanone (MEK)	1.7	ug/M3	1.5		1	09/24/21	09/24/21 11:3 ²	l 1055	
Carbon Disulfide	ND	ug/M3	12		1	09/24/21	09/24/21 11:3 ²	l 1055	
Carbon Tetrachloride	ND	ug/M3	1.3		1	09/24/21	09/24/21 11:3 ²	1055	
Chlorobenzene	ND	ug/M3	0.92		1	09/24/21	09/24/21 11:3 ²	l 1055	
Chloroethane	ND	ug/M3	0.53		1	09/24/21	09/24/21 11:3 ²	l 1055	
Chloroform	3.8	ug/M3	0.98		1	09/24/21	09/24/21 11:3 ²	1055	
Chloromethane	1.1	ug/M3	0.41		1	09/24/21	09/24/21 11:3 ²	1055	
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63		1	09/24/21	09/24/21 11:3 ²	1055	
Cyclohexane	ND	ug/M3	0.69		1	09/24/21	09/24/21 11:3 ²	l 1055	
Dibromochloromethane	ND	ug/M3	1.7		1	09/24/21	09/24/21 11:3 ²	l 1055	
1,2-Dibromoethane	ND	ug/M3	1.5		1	09/24/21	09/24/21 11:3 ²	l 1055	
1,2-Dichlorobenzene	ND	ug/M3	1.2		1	09/24/21	09/24/21 11:3 ²	l 1055	
1,3-Dichlorobenzene	ND	ug/M3	1.2		1	09/24/21	09/24/21 11:3 ²	1055	
1,4-Dichlorobenzene	ND	ug/M3	1.2		1	09/24/21	09/24/21 11:3 ²	l 1055	
Dichlorodifluoromethane	ND	ug/M3	0.99		1	09/24/21	09/24/21 11:3 ²	l 1055	
1,1-Dichloroethane	ND	ug/M3	0.81		1	09/24/21	09/24/21 11:3 ²	l 1055	
1,2-Dichloroethane	ND	ug/M3	0.81		1	09/24/21	09/24/21 11:3 ²	l 1055	
1,1-Dichloroethene	ND	ug/M3	0.79		1	09/24/21	09/24/21 11:3 ²	l 1055	
cis-1,2-Dichloroethene	ND	ug/M3	0.79		1	09/24/21	09/24/21 11:32	l 1055	
trans-1,2-dichloroethene	ND	ug/M3	0.79		1	09/24/21	09/24/21 11:3 ²	l 1055	
1,2-Dichloropropane	ND	ug/M3	1.8		1	09/24/21	09/24/21 11:3 ²	1055	
cis-1,3-Dichloropropene	ND	ug/M3	0.91		1	09/24/21	09/24/21 11:3	l 1055	
trans-1,3-dichloropropene	ND	ug/M3	0.91		1	09/24/21	09/24/21 11:3 ²	1055	
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4		1	09/24/21	09/24/21 11:3 ²	1055	
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6		1	09/24/21	09/24/21 11:3 ²	1055	
Ethyl Acetate	ND	ug/M3	0.72		1	09/24/21	09/24/21 11:3 ²	1055	
Ethylbenzene	ND	ug/M3	0.43		1	09/24/21	09/24/21 11:3 ²	1055	
4-Ethyltoluene	ND	ug/M3	0.98		1	09/24/21	09/24/21 11:3 ²	1055	
-		č							

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Class 8

Matrix: AIR

Vinyl chloride

m&p-Xylene

Surrogate(s)

4-Bromofluorobenzene

o-Xylene

Date/Time Sampled: 09/17/2021 19:51

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-008

Qualifier(s): See Batch 187911 on Case Narra	tive. Result							
	Result							
	Reduit	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
n-Heptane	6.9	ug/M3	0.82		1	09/24/21	09/24/21 11:31	1055
Hexachlorobutadiene	ND	ug/M3	2.1		1	09/24/21	09/24/21 11:31	l 1055
n-Hexane	ND	ug/M3	14		1	09/24/21	09/24/21 11:31	1055
2-Hexanone (MBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 11:31	1055
Isopropylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 11:31	1055
Methylene Chloride	ND	ug/M3	14		1	09/24/21	09/24/21 11:31	1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 11:31	1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36		1	09/24/21	09/24/21 11:31	1055
Naphthalene	1.2	ug/M3	0.52		1	09/24/21	09/24/21 11:31	1055
Propylene	ND	ug/M3	1.7		1	09/24/21	09/24/21 11:31	1055
n-Propylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 11:31	1055
Styrene	ND	ug/M3	4.3		1	09/24/21	09/24/21 11:31	1055
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4		1	09/24/21	09/24/21 11:31	1055
Tetrachloroethene	ND	ug/M3	1.4		1	09/24/21	09/24/21 11:31	1055
Tetrahydrofuran	ND	ug/M3	0.59		1	09/24/21	09/24/21 11:31	1055
Toluene	4.9	ug/M3	0.38		1	09/24/21	09/24/21 11:31	1055
1,2,4-Trichlorobenzene	ND	ug/M3	1.5		1	09/24/21	09/24/21 11:31	1055
1,1,1-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 11:31	1055
1,1,2-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 11:31	1055
Trichloroethene	ND	ug/M3	1.1		1	09/24/21	09/24/21 11:31	1055
Trichlorofluoromethane	1.2	ug/M3	1.1		1	09/24/21	09/24/21 11:31	1055
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5		1	09/24/21	09/24/21 11:31	1055
1,2,4-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 11:31	1055
1,3,5-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 11:31	1055
2,2,4-Trimethylpentane	ND	ug/M3	0.93		1	09/24/21	09/24/21 11:31	1055
Vinyl acetate	ND	ug/M3	1.8		1	09/24/21	09/24/21 11:31	1055
Bromoethene	ND	ug/M3	0.87		1	09/24/21	09/24/21 11:31	1055

0.51

0.87

0.43

Limits

87-120

1

1

1

1

ND

ND

110

0.87

Recovery

ug/M3

ug/M3

ug/M3

%

09/24/21

09/24/21 09/24/21 11:31 1055

09/24/21 09/24/21 11:31 1055

09/24/21 09/24/21 11:31 1055

09/24/21 11:31 1055

Date/Time Sampled: 09/17/2021 19:55

PSS Sample ID: 21092007-009

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Class 11

Matrix: AIR	1	Date/Time	Received:	09/20/2021 15	:10		
VOCs in Air by GC/MS	Analytica	I Method: E	EPA TO-15		Preparation Mether	nod: TO-15P	
Qualifier(s): See Batch 187911 on Case N	Varrative.						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	20	ug/M3	9.5	1	09/24/21	09/24/21 12:58	1055
Benzene	0.32	ug/M3	0.32	1	09/24/21	09/24/21 12:58	1055
Benzyl Chloride	ND	ug/M3	1.0	1	09/24/21	09/24/21 12:58	1055
Bromodichloromethane	ND	ug/M3	1.3	1	09/24/21	09/24/21 12:58	1055
Bromoform	ND	ug/M3	2.1	1	09/24/21	09/24/21 12:58	1055
Bromomethane	ND	ug/M3	0.78	1	09/24/21	09/24/21 12:58	1055
1,3-Butadiene	ND	ug/M3	0.44	1	09/24/21	09/24/21 12:58	1055
2-Butanone (MEK)	1.9	ug/M3	1.5	1	09/24/21	09/24/21 12:58	1055
Carbon Disulfide	ND	ug/M3	12	1	09/24/21	09/24/21 12:58	1055
Carbon Tetrachloride	ND	ug/M3	1.3	1	09/24/21	09/24/21 12:58	1055
Chlorobenzene	ND	ug/M3	0.92	1	09/24/21	09/24/21 12:58	1055
Chloroethane	ND	ug/M3	0.53	1	09/24/21	09/24/21 12:58	1055
Chloroform	4.0	ug/M3	0.98	1	09/24/21	09/24/21 12:58	1055
Chloromethane	0.95	ug/M3	0.41	1	09/24/21	09/24/21 12:58	1055
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	09/24/21	09/24/21 12:58	1055
Cyclohexane	ND	ug/M3	0.69	1	09/24/21	09/24/21 12:58	1055
Dibromochloromethane	ND	ug/M3	1.7	1	09/24/21	09/24/21 12:58	1055
1,2-Dibromoethane	ND	ug/M3	1.5	1	09/24/21	09/24/21 12:58	1055
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 12:58	1055
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 12:58	1055
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 12:58	1055
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	09/24/21	09/24/21 12:58	1055
1,1-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 12:58	1055
1,2-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 12:58	1055
1,1-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 12:58	1055
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 12:58	1055
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 12:58	1055
1,2-Dichloropropane	ND	ug/M3	1.8	1	09/24/21	09/24/21 12:58	1055
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 12:58	1055
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 12:58	1055
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	09/24/21	09/24/21 12:58	1055
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	09/24/21	09/24/21 12:58	1055
Ethyl Acetate	ND	ug/M3	0.72	1	09/24/21	09/24/21 12:58	1055
Ethylbenzene	ND	ug/M3	0.43	1	09/24/21	09/24/21 12:58	1055
4-Ethyltoluene	ND	ug/M3	0.98	1	09/24/21	09/24/21 12:58	1055

Date/Time Sampled: 09/17/2021 19:55

PSS Sample ID: 21092007-009

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Class 11

Motrix: AID)ato/Time	Pagaiwad	00/20/2024	15.10		
Matrix: AIR				09/20/2021			
VOCs in Air by GC/MS	-	I Method: E	PA 10-15		Preparation Met	inoa: 10-15P	
Qualifier(s): See Batch 187911 on Case Nari	ialive.						
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	15	ug/M3	0.82	1	09/24/21	09/24/21 12:58	8 1055
Hexachlorobutadiene	ND	ug/M3	2.1	1	09/24/21	09/24/21 12:58	8 1055
n-Hexane	ND	ug/M3	14	1	09/24/21	09/24/21 12:58	8 1055
2-Hexanone (MBK)	ND	ug/M3	2.0	1	09/24/21	09/24/21 12:58	8 1055
Isopropylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 12:58	8 1055
Methylene Chloride	18	ug/M3	14	1	09/24/21	09/24/21 12:58	8 1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	09/24/21	09/24/21 12:58	8 1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	09/24/21	09/24/21 12:58	8 1055
Naphthalene	2.8	ug/M3	0.52	1	09/24/21	09/24/21 12:58	8 1055
Propylene	ND	ug/M3	1.7	1	09/24/21	09/24/21 12:58	8 1055
n-Propylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 12:58	8 1055
Styrene	ND	ug/M3	4.3	1	09/24/21	09/24/21 12:58	8 1055
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	09/24/21	09/24/21 12:58	8 1055
Tetrachloroethene	ND	ug/M3	1.4	1	09/24/21	09/24/21 12:58	8 1055
Tetrahydrofuran	ND	ug/M3	0.59	1	09/24/21	09/24/21 12:58	8 1055
Toluene	7.5	ug/M3	0.38	1	09/24/21	09/24/21 12:58	8 1055
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	09/24/21	09/24/21 12:58	8 1055
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 12:58	8 1055
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 12:58	8 1055
Trichloroethene	ND	ug/M3	1.1	1	09/24/21	09/24/21 12:58	8 1055
Trichlorofluoromethane	ND	ug/M3	1.1	1	09/24/21	09/24/21 12:58	8 1055
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	09/24/21	09/24/21 12:58	8 1055
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 12:58	8 1055
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	09/24/21	09/24/21 12:58	8 1055
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	09/24/21	09/24/21 12:58	8 1055
Vinyl acetate	ND	ug/M3	1.8	1	09/24/21	09/24/21 12:58	8 1055
Bromoethene	ND	ug/M3	0.87	1	09/24/21	09/24/21 12:58	8 1055
Vinyl chloride	ND	ug/M3	0.51	1	09/24/21	09/24/21 12:58	8 1055
m&p-Xylene	1.1	ug/M3	0.87	1	09/24/21	09/24/21 12:58	8 1055
o-Xylene	0.52	ug/M3	0.43	1	09/24/21	09/24/21 12:58	8 1055
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	109	%	87-120		09/24/21	09/24/21 12:5	8 1055
			-			-	

Date/Time Sampled: 09/17/2021 19:58

PSS Sample ID: 21092007-010

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Hall 15-17

Sample ID. OK - Hall 15-17	L		Sampleu.	03/11/20	21 13.3	o FSS Sample		-010
Matrix: AIR	ſ	Date/Time	Received:	09/20/20	21 15:1	0		
VOCs in Air by GC/MS	Analytica	I Method: El	PA TO-15			Preparation Met	hod: TO-15P	
Qualifier(s): See Batch 187911 on Case N	Narrative.							
	Result	Units	ы	Flag [Dil	Prepared	Analyzed	Analyst
Acetone	<u>Result</u>	ug/M3	9.5	Flag L	<u>ת 1</u>	09/24/21		
Benzene	0.32	ug/M3 ug/M3	0.32		1	09/24/21		
Benzyl Chloride	0.32 ND	ug/M3	1.0		1		09/24/21 13:5	
Bromodichloromethane	ND	ug/M3	1.0		1	09/24/21		
Bromoform	ND	ug/M3	2.1		1		09/24/21 13:5	
Bromomethane	ND	ug/M3	0.78		1	09/24/21		
1,3-Butadiene	ND	ug/M3 ug/M3	0.78		1		09/24/21 13:5	
2-Butanone (MEK)	2.1	ug/M3	1.5		1		09/24/21 13:5	
Carbon Disulfide	Z.I ND	ug/M3 ug/M3	1.5		1		09/24/21 13:5	
Carbon Tetrachloride	ND	ug/M3 ug/M3	1.3		1		09/24/21 13:5	
Chlorobenzene	ND	ug/M3 ug/M3	0.92		1		09/24/21 13:5	
Chloroethane	ND	ug/M3	0.53		1		09/24/21 13:5	
Chloroform	4.1	ug/M3	0.98		1		09/24/21 13:5	
Chloromethane	0.95	ug/M3	0.41		1		09/24/21 13:5	
Allyl Chloride (3-Chloropropene)	0.95 ND	ug/M3	0.63		1		09/24/21 13:5	
Cyclohexane	ND	ug/M3	0.69		1		09/24/21 13:5	
Dibromochloromethane	ND	ug/M3	1.7		1		09/24/21 13:5	
1,2-Dibromoethane	ND	ug/M3	1.7		1		09/24/21 13:5	
1,2-Dichlorobenzene	ND	ug/M3	1.0		1		09/24/21 13:5	
1,3-Dichlorobenzene	ND	ug/M3	1.2		1		09/24/21 13:5	
1,4-Dichlorobenzene	ND	ug/M3	1.2		1		09/24/21 13:5	
Dichlorodifluoromethane	1.4	ug/M3	0.99		1		09/24/21 13:5	
1,1-Dichloroethane	ND	ug/M3	0.81		1		09/24/21 13:5	
1,2-Dichloroethane	ND	ug/M3	0.81		1		09/24/21 13:5	
1,1-Dichloroethene	ND	ug/M3	0.79		1		09/24/21 13:5	
cis-1,2-Dichloroethene	ND	ug/M3	0.79		1		09/24/21 13:5	
trans-1,2-dichloroethene	ND	ug/M3	0.79		1		09/24/21 13:5	
1,2-Dichloropropane	ND	ug/M3	1.8		1		09/24/21 13:5	
cis-1,3-Dichloropropene	ND	ug/M3	0.91		1		09/24/21 13:5	
trans-1,3-dichloropropene	ND	ug/M3	0.91		1		09/24/21 13:5	
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4		1		09/24/21 13:5	
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6		1		09/24/21 13:5	
Ethyl Acetate	ND	ug/M3	0.72		1		09/24/21 13:5	
Ethylbenzene	ND	ug/M3	0.43		1		09/24/21 13:5	
4-Ethyltoluene	ND	ug/M3	0.98		1		09/24/21 13:5	
		ag/100	0.90		I	03/24/21	$00/2\pi/21$ 10.0	0 1000

Certificate of Analysis

Date/Time Sampled: 09/17/2021 19:58

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-010

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Hall 15-17

VOCs in Air by GC/MS	Analytica	I Method: E	PA TO-15			Preparation Met	hod: TO-15P	
Qualifier(s): See Batch 187911 on Case Narr	ative.							
	Result	Units	RL	Flag D	Dil	Prepared	Analyzed	Analyst
n-Heptane	15	ug/M3	0.82		1	09/24/21	09/24/21 13:55	5 1055
Hexachlorobutadiene	ND	ug/M3	2.1		1	09/24/21	09/24/21 13:55	5 1055
n-Hexane	ND	ug/M3	14		1	09/24/21	09/24/21 13:55	5 1055
2-Hexanone (MBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 13:55	5 1055
Isopropylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 13:55	5 1055
Methylene Chloride	51	ug/M3	14		1	09/24/21	09/24/21 13:55	5 1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 13:55	5 1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36		1	09/24/21	09/24/21 13:55	5 1055
Naphthalene	1.3	ug/M3	0.52		1	09/24/21	09/24/21 13:55	5 1055
Propylene	ND	ug/M3	1.7		1	09/24/21	09/24/21 13:55	5 1055
n-Propylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 13:55	5 1055
Styrene	ND	ug/M3	4.3		1	09/24/21	09/24/21 13:55	5 1055
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4		1	09/24/21	09/24/21 13:55	5 1055
Tetrachloroethene	ND	ug/M3	1.4		1	09/24/21	09/24/21 13:55	5 1055
Tetrahydrofuran	ND	ug/M3	0.59		1	09/24/21	09/24/21 13:55	5 1055
Toluene	5.2	ug/M3	0.38		1	09/24/21	09/24/21 13:55	5 1055
1,2,4-Trichlorobenzene	ND	ug/M3	1.5		1	09/24/21	09/24/21 13:55	5 1055
1,1,1-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 13:55	5 1055
1,1,2-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 13:55	5 1055
Trichloroethene	ND	ug/M3	1.1		1	09/24/21	09/24/21 13:55	5 1055
Trichlorofluoromethane	1.1	ug/M3	1.1		1	09/24/21	09/24/21 13:55	5 1055
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5		1	09/24/21	09/24/21 13:55	5 1055
1,2,4-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 13:55	5 1055
1,3,5-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 13:55	5 1055
2,2,4-Trimethylpentane	ND	ug/M3	0.93		1	09/24/21	09/24/21 13:55	5 1055
Vinyl acetate	ND	ug/M3	1.8		1	09/24/21	09/24/21 13:55	5 1055
Bromoethene	ND	ug/M3	0.87		1	09/24/21	09/24/21 13:55	5 1055
Vinyl chloride	ND	ug/M3	0.51		1	09/24/21	09/24/21 13:55	5 1055
m&p-Xylene	0.91	ug/M3	0.87		1	09/24/21	09/24/21 13:55	5 1055
o-Xylene	ND	ug/M3	0.43		1	09/24/21	09/24/21 13:55	5 1055
Surrogate(s)	Recovery		Limits					
4-Bromofluorobenzene	110	%	87-120		1	09/24/21	09/24/21 13:55	5 1055

Certificate of Analysis

Date/Time Sampled: 09/17/2021 19:25

PSS Sample ID: 21092007-011

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Hall 38-39

Matrix: AIR	I	Date/Time	Received:	09/20/2021 1	5:10				
VOCs in Air by GC/MS	Analytica	I Method: El	PA TO-15		Preparation Method: TO-15P				
Qualifier(s): See Batch 187911 on Case I	Narrative.								
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst		
Acetone	12	ug/M3	9.5	1	09/24/21	09/24/21 14:50	0 1055		
Benzene	ND	ug/M3	0.32	1	09/24/21	09/24/21 14:50) 1055		
Benzyl Chloride	ND	ug/M3	1.0	1	09/24/21	09/24/21 14:50) 1055		
Bromodichloromethane	ND	ug/M3	1.3	1	09/24/21	09/24/21 14:50	0 1055		
Bromoform	ND	ug/M3	2.1	1	09/24/21	09/24/21 14:50) 1055		
Bromomethane	ND	ug/M3	0.78	1	09/24/21	09/24/21 14:50) 1055		
1,3-Butadiene	ND	ug/M3	0.44	1	09/24/21	09/24/21 14:50) 1055		
2-Butanone (MEK)	ND	ug/M3	1.5	1	09/24/21	09/24/21 14:50) 1055		
Carbon Disulfide	ND	ug/M3	12	1	09/24/21	09/24/21 14:50) 1055		
Carbon Tetrachloride	ND	ug/M3	1.3	1	09/24/21	09/24/21 14:50) 1055		
Chlorobenzene	ND	ug/M3	0.92	1	09/24/21	09/24/21 14:50	0 1055		
Chloroethane	ND	ug/M3	0.53	1	09/24/21	09/24/21 14:50	0 1055		
Chloroform	ND	ug/M3	0.98	1	09/24/21	09/24/21 14:50	0 1055		
Chloromethane	0.83	ug/M3	0.41	1	09/24/21	09/24/21 14:50) 1055		
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	09/24/21	09/24/21 14:50) 1055		
Cyclohexane	ND	ug/M3	0.69	1	09/24/21	09/24/21 14:50	0 1055		
Dibromochloromethane	ND	ug/M3	1.7	1	09/24/21	09/24/21 14:50	0 1055		
1,2-Dibromoethane	ND	ug/M3	1.5	1	09/24/21	09/24/21 14:50	0 1055		
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 14:50	0 1055		
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 14:50	0 1055		
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 14:50) 1055		
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	09/24/21	09/24/21 14:50) 1055		
1,1-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 14:50) 1055		
1,2-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 14:50) 1055		
1,1-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 14:50) 1055		
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 14:50) 1055		
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 14:50) 1055		
1,2-Dichloropropane	ND	ug/M3	1.8	1	09/24/21	09/24/21 14:50) 1055		
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 14:50	0 1055		
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 14:50	0 1055		
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	09/24/21	09/24/21 14:50) 1055		
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	09/24/21	09/24/21 14:50) 1055		
Ethyl Acetate	ND	ug/M3	0.72	1	09/24/21	09/24/21 14:50	0 1055		
Ethylbenzene	ND	ug/M3	0.43	1	09/24/21	09/24/21 14:50	0 1055		
4-Ethyltoluene	ND	ug/M3	0.98	1	09/24/21	09/24/21 14:50	0 1055		

Certificate of Analysis

Date/Time Sampled: 09/17/2021 19:25

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-011

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Hall 38-39

VOCs in Air by GC/MS	Analytical Method: EPA TO-15					Preparation Meth	Preparation Method: TO-15P			
Qualifier(s): See Batch 187911 on Case Nam	rative.									
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst		
n-Heptane	ND	ug/M3	0.82		1	09/24/21	09/24/21 14:50) 1055		
Hexachlorobutadiene	ND	ug/M3	2.1		1	09/24/21	09/24/21 14:50) 1055		
n-Hexane	ND	ug/M3	14		1	09/24/21	09/24/21 14:50) 1055		
2-Hexanone (MBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 14:50) 1055		
Isopropylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 14:50) 1055		
Methylene Chloride	30	ug/M3	14		1	09/24/21	09/24/21 14:50) 1055		
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 14:50	0 1055		
Methyl-t-Butyl Ether	ND	ug/M3	0.36		1	09/24/21	09/24/21 14:50	0 1055		
Naphthalene	ND	ug/M3	0.52		1	09/24/21	09/24/21 14:50	0 1055		
Propylene	ND	ug/M3	1.7		1	09/24/21	09/24/21 14:50	0 1055		
n-Propylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 14:50) 1055		
Styrene	ND	ug/M3	4.3		1	09/24/21	09/24/21 14:50) 1055		
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4		1	09/24/21	09/24/21 14:50	0 1055		
Tetrachloroethene	ND	ug/M3	1.4		1	09/24/21	09/24/21 14:50	0 1055		
Tetrahydrofuran	ND	ug/M3	0.59		1	09/24/21	09/24/21 14:50	0 1055		
Toluene	ND	ug/M3	0.38		1	09/24/21	09/24/21 14:50	0 1055		
1,2,4-Trichlorobenzene	ND	ug/M3	1.5		1	09/24/21	09/24/21 14:50	0 1055		
1,1,1-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 14:50	0 1055		
1,1,2-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 14:50	0 1055		
Trichloroethene	ND	ug/M3	1.1		1	09/24/21	09/24/21 14:50) 1055		
Trichlorofluoromethane	1.1	ug/M3	1.1		1	09/24/21	09/24/21 14:50	0 1055		
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5		1	09/24/21	09/24/21 14:50	0 1055		
1,2,4-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 14:50	0 1055		
1,3,5-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 14:50	0 1055		
2,2,4-Trimethylpentane	ND	ug/M3	0.93		1	09/24/21	09/24/21 14:50) 1055		
Vinyl acetate	ND	ug/M3	1.8		1	09/24/21	09/24/21 14:50	0 1055		
Bromoethene	ND	ug/M3	0.87		1	09/24/21	09/24/21 14:50	0 1055		
Vinyl chloride	ND	ug/M3	0.51		1	09/24/21	09/24/21 14:50) 1055		
m&p-Xylene	ND	ug/M3	0.87		1	09/24/21	09/24/21 14:50	0 1055		
o-Xylene	ND	ug/M3	0.43		1	09/24/21	09/24/21 14:50	0 1055		
Surrogate(s)	Recovery		Limits							

4-Bromofluorobenzene

109

%

09/24/21 09/24/21 14:50 1055

87-120

1

Date/Time Sampled: 09/17/2021 19:26

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-012

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Class 40

Matrix: AIR

VOCs in Air by GC/MS	Analytica	I Method:	EPA TO-15		Preparation Met	hod: TO-15P	
Qualifier(s): See Batch 187911 on Case Na	arrative.						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	13	ug/M3	9.5	1	09/24/21	09/24/21 15:45	5 1055
Benzene	ND	ug/M3	0.32	1	09/24/21	09/24/21 15:45	5 1055
Benzyl Chloride	ND	ug/M3	1.0	1	09/24/21	09/24/21 15:45	5 1055
Bromodichloromethane	ND	ug/M3	1.3	1	09/24/21	09/24/21 15:45	5 1055
Bromoform	ND	ug/M3	2.1	1	09/24/21	09/24/21 15:45	5 1055
Bromomethane	ND	ug/M3	0.78	1	09/24/21	09/24/21 15:45	5 1055
1,3-Butadiene	ND	ug/M3	0.44	1	09/24/21	09/24/21 15:45	5 1055
2-Butanone (MEK)	1.5	ug/M3	1.5	1	09/24/21	09/24/21 15:45	5 1055
Carbon Disulfide	ND	ug/M3	12	1	09/24/21	09/24/21 15:45	5 1055
Carbon Tetrachloride	ND	ug/M3	1.3	1	09/24/21	09/24/21 15:45	5 1055
Chlorobenzene	ND	ug/M3	0.92	1	09/24/21	09/24/21 15:45	5 1055
Chloroethane	ND	ug/M3	0.53	1	09/24/21	09/24/21 15:45	5 1055
Chloroform	ND	ug/M3	0.98	1	09/24/21	09/24/21 15:45	5 1055
Chloromethane	0.85	ug/M3	0.41	1	09/24/21	09/24/21 15:45	5 1055
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	09/24/21	09/24/21 15:45	5 1055
Cyclohexane	ND	ug/M3	0.69	1	09/24/21	09/24/21 15:45	5 1055
Dibromochloromethane	ND	ug/M3	1.7	1	09/24/21	09/24/21 15:45	5 1055
1,2-Dibromoethane	ND	ug/M3	1.5	1	09/24/21	09/24/21 15:45	5 1055
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 15:45	5 1055
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 15:45	5 1055
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 15:45	5 1055
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	09/24/21	09/24/21 15:45	5 1055
1,1-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 15:45	5 1055
1,2-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 15:45	5 1055
1,1-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 15:45	5 1055
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 15:45	5 1055
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 15:45	5 1055
1,2-Dichloropropane	ND	ug/M3	1.8	1	09/24/21	09/24/21 15:45	5 1055
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 15:45	5 1055
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 15:45	5 1055
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	09/24/21	09/24/21 15:45	5 1055
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	09/24/21	09/24/21 15:45	5 1055
Ethyl Acetate	ND	ug/M3	0.72	1	09/24/21	09/24/21 15:45	5 1055
Ethylbenzene	ND	ug/M3	0.43	1	09/24/21	09/24/21 15:45	5 1055
4-Ethyltoluene	ND	ug/M3	0.98	1	09/24/21	09/24/21 15:45	5 1055

Date/Time Sampled: 09/17/2021 19:26

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-012

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Class 40

Matrix: AIR

VOCs in Air by GC/MS	Analytical Method: EPA TO-15					Preparation Method: TO-15P			
Qualifier(s): See Batch 187911 on Case Narr	ative.								
_	Result	Units	RL	Flag Di		Prepared	Analyzed	Analyst	
n-Heptane	ND	ug/M3	0.82		1	09/24/21	09/24/21 15:45	5 1055	
Hexachlorobutadiene	ND	ug/M3	2.1		1	09/24/21	09/24/21 15:45	5 1055	
n-Hexane	ND	ug/M3	14		1	09/24/21	09/24/21 15:45	5 1055	
2-Hexanone (MBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 15:45	5 1055	
Isopropylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 15:45	5 1055	
Methylene Chloride	28	ug/M3	14		1	09/24/21	09/24/21 15:45	5 1055	
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0		1	09/24/21	09/24/21 15:45	5 1055	
Methyl-t-Butyl Ether	ND	ug/M3	0.36		1	09/24/21	09/24/21 15:45	5 1055	
Naphthalene	ND	ug/M3	0.52		1	09/24/21	09/24/21 15:45	5 1055	
Propylene	ND	ug/M3	1.7		1	09/24/21	09/24/21 15:45	5 1055	
n-Propylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 15:45	5 1055	
Styrene	ND	ug/M3	4.3		1	09/24/21	09/24/21 15:45	5 1055	
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4		1	09/24/21	09/24/21 15:45	5 1055	
Tetrachloroethene	ND	ug/M3	1.4		1	09/24/21	09/24/21 15:45	5 1055	
Tetrahydrofuran	ND	ug/M3	0.59		1	09/24/21	09/24/21 15:45	5 1055	
Toluene	2.1	ug/M3	0.38		1	09/24/21	09/24/21 15:45	5 1055	
1,2,4-Trichlorobenzene	ND	ug/M3	1.5		1	09/24/21	09/24/21 15:45	5 1055	
1,1,1-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 15:45	5 1055	
1,1,2-Trichloroethane	ND	ug/M3	1.1		1	09/24/21	09/24/21 15:45	5 1055	
Trichloroethene	ND	ug/M3	1.1		1	09/24/21	09/24/21 15:45	5 1055	
Trichlorofluoromethane	1.2	ug/M3	1.1		1	09/24/21	09/24/21 15:45	5 1055	
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5		1	09/24/21	09/24/21 15:45	5 1055	
1,2,4-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 15:45	5 1055	
1,3,5-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21	09/24/21 15:45	5 1055	
2,2,4-Trimethylpentane	ND	ug/M3	0.93		1	09/24/21	09/24/21 15:45	5 1055	
Vinyl acetate	ND	ug/M3	1.8		1	09/24/21	09/24/21 15:45	5 1055	
Bromoethene	ND	ug/M3	0.87		1	09/24/21	09/24/21 15:45	5 1055	
Vinyl chloride	ND	ug/M3	0.51		1	09/24/21	09/24/21 15:45	5 1055	
m&p-Xylene	ND	ug/M3	0.87		1	09/24/21	09/24/21 15:45	5 1055	
o-Xylene	ND	ug/M3	0.43		1	09/24/21	09/24/21 15:45	5 1055	
Surrogate(s)	Recovery		Limits						

4-Bromofluorobenzene

109

%

09/24/21 09/24/21 15:45 1055

87-120

1

Certificate of Analysis

Date/Time Sampled: 09/17/2021 19:29

PSS Sample ID: 21092007-013

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Hall 45-46

Matrix: AIR	I	Date/Time F	Received:	09/20/2021 15	5:10		
VOCs in Air by GC/MS	Analytica	I Method: EP	A TO-15		Preparation Met	nod: TO-15P	
Qualifier(s): See Batch 187911 on Case I	Narrative.						
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	13	ug/M3	9.5	1	09/24/21		1055
Benzene	ND	ug/M3	0.32	1	09/24/21	09/24/21 16:39	1055
Benzyl Chloride	ND	ug/M3	1.0	1	09/24/21	09/24/21 16:39	1055
Bromodichloromethane	ND	ug/M3	1.3	1	09/24/21	09/24/21 16:39	1055
Bromoform	ND	ug/M3	2.1	1	09/24/21	09/24/21 16:39	1055
Bromomethane	ND	ug/M3	0.78	1	09/24/21	09/24/21 16:39	1055
1,3-Butadiene	ND	ug/M3	0.44	1	09/24/21	09/24/21 16:39	1055
2-Butanone (MEK)	ND	ug/M3	1.5	1	09/24/21	09/24/21 16:39	1055
Carbon Disulfide	ND	ug/M3	12	1	09/24/21	09/24/21 16:39	1055
Carbon Tetrachloride	ND	ug/M3	1.3	1	09/24/21	09/24/21 16:39	1055
Chlorobenzene	ND	ug/M3	0.92	1	09/24/21	09/24/21 16:39	1055
Chloroethane	ND	ug/M3	0.53	1	09/24/21	09/24/21 16:39	1055
Chloroform	1.9	ug/M3	0.98	1	09/24/21	09/24/21 16:39	1055
Chloromethane	0.81	ug/M3	0.41	1	09/24/21	09/24/21 16:39	1055
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	09/24/21	09/24/21 16:39	1055
Cyclohexane	ND	ug/M3	0.69	1	09/24/21	09/24/21 16:39	1055
Dibromochloromethane	ND	ug/M3	1.7	1	09/24/21	09/24/21 16:39	1055
1,2-Dibromoethane	ND	ug/M3	1.5	1	09/24/21	09/24/21 16:39	1055
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 16:39	1055
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 16:39	1055
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	09/24/21	09/24/21 16:39	1055
Dichlorodifluoromethane	1.3	ug/M3	0.99	1	09/24/21	09/24/21 16:39	1055
1,1-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 16:39	1055
1,2-Dichloroethane	ND	ug/M3	0.81	1	09/24/21	09/24/21 16:39	1055
1,1-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 16:39	1055
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 16:39	1055
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	09/24/21	09/24/21 16:39	1055
1,2-Dichloropropane	ND	ug/M3	1.8	1	09/24/21	09/24/21 16:39	1055
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 16:39	1055
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	09/24/21	09/24/21 16:39	1055
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	09/24/21	09/24/21 16:39	1055
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	09/24/21	09/24/21 16:39	1055
Ethyl Acetate	ND	ug/M3	0.72	1	09/24/21	09/24/21 16:39	1055
Ethylbenzene	ND	ug/M3	0.43	1	09/24/21	09/24/21 16:39	1055
4-Ethyltoluene	ND	ug/M3	0.98	1	09/24/21	09/24/21 16:39	1055

Certificate of Analysis

Date/Time Sampled: 09/17/2021 19:29

Date/Time Received: 09/20/2021 15:10

PSS Sample ID: 21092007-013

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Sample ID: CK - Hall 45-46

VOCs in Air by GC/MS	Analytica	I Method:	EPA TO-15			Preparation Method	d: TO-15P	
Qualifier(s): See Batch 187911 on Case Narra	ative.							
_	Result	Units	RL	Flag D	Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82		1	09/24/21 0	9/24/21 16:39	1055
Hexachlorobutadiene	ND	ug/M3	2.1		1	09/24/21 0	9/24/21 16:39	1055
n-Hexane	ND	ug/M3	14		1	09/24/21 0	9/24/21 16:39	1055
2-Hexanone (MBK)	ND	ug/M3	2.0		1	09/24/21 0	9/24/21 16:39	1055
Isopropylbenzene	ND	ug/M3	0.98		1	09/24/21 0	9/24/21 16:39	1055
Methylene Chloride	22	ug/M3	14		1	09/24/21 0	9/24/21 16:39	1055
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0		1	09/24/21 0	9/24/21 16:39	1055
Methyl-t-Butyl Ether	ND	ug/M3	0.36		1	09/24/21 0	9/24/21 16:39	1055
Naphthalene	ND	ug/M3	0.52		1	09/24/21 0	9/24/21 16:39	1055
Propylene	ND	ug/M3	1.7		1	09/24/21 0	9/24/21 16:39	1055
n-Propylbenzene	ND	ug/M3	0.98		1	09/24/21 0	9/24/21 16:39	1055
Styrene	ND	ug/M3	4.3		1	09/24/21 0	9/24/21 16:39	1055
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4		1	09/24/21 0	9/24/21 16:39	1055
Tetrachloroethene	ND	ug/M3	1.4		1	09/24/21 0	9/24/21 16:39	1055
Tetrahydrofuran	ND	ug/M3	0.59		1	09/24/21 0	9/24/21 16:39	1055
Toluene	1.7	ug/M3	0.38		1	09/24/21 0	9/24/21 16:39	1055
1,2,4-Trichlorobenzene	ND	ug/M3	1.5		1	09/24/21 0	9/24/21 16:39	1055
1,1,1-Trichloroethane	ND	ug/M3	1.1		1	09/24/21 0	9/24/21 16:39	1055
1,1,2-Trichloroethane	ND	ug/M3	1.1		1	09/24/21 0	9/24/21 16:39	1055
Trichloroethene	ND	ug/M3	1.1		1	09/24/21 0	9/24/21 16:39	1055
Trichlorofluoromethane	1.3	ug/M3	1.1		1	09/24/21 0	9/24/21 16:39	1055
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5		1	09/24/21 0	9/24/21 16:39	1055
1,2,4-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21 0	9/24/21 16:39	1055
1,3,5-Trimethylbenzene	ND	ug/M3	0.98		1	09/24/21 0	9/24/21 16:39	1055
2,2,4-Trimethylpentane	ND	ug/M3	0.93		1	09/24/21 0	9/24/21 16:39	1055
Vinyl acetate	ND	ug/M3	1.8		1	09/24/21 0	9/24/21 16:39	1055
Bromoethene	ND	ug/M3	0.87		1	09/24/21 0	9/24/21 16:39	1055
Vinyl chloride	ND	ug/M3	0.51		1	09/24/21 0	9/24/21 16:39	1055
m&p-Xylene	ND	ug/M3	0.87		1	09/24/21 0	9/24/21 16:39	1055
o-Xylene	ND	ug/M3	0.43		1	09/24/21 0	9/24/21 16:39	1055
Surrogate(s)	Recovery		Limits					

4-Bromofluorobenzene

108

%

Page 27 of 40

87-120

1

09/24/21

09/24/21 16:39 1055

Case Narrative

Project Name:ACPS IAQ TestingPSS Project No.:21092007

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Soil gas/indoor air not indicated on COC; samples are indoor air. Received additional canisters and flow controllers not listed on COC; logged in for cleaning. Sample 006 received at an incoming pressure difference greater than 5"Hg. Indoor air sample 006 received at an incoming pressure greater than 10"Hg; logged in for cleaning.

Analytical:

VOCs in Air by GC/MS

Batch: 187911

Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) exceedances identified; see QC summary. Exceedances meet marginal exceedance criteria.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

EPA TO-15: 1,2-Dichlorotetrafluoroethane, Chloroethane, Dibromochloromethane

SEPARATION

SCIENCE

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical E	Batch Prepared	Analyzed
ЕРА ТО-15	CK - Outdoor	Initial	21092007-001	А	87817	187911	09/27/2021 02:00	09/24/2021 04:23
	CK - Office	Initial	21092007-002	А	87817	187911	09/27/2021 02:00	09/24/2021 05:17
	CK - Library	Initial	21092007-003	А	87817	187911	09/27/2021 02:00	09/24/2021 07:50
	CK - Cafeteria	Initial	21092007-004	А	87817	187911	09/27/2021 02:00	09/24/2021 08:45
	CK - Class 29	Initial	21092007-005	А	87817	187911	09/27/2021 02:00	09/24/2021 09:40
	СК - 20 - 19	Initial	21092007-007	А	87817	187911	09/27/2021 02:00	09/24/2021 10:35
	CK - Class 8	Initial	21092007-008	А	87817	187911	09/27/2021 02:00	09/24/2021 11:31
	CK - Class 11	Initial	21092007-009	А	87817	187911	09/27/2021 02:00	09/24/2021 12:58
	CK - Hall 15-17	Initial	21092007-010	А	87817	187911	09/27/2021 02:00	09/24/2021 13:55
	CK - Hall 38-39	Initial	21092007-011	А	87817	187911	09/27/2021 02:00	09/24/2021 14:50
	CK - Class 40	Initial	21092007-012	А	87817	187911	09/27/2021 02:00	09/24/2021 15:45
	CK - Hall 45-46	Initial	21092007-013	А	87817	187911	09/27/2021 02:00	09/24/2021 16:39
	87817-1-BKS	BKS	87817-1-BKS	А	87817	187911	09/24/2021 15:03	09/23/2021 23:05
	87817-1-BLK	BLK	87817-1-BLK	А	87817	187911	09/24/2021 15:03	09/24/2021 01:46
	87817-1-BSD	BSD	87817-1-BSD	А	87817	187911	09/24/2021 15:03	09/23/2021 23:57

SCIENCE

Project Name ACPS IAQ Testing PSS Project No.: 21092007

Analytical Method: EPA	TO-15						Pr	ep Metho	d: TO-1	15P				
Seq Number: 1879	11		Matrix: Air						Date Prep: 09/24/21					
MB Sample Id: 8781	7-1-BLK		.CS Sample		17-1-BKS			-		17-1-BSD				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag			
Acetone	<9.498	11.87	10.26	86	10.52	89	69-118	3	25	ug/M3				
Benzene	<0.3193	15.97	13.86	87	13.86	87	79-107	0	25	ug/M3				
Benzyl Chloride	<1.035	25.87	28.15	109	28.36	110	78-143	1	25	ug/M3				
Bromodichloromethane	<1.340	33.49	31.48	94	31.41	94	81-111	0	25	ug/M3				
Bromoform	<2.067	51.67	60.56	117	60.97	118	78-133	1	25	ug/M3				
Bromomethane	<0.7764	19.41	18.94	98	19.18	99	76-116	1	25	ug/M3				
1,3-Butadiene	<0.4423	11.06	8.359	76	8.315	75	70-116	1	25	ug/M3				
2-Butanone (MEK)	<1.474	14.74	11.97	81	12.26	83	74-114	2	25	ug/M3				
Carbon Disulfide	<12.45	15.56	<12.45	0	<12.45	0	79-117	NC	25	ug/M3	L			
Carbon Tetrachloride	<1.258	31.45	31.64	101	31.51	100	81-110	1	25	ug/M3				
Chlorobenzene	<0.9204	23.01	24.85	108	25.03	109	84-119	1	25	ug/M3				
Chloroethane	<0.5276	13.19	11.45	87	11.63	88	72-118	1	25	ug/M3				
Chloroform	<0.9761	24.40	21.47	88	21.62	89	82-108	1	25	ug/M3				
Chloromethane	<0.4128	10.32	8.422	82	8.608	83	64-121	1	25	ug/M3				
Allyl Chloride (3-Chloropropene)	<0.6258	15.64	12.33	79	12.42	79	77-113	0	25	ug/M3				
Cyclohexane	<0.6881	17.20	14.18	82	14.18	82	82-110	0	25	ug/M3				
Dibromochloromethane	<1.703	42.58	44.71	105	44.79	105	82-113	0	25	ug/M3				
1,2-Dibromoethane	<1.536	38.40	38.86	101	39.02	102	86-110	1	25	ug/M3				
1,2-Dichlorobenzene	<1.202	30.05	35.34	118	35.46	118	83-130	0	25	ug/M3				
1,3-Dichlorobenzene	<1.202	30.05	34.98	116	35.16	117	85-128	1	25	ug/M3				
1,4-Dichlorobenzene	<1.202	30.05	34.32	114	34.50	115	82-132	1	25	ug/M3				
Dichlorodifluoromethane	<0.9887	24.72	21.75	88	21.46	87	62-122	1	25	ug/M3				
1,1-Dichloroethane	<0.8092	20.23	17.56	87	17.52	87	79-110	0	25	ug/M3				
1,2-Dichloroethane	<0.8092	20.23	18.97	94	18.97	94	75-112	0	25	ug/M3				
1,1-Dichloroethene	<0.7926	19.82	17.48	88	17.64	89	80-110	1	25	ug/M3				
cis-1,2-Dichloroethene	<0.7926	19.82	17.20	87	17.16	87	84-109	0	25	ug/M3				
trans-1,2-dichloroethene	<0.7926	19.82	17.40	88	17.36	88	81-109	0	25	ug/M3				
1,2-Dichloropropane	<1.848	23.10	20.42	88	20.51	89	81-111	1	25	ug/M3				
cis-1,3-Dichloropropene	<0.9074	22.68	20.87	92	20.91	92	89-109	0	25	ug/M3				
trans-1,3-dichloropropene	<0.9074	22.68	21.10	93	21.19	93	89-114	0	25	ug/M3				
1,2-Dichlorotetrafluoroethane	e <1.398	34.94	33.33	95	33.61	96	72-116	1	25	ug/M3				
1,4-Dioxane (P-Dioxane)	<3.602	18.01	17.54	97	17.43	97	70-120	0	25	ug/M3				
Ethyl Acetate	<0.7204	18.01	15.45	86	15.71	87	87-124	1	25	ug/M3	L			
Ethylbenzene	<0.4340	21.70	22.22	102	22.40	103	87-125	1	25	ug/M3				
4-Ethyltoluene	<0.9827	24.57	25.80	105	26.04	106	87-127	1	25	ug/M3				
n-Heptane	<0.8193	20.48	16.80	82	16.84	82	90-110	0	25	ug/M3	L			
Hexachlorobutadiene	<2.132	53.30	64.07	120	64.18	120	83-126	0	25	ug/M3				
n-Hexane	<14.09	17.61	<14.09	0	<14.09	0	84-114	NC	25	ug/M3	L			
2-Hexanone (MBK)	<2.047	20.47	17.28	84	17.16	84	68-133	0	25	ug/M3				
Isopropylbenzene	<0.9827	24.57	25.65	104	25.75	105	88-117	1	25	ug/M3				
Methylene Chloride	<13.89	17.36	15.42	89	15.59	90	63-130	1	25	ug/M3				
4-Methyl-2-Pentanone (MIBk	K) <2.047	20.47	16.71	82	16.79	82	78-115	0	25	ug/M3				
Methyl-t-Butyl Ether	<0.3604	18.02	15.64	87	15.68	87	86-109	0	25	ug/M3				
Naphthalene	<0.5240	26.20	37.41	143	37.46	143	65-129	0	25	ug/M3	Н			
Propylene	<1.720	8.602	6.469	75	6.658	77	58-129	3	25	ug/M3				
n-Propylbenzene	<0.9828	24.57	26.09	106	26.54	108	86-121	2	25	ug/M3				
Styrene	<4.258	21.29	22.05	104	22.18	104	86-137	0	25	ug/M3				
1,1,2,2-Tetrachloroethane	<1.373	34.31	35.21	103	35.34	103	88-119	0	25	ug/M3				
Tetrachloroethene	<1.356	33.90	36.21	107	36.41	107	86-107	0	25	ug/M3				
Tetrahydrofuran	<0.5895	14.74	10.88	74	10.88	74	80-117	0	25	ug/M3	L			
Toluene	<0.3767	18.83	17.51	93	17.51	93	91-106	0	25	ug/M3				

QC Summary

Project Name ACPS IAQ Testing PSS Project No.: 21092007

Analytical Metho	d: EPA TO	-15						Р	rep Metho	d: TO-	15P	
Seq Number:	187911			Mat	trix: Air				Date Pre	ep: 09/2	4/21	
MB Sample Id:	87817-1	-BLK	L	CS Sample	e ld: 878	17-1-BKS		LCS	D Sample	eld: 878	17-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,2,4-Trichlorobenze	ene	<1.484	37.09	52.15	141	52.15	141	75-126	0	25	ug/M3	Н
1,1,1-Trichloroethan	е	<1.091	27.27	25.25	93	25.25	93	81-109	0	25	ug/M3	
1,1,2-Trichloroethan	е	<1.091	27.27	25.36	93	25.47	93	83-111	0	25	ug/M3	
Trichloroethene		<1.074	26.86	25.84	96	25.95	97	88-106	1	25	ug/M3	
Trichlorofluorometha	ane	<1.123	28.08	28.31	101	28.48	101	78-109	0	25	ug/M3	
1,1,2-Trichlorotrifluo	roethane	<1.532	38.31	37.23	97	37.46	98	84-107	1	25	ug/M3	
1,2,4-Trimethylbenze	ene	<0.9828	24.57	25.36	103	25.41	103	86-130	0	25	ug/M3	
1,3,5-Trimethylbenze	ene	<0.9828	24.57	24.91	101	25.06	102	87-122	1	25	ug/M3	
2,2,4-Trimethylpenta	ane	<0.9339	23.35	19.19	82	19.10	82	78-107	0	25	ug/M3	
Vinyl acetate		<1.760	17.60	14.75	84	14.82	84	76-119	0	25	ug/M3	
Bromoethene		<0.8746	21.86	21.60	99	21.60	99	77-117	0	25	ug/M3	
Vinyl chloride		<0.5110	12.78	11.27	88	11.50	90	72-116	2	25	ug/M3	
m&p-Xylene		<0.8681	43.41	45.05	104	45.27	104	88-122	0	25	ug/M3	
o-Xylene		<0.4341	21.70	21.96	101	22.01	101	89-120	0	25	ug/M3	
Surrogate		MB %Rec	MB Flag	LCS Result	LCS Flag			LCSD I Flag	_imits	Units		
4-Bromofluorobenze	ene	107		105			105	8	37-120	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

Project Name ACPS IAQ Testing PSS Project No.: 21092007

Analytical Method: EPA TO-15 Seq Number: 187911

CCV Sample Id: CCV-01				Analyzed Date:	09/23/21 21:23
Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units Flag
Acetone	11.87	9.908	83	70-130	ug/M3
Benzene	15.97	13.87	87	70-130	ug/M3
Benzyl Chloride	25.87	26.07	101	70-130	ug/M3
Bromodichloromethane	33.49	31.14	93	70-130	ug/M3
Bromoform	51.67	58.96	114	70-130	ug/M3
Bromomethane	19.41	18.91	97	70-130	ug/M3
1,3-Butadiene	11.06	8.531	77	70-130	ug/M3
2-Butanone (MEK)	14.74	11.95	81	70-130	ug/M3
Carbon Disulfide	15.56	12.17	78	70-130	ug/M3
Carbon Tetrachloride	31.45	30.70	98	70-130	ug/M3
Chlorobenzene	23.01	24.77	108	70-130	ug/M3
Chloroethane	13.19	11.50	87	70-130	ug/M3
Chloroform	24.40	21.66	89	70-130	ug/M3
Chloromethane	10.32	8.366	81	70-130	ug/M3
Allyl Chloride (3-Chloropropene)	15.64	12.68	81	70-130	ug/M3
Cyclohexane	17.20	14.31	83	70-130	ug/M3
Dibromochloromethane	42.58	43.99	103	70-130	ug/M3
1,2-Dibromoethane	38.40	38.61	101	70-130	ug/M3
1,2-Dichlorobenzene	30.05	33.93	113	70-130	ug/M3
1,3-Dichlorobenzene	30.05	33.97	113	70-130	ug/M3
1,4-Dichlorobenzene	30.05	33.21	111	70-130	ug/M3
Dichlorodifluoromethane	24.72	23.79	96	70-130	ug/M3
1,1-Dichloroethane	20.23	17.64	87	70-130	ug/M3
1,2-Dichloroethane	20.23	19.05	94	70-130	ug/M3
1,1-Dichloroethene	19.82	17.63	89	70-130	ug/M3
cis-1,2-Dichloroethene	19.82	17.34	87	70-130	ug/M3
trans-1,2-dichloroethene	19.82	17.60	89	70-130	ug/M3
1,2-Dichloropropane	23.10	20.56	89	70-130	ug/M3
cis-1,3-Dichloropropene	22.68	20.97	92	70-130	ug/M3
trans-1,3-dichloropropene	22.68	21.12	93	70-130	ug/M3
1,2-Dichlorotetrafluoroethane	34.94	33.12	95	70-130	ug/M3
1,4-Dioxane (P-Dioxane)	18.01	17.92	100	70-130	ug/M3
Ethyl Acetate	18.01	15.83	88	70-130	ug/M3
Ethylbenzene	21.70	22.12	102	70-130	ug/M3
4-Ethyltoluene	24.57	25.58	104	70-130	ug/M3
n-Heptane	20.48	17.00	83	70-130	ug/M3
Hexachlorobutadiene	53.30	61.48	115	70-130	ug/M3
n-Hexane	17.61	14.09	80	70-130	ug/M3
2-Hexanone (MBK)	20.47	17.20	84	70-130	ug/M3
Isopropylbenzene	24.57	25.37	103	70-130	ug/M3
Methylene Chloride	17.36	15.23	88	70-130	ug/M3
4-Methyl-2-Pentanone (MIBK)	20.47	16.94	83	70-130	ug/M3
Methyl-t-Butyl Ether	18.02	15.91	88	70-130	ug/M3
Naphthalene	26.20	33.43	128	70-130	ug/M3
Propylene	8.602	6.398	74	70-130	ug/M3
n-Propylbenzene	24.57	25.99	106	70-130	ug/M3
Styrene	21.29	22.37	105	70-130	ug/M3
1,1,2,2-Tetrachloroethane	34.31	34.34	100	70-130	ug/M3
Tetrachloroethene	33.90	36.27	107	70-130	ug/M3
Tetrahydrofuran	14.74	11.08	75	70-130	ug/M3
Toluene	18.83	17.50	93	70-130	ug/M3
					-

QC Summary

Matrix: Air

Project Name ACPS IAQ Testing PSS Project No.: 21092007

Analytical Method: EPA TO-15

Seq Number: 187911		Matrix: Air		
CCV Sample Id: CCV-01			Analyzed D	Date: 09/23/21 21:23
Parameter	Spike Amount Re	CCV CCV esult %Rec	Limits	Units Flag
1,2,4-Trichlorobenzene	37.09	48.45 131	70-130	ug/M3 X
1,1,1-Trichloroethane	27.27	25.44 93	70-130	ug/M3
1,1,2-Trichloroethane	27.27	25.36 93	70-130	ug/M3
Trichloroethene	26.86	26.11 97	70-130	ug/M3
Trichlorofluoromethane	28.08	28.41 101	70-130	ug/M3
1,1,2-Trichlorotrifluoroethane	38.31	37.37 98	70-130	ug/M3
1,2,4-Trimethylbenzene	24.57	25.15 102	70-130	ug/M3
1,3,5-Trimethylbenzene	24.57	24.99 102	70-130	ug/M3
2,2,4-Trimethylpentane	23.35	19.31 83	70-130	ug/M3
Vinyl acetate	17.60	14.38 82	70-130	ug/M3
Bromoethene	21.86	21.77 100	70-130	ug/M3
Vinyl chloride	12.78	11.34 89	70-130	ug/M3
m&p-Xylene	43.41	44.98 104	70-130	ug/M3
o-Xylene	21.70	21.82 101	70-130	ug/M3
Surrogate		CCV Result	Limits	Units Flag
4-Bromofluorobenzene		84	50-150	%

QC Summary

Matrix: Air

Project Name ACPS IAQ Testing PSS Project No.: 21092007

Analytical Method: EPA TO-15 Seq Number: 187548

Seq Number: 187548			rix: Air		
Parent Sample Id: ICV-01		ICV Sample	Id: ICV-01	Analyzed Date: 0	9/14/21 09:54
Parameter	Spike	ICV	ICV	Limits	Units Flag
	Amount	Result	%Rec		
Acetone	11.87	10.52	89	70-130	ug/M3
Benzene	15.97	14.88	93	70-130	ug/M3
Benzyl Chloride	25.87	27.95	108	70-130	ug/M3
Bromodichloromethane	33.49	31.48	94	70-130	ug/M3
Bromoform	51.67	54.66	106	70-130	ug/M3
Bromomethane	19.41	17.08	88	70-130	ug/M3
1,3-Butadiene	11.06	8.549	77	70-130	ug/M3
2-Butanone (MEK)	14.74	13.68	93	70-130	ug/M3
Carbon Disulfide	15.56	12.05	77	70-130	ug/M3
Carbon Tetrachloride	31.45	31.32	100	70-130	ug/M3
Chlorobenzene	23.01	23.10	100	70-130	ug/M3
Chloroethane	13.19	11.26	85	70-130	ug/M3
Chloroform	24.40	22.18	91	70-130	ug/M3
Chloromethane	10.32	8.420	82	70-130	ug/M3
Allyl Chloride (3-Chloropropene)	15.64	13.71	88	70-130	ug/M3
Cyclohexane	17.20	16.23	94	70-130	ug/M3
Dibromochloromethane	42.58	42.96	101	70-130	ug/M3
1,2-Dibromoethane	38.40	37.83	99	70-130	ug/M3
1,2-Dichlorobenzene	30.05	31.68	105	70-130	ug/M3
1,3-Dichlorobenzene	30.05	31.29	104	70-130	ug/M3
1,4-Dichlorobenzene	30.05	30.96	103	70-130	ug/M3
Dichlorodifluoromethane	24.72	17.69	72	70-130	ug/M3
1,1-Dichloroethane	20.23	18.71	92	70-130	ug/M3
1,2-Dichloroethane	20.23	19.88	98	70-130	ug/M3
1,1-Dichloroethene	19.82	17.75	90	70-130	ug/M3
cis-1,2-Dichloroethene	19.82	18.79	95	70-130	ug/M3
trans-1,2-dichloroethene	19.82	18.62	94	70-130	ug/M3
1,2-Dichloropropane	23.10	21.92	95	70-130	ug/M3
cis-1,3-Dichloropropene	22.68	21.95	97	70-130	ug/M3
trans-1,3-dichloropropene	22.68	22.30	98	70-130	ug/M3
1,2-Dichlorotetrafluoroethane	34.94	29.95	86	70-130	ug/M3
1,4-Dioxane (P-Dioxane)	18.01	17.92	100	70-130	ug/M3
Ethyl Acetate	18.01	17.90	99	70-130	ug/M3
Ethylbenzene	21.70	21.28	98	70-130	ug/M3
4-Ethyltoluene	24.57	24.38	99	70-130	ug/M3
n-Heptane	20.48	18.00	88	70-130	ug/M3
Hexachlorobutadiene	53.30	56.18	105	70-130	ug/M3
n-Hexane	17.61	15.92	90	70-130	ug/M3
2-Hexanone (MBK)	20.47	19.27	94	70-130	ug/M3
Isopropylbenzene	24.57	24.00	98	70-130	ug/M3
Methylene Chloride	17.36	15.95	92	70-130	ug/M3
4-Methyl-2-Pentanone (MIBK)	20.47	18.74	92	70-130	ug/M3
Methyl-t-Butyl Ether	18.02	16.73	93	70-130	ug/M3
Naphthalene	26.20	33.46	128	70-130	ug/M3
Propylene	8.602	6.916	80	70-130	ug/M3
n-Propylbenzene	24.57	25.31	103	70-130	ug/M3
Styrene	21.29	21.46	101	70-130	ug/M3
1,1,2,2-Tetrachloroethane	34.31	33.88	99	70-130	ug/M3
Tetrachloroethene	33.90	33.93	100	70-130	ug/M3
Tetrahydrofuran	14.74	12.93	88	70-130	ug/M3
Toluene	18.83	17.75	94	70-130	ug/M3

QC Summary

Project Name ACPS IAQ Testing PSS Project No.: 21092007

Analytical Method: EPA TO-15

Seq Number: 187548	1	Matrix: Air		
Parent Sample Id: ICV-01	ICV Sam	ple ld: ICV-01	Analyzed Date	e: 09/14/21 09:54
Parameter	Spike IC\ Amount Result		Limits	Units Flag
1,2,4-Trichlorobenzene	37.09 45.29	9 122	70-130	ug/M3
1,1,1-Trichloroethane	27.27 25.76	6 94	70-130	ug/M3
1,1,2-Trichloroethane	27.27 25.40	0 93	70-130	ug/M3
Trichloroethene	26.86 25.64	4 95	70-130	ug/M3
Trichlorofluoromethane	28.08 25.9	1 92	70-130	ug/M3
1,1,2-Trichlorotrifluoroethane	38.31 35.87	1 93	70-130	ug/M3
1,2,4-Trimethylbenzene	24.57 24.16	6 98	70-130	ug/M3
1,3,5-Trimethylbenzene	24.57 23.72	2 97	70-130	ug/M3
2,2,4-Trimethylpentane	23.35 20.86	6 89	70-130	ug/M3
Vinyl acetate	17.60 16.88	8 96	70-130	ug/M3
Bromoethene	21.86 19.67	1 90	70-130	ug/M3
Vinyl chloride	12.78 10.68	8 84	70-130	ug/M3
m&p-Xylene	43.41 43.03	3 99	70-130	ug/M3
o-Xylene	21.70 20.96	6 97	70-130	ug/M3
Surrogate		CV sult	Limits	Units Flag
4-Bromofluorobenzene	10	01	50-150	%

X = Recovery outside of QC Criteria

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com

email: info@phaseonline.com

	. Total Environmental Conce	ots, Inc. *OFF	ICE LOC .: LO	rton		PSS W					PAGE 1	1-	_OF	2	_	
*PROJE	ст мак: Karl Ford					*	110	09200	7		1					
	kford@teci.pro		PHONE NO: (703) 567-4	4346											
*PROJE	CT NAME: ACPS IAQ te	esting		o.: 4920002		* 3		*	tart *	top *	ster) Lab	slab *	it Air *			
1	CATION: CORA P	Kelly	P.O. NO.:					Sample Reg. ID	Canister Pressure * in field ("Hg) Start	Canister Pressure in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Gas / Subslab	Indoor/Ambient Air	TO-15 Full List	Special List	
SAMPLE	*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can ID		Samp	Canis in field	Canis in field	Press	Soil G	lndoo	TO-1	Speci	REMARKS
1	CK - Outdoor	9/17/21	15:10	9/17/21	19:11	4319		12327	30	6	6			~		
2	CK - Office	9/17/21	15:16	9/17/21	19:13	3528		10940	30	5	6			~		
3	CK - Library	9/17/21	15:21	9/17/21	19:18	4313		11062	30	2	4			~		
4	CK - Cafeteria	9/17/21	15:26	9/17/21	19:21	4264		11060	31	6	5			~		
5	CK - Class 29	9/17/21	15:51	9/17/21	19:41	1119	7	12324	31	6	6			~		
6	CK - Class 26	9/17/21	15:55	9/17/21	19:44	4245		15034	30	0	30			V		
7	CK - 20-19	9/17/21	15:58	9/17/21	19:47	4277		10948	30	7	7			V		
8	CK - Class 8	9/17/21	16:03	9/17/21	19:51	4315	21	15036	30	6	6			~		
9	CK - Class 11	9/17/21	16:07	9/17/21	19:55	3564		15035	31	6	6			~		
10	CK - Hall 15-17	9/17/21	16:11	9/17/21	19:58	4251		13651	32	9	10			~		_
-	ning Jackson	Date 9/20/21	Time (10:45	Received By:	la		4	*Reque		Gone TA 3-Day Emerg	AT per CC	C) 2-Da Othe	-			carrier: IEMT
Relinqu	ished By: (2)	Date	Time 1510 72 9/20/1	Received By:	-		Dat	ta Deliverab	les Requi							
Relinqu	ished By: (3)	Date	Time	Received By:			Spo	ecial Instruc	tions:							
Relinqu	ished By: (4)	Date	Time	Received By:												

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

www.phaseonline.com

PHASE SEPARATION SCIENCE, INC.

email: info@phaseonline.com

	*CLIENT	. Total Environmental Concer	ots, Inc. *OFF	CE LOC .: LO	rton			k Order #:	10		PAGE_	1	_OF	2		
	*PROJE	_{ст мgr:} Karl Ford				_	2	10920	07	_						
		kford@teci.pro		PHONE NO:	703) 567-4	4346										
	*PROJE	CT NAME: ACPS IAQ te	sting	PROJECT NO	o.: 4920002	2	* 3	*	ure *	* do	ter Lab	slab *	t Air *			
	SITE LC	CATION: Cora Ke	11 y	P.O. NO.:				Sample Reg. ID	Canister Pressure in field ("Hg) Start	Canister Pressure in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Gas / Subslab	Indoor/Ambient Air *	TO-15 Full List	Special List	
	SAMPL	R(S):					Can ID	mple	niste	niste	omir	il Ga	loor/	-15	ecial	
2	LAB #	*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Ca	Sa	i Ca	in Ca	Pre	Soil	Ind	10	Sp	REMARKS
	- (t	CK - Hall 38-39	9/17/21	15:30	9/17/21	19:25	4310	13652	30	7	6			~		
	12	CK - Class 40	9/17/21	15:32	9/17/21	19:26	3531	15037	31	6	6			V		
	13	CK - Hall 45-46	9/17/21	15:36	9/17/21	19:29	4254	13653	31	6	5			~		
										-				~		
														~		
								1						V		
	2													~		
														~		
	1										1			~		
	-					0			1		1			~		
5		ished By: (1) ning Jackson	Date 9/20/21	Time 10:45	Received By:	1/2	\mathcal{L}	4 × S-Day Next	/ L	Gone TA 3-Day Emerg		DC) 2-Da Othe	-	Ship		carrier: -IEM
		ished By: (2)	Date	Time 1510 T~ 2/2	Received By:	Vin		Data Deliverab								
	Relinqu	ished By: (3)	Date	Time	Received By:		1	Special Instruc	tions:							
	Relinqu	ished By: (4)	Date	Time	Received By:											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Phase Separation Science O-01.05.F04 TO-15 Canister and Flow Controller Check List Effective Date: 11/09/18

TO-15 Canister and Flow Controller Check List

Check	Check	
Out	In (use n/a as necessary)	Check Out
	No. Canisters:	BO#/Client: 14361 Total Bruvonment of Conc
	Pressure Checked (29 – 30" Hg)	Assembled/Checked Out: Date/Initials 91621 3
1	Top of Micro QT tight	Serial #s Entered in LIMS: Date/Initials Qin 9177
1	Sampling tag/label	Verified: Date/Initials <u>anglinu</u>
	Stands	
	No. Flow controllers:	
	Use COC pressures to evaluate sampling	; time accuracy
	Leak evaluated	Check In
1	Gauge checked / adjusted (29 – 30" Hg)	Sample Receipt Checklist: Date/Initials:
1	Flow set	Work Order No.: 21092007
1	Purged with N	Checked In: Date/Initials
	*Checked for water if soil gas	
	Duplicate T-piece(s)	
	Other items in bin:	
1	Hard Copy of O-01.05.F01 TO-15 Client Sa	ampling Guide
/	COC Form(s) (+1 extra)	
<	Client copy of bottle order	Notes SOIL GAS/INDOOR AIR NOT
	STOP Notice if split IA/SG order	INDICATED ON C.O.C.
	Soil Gas? wrench/nuts/ferules Qty	
	Tubing? purged/capped: ft	SAMPLE "CIK-CLASS 26" Stop
FF	Tubing cutter	PRESSURE IN FIELD REGIDED @O"Hg,
	Bin labelled, copy of BO for receiving	INCOMENCE PRESSURE @ LAS RECORDED
7	Client survey response card	@ 30"Hg
Vapor F	Pins – indicate type: barbed/compression	
	Vapor Pins with sleeves: Qty	Received canisters 3519 and 4246
	Tygon pieces/FLX Fittings: Qty	and flow controllers 6170 and
	Installation tool	15038 not listed on COC: logged
	Deadblow hammer	in for cleaning
	Hole Brush	
	Additional Items (see form F06)	

"Sampling times documented in 24 hour clock or am/pm or else verified.

N


*Incoming lab pressure w/in 5" of field stop pressure and < 10" Hg for indoor air and <15" Hg for soil gas.

*These sample check in criteria must be met or the nonconformance must be documented in the Sampling & Login case narrative field of the work order in LIMS and communicated to the PSS project manager for client notification.

Project Name: ACPS IAQ Testing PSS Project No.: 21092007

Client Name Disposal Date	Total Environmental Concepts - Lorto 10/25/2021		Received By Date Received Delivered By Tracking No	ceived 09/20/2021 03:10:00 PM ed By Client		
Shipping Container(s) No. of Coolers 0 Custody Seal(s) Intact?		N/A	Logged In By Ice Temp (deg	Thomas W N/ C)	-	
Seal(s) Signed / Dated? Documentation COC agrees with sample labels?		N/A Yes	-	Temp Blank Present No Sampler Name <u>Not Provided</u> <u>N/A</u>		
Chain of Custody Sample Container Appropriate for Specified Analysis? Intact? Labeled and Labels Legible?		Yes Yes Yes Yes	-	Custody Seal(s) Intact? Not Applicable Seal(s) Signed / Dated Not Applicable		
Holding Time All Samples Received Within Holding Time(s)?		Yes		Total No. of Samples Received15Total No. of Containers Received15		
PreservationTotal MetalsDissolved Metals, filtered within 15 minutes of collectionOrthophosphorus, filtered within 15 minutes of collectionCyanidesSulfideTOC, DOC (field filtered), COD, PhenolsTOX, TKN, NH3, Total PhosVOC, BTEX (VOA Vials Rcvd Preserved)Do VOA vials have zero headspace?624 VOC (Rcvd at least one unpreserved VOA vial)524 VOC (Rcvd with trip blanks)		on (pł on (pł (pł (pł (pł (pł	H<2) H<2) H>12) H>9) H<2) H<2) H<2) H<2)	N/A N/A N/A N/A N/A N/A N/A N/A N/A		

Client Name	Total Environmental Concepts - Lortc	Received By	Thomas Wingate
Disposal Date	10/25/2021	Date Received	09/20/2021 03:10:00 PM
		Delivered By	Client
		Tracking No	Not Applicable
		Logged In By	Thomas Wingate

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Soil gas/indoor air not indicated on COC; samples are indoor air. Received additional canisters and flow controllers not listed on COC; logged in for cleaning. Sample 006 received at an incoming pressure difference greater than 5"Hg. Indoor air sample 006 received at an incoming pressure greater than 10"Hg; logged in for cleaning.

Samples Inspected/Checklist Completed By: Thomas Wingate

Date: 09/20/2021

PM Review and Approval: Other 7 longer

Date: 09/21/2021

Project Name: ACPS IAQ PSS Project No.: 21100121

October 12, 2021

Karl Ford Total Environmental Concepts - Lorton 8382 Terminal Road, Suite B Lorton, VA 22079

Reference: PSS Project No: **21100121** Project Name: ACPS IAQ Project Location: Cora Kelly School Project ID.: 4920002

Dear Karl Ford:

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21100121**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on November 5, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

Project Name: ACPS IAQ PSS Project No.: 21100121

Project ID: 4920002

The following samples were received under chain of custody by Phase Separation Science (PSS) on 10/01/2021 at 05:30 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
21100121-001	CK- Class 26	AIR	09/30/21 20:48	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.

- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Ms. Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228 October 12, 2021

Account# 15354

Login# L548282

Dear Amber Confer:

Enclosed are the analytical results for the samples received by our laboratory on October 05, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa-Luab

Lisa Swab Laboratory Director

Enclosure(s)

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,
			Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
l - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

6601 Kirkville Road East Syracuse, NY 13057

FAX: (315) 437-0571

www.sgsgalson.com

LABORATORY ANALYSIS REPORT

Client	:	Phase Separation Science, Inc.	Account No.: 15354
Site	:	CORA KELLY SCHOOL	Login No. : L548282
Project No.	:	4920002	
Date Sampled	:	30-SEP-21	Date Analyzed : 08-OCT-21
Date Received	:	05-OCT-21	Report ID : 1268767

TO15 List

(315) 432-5227

Galson ID: Client ID:			L548282 CK-CLAS		
	LOQ ppbv	LOQ ug/m3	ppbv	ug/m3	
Propylene	5.0	8.6	<5.0	<8.6	
Freon-12	0.80	4.0	<0.80	<4.0	
Chloromethane	0.80	1.7	<0.80	<1.7	
Freon-114	0.80	5.6	<0.80	<5.6	
Jinyl Chloride	0.80	2.0	<0.80	<2.0	
l,3-Butadiene	0.80	1.8	<0.80	<1.8	
n-Butane	0.80	1.9	<0.80	<1.9	
Bromomethane	0.80	3.1	<0.80	<3.1	
Chloroethane	0.80	2.1	<0.80	<2.1	
Acetonitrile	5.0	8.4	<5.0	<8.4	
Jinyl Bromide	0.80	3.5	<0.80	<3.5	
Acrolein	0.80	1.8	<0.80	<1.8	
Acetone	5.0	12	9.8	23	

	Client	: Phase Separation Science, Inc.	Account No.: 15354
6601 Kirkville Road	Site	: CORA KELLY SCHOOL	Login No. : L548282
East Syracuse, NY 13057	Project No.	: 4920002	
(315) 432-5227	Date Sampled	: 30-SEP-21	Date Analyzed : 08-OCT-21
FAX: (315) 437-0571	Date Received	: 05-OCT-21	Report ID : 1268767
www.sgsgalson.com			

Galson ID: Client ID:			L548282 CK-CLAS		
	LOQ	LOQ	ppbv	ug/m3	
Freon-11	ppbv 0.80	ug/m3 4.5	<0.80	<4.5	
Isopropyl Alcohol	5.0	12	24	58	
Acrylonitrile	0.80	1.7	<0.80	<1.7	
Pentane	0.80	2.4	12	36	
Sthyl Bromide	0.80	3.6	<0.80	<3.6	
.,1-Dichloroethene	0.80	3.2	<0.80	<3.2	
ert-Butyl Alcohol	5.0	15	<5.0	<15	
Methylene Chloride	0.80	2.8	<0.80	<2.8	
Freon-113	0.80	6.1	<0.80	<6.1	
Carbon Disulfide	5.0	16	<5.0	<16	
Allyl Chloride	0.80	2.5	<0.80	<2.5	
trans-1,2-Dichloroethene	0.80	3.2	<0.80	<3.2	
l,1-Dichloroethane	0.80	3.2	<0.80	<3.2	

Analytical Method: mod. OSHA PV2120/mod. EPA TO15; GC/MS	Supervisor: BLD
Collection Media : Mini Can	Approved by : BLD
Submitted by : SAP	Date : 08-OCT-21

	Client	: Phase Separation Science, Inc.	Account No.: 15354
6601 Kirkville Road	Site	: CORA KELLY SCHOOL	Login No. : L548282
East Syracuse, NY 13057	Project No.	: 4920002	
(315) 432-5227	Date Sampled	: 30-SEP-21	Date Analyzed : 08-OCT-21
FAX: (315) 437-0571	Date Received	: 05-OCT-21	Report ID : 1268767
www.sgsgalson.com			

Galson ID: Client ID:			L548282 CK-CLAS		
	LOQ ppbv	LOQ ug/m3	ppbv	ug/m3	
Methyl tert-Butyl Ether	0.80	2.9	<0.80	<2.9	
Vinyl Acetate	0.80	2.8	<0.80	<2.8	
Methyl Ethyl Ketone	0.80	2.4	<0.80	<2.4	
cis-1,2-Dichloroethylene	0.80	3.2	<0.80	<3.2	
lexane	0.80	2.8	<0.80	<2.8	
Sthyl Acetate	0.80	2.9	<0.80	<2.9	
Chloroform	0.80	3.9	<0.80	<3.9	
Tetrahydrofuran	0.80	2.4	<0.80	<2.4	
L,2-Dichloroethane	0.80	3.2	<0.80	<3.2	
,1,1-Trichloroethane	0.80	4.4	<0.80	<4.4	
Benzene	0.80	2.6	<0.80	<2.6	
Carbon Tetrachloride	0.80	5.0	<0.80	<5.0	
Cyclohexane	0.80	2.8	<0.80	<2.8	

Analytical Method: mod. OSHA PV2120/mod. EPA TO15; GC/MS	Supervisor: BLD
Collection Media : Mini Can	Approved by : BLD
Submitted by : SAP	Date : 08-OCT-21

	Client	: Phase Separation Science, Inc.	Account No.: 15354
6601 Kirkville Road	Site	: CORA KELLY SCHOOL	Login No. : L548282
East Syracuse, NY 13057	Project No.	: 4920002	
(315) 432-5227	Date Sampled	: 30-SEP-21	Date Analyzed : 08-OCT-21
FAX: (315) 437-0571	Date Received	: 05-OCT-21	Report ID : 1268767
www.sgsgalson.com			

Galson ID: Client ID:			L548282 CK-CLAS		
	LOQ	LOQ	ppbv	ug/m3	
	ppbv	ug/m3			
l,2-Dichloropropane	0.80	3.7	<0.80	<3.7	
Bromodichloromethane	0.80	5.4	<0.80	<5.4	
,4-Dioxane	0.80	2.9	<0.80	<2.9	
Trichloroethylene	0.80	4.3	<0.80	<4.3	
,2,4-Trimethylpentane	0.80	3.7	<0.80	<3.7	
ethyl Methacrylate	0.80	3.3	<0.80	<3.3	
eptane	0.80	3.3	<0.80	<3.3	
is-1,3-Dichloropropene	0.80	3.6	<0.80	<3.6	
rans-1,3-Dichloropropene	0.80	3.6	<0.80	<3.6	
,1,2-Trichloroethane	0.80	4.4	<0.80	<4.4	
ethyl Isobutyl Ketone	0.80	3.3	<0.80	<3.3	
oluene	0.80	3.0	1.5	5.7	
ethyl Butyl Ketone	0.80	3.3	<0.80	<3.3	

Analytical Method: mod. OSHA PV2120/mod. EPA TO15; GC/MS	Supervisor: BLD
Collection Media : Mini Can	Approved by : BLD
Submitted by : SAP	Date : 08-OCT-21

	Client	: Phase Separation Science, Inc.	Account No.: 15354
6601 Kirkville Road	Site	: CORA KELLY SCHOOL	Login No. : L548282
East Syracuse, NY 13057	Project No.	: 4920002	
(315) 432-5227	Date Sampled	: 30-SEP-21	Date Analyzed : 08-OCT-21
FAX: (315) 437-0571	Date Received	: 05-OCT-21	Report ID : 1268767
www.sgsgalson.com			

Galson ID: Client ID:			L548282 CK-CLAS	
	LOQ ppbv	LOQ ug/m3	ppbv	ug/m3
Dibromochloromethane	0.80	6.8	<0.80	<6.8
1,2-Dibromoethane	0.80	6.1	<0.80	<6.1
Tetrachloroethylene	0.80	5.4	<0.80	<5.4
Chlorobenzene	0.80	3.7	<0.80	<3.7
Ethylbenzene	0.80	3.5	<0.80	<3.5
m & p-Xylene	1.6	6.9	<1.6	<6.9
Bromoform	0.80	8.3	<0.80	<8.3
Styrene	0.80	3.4	<0.80	<3.4
1,1,2,2-Tetrachloroethane	0.80	5.5	<0.80	<5.5
o-Xylene	0.80	3.5	<0.80	<3.5
Nonane	0.80	4.2	<0.80	<4.2
Cumene	0.80	3.9	<0.80	<3.9
2-Chlorotoluene	0.80	4.1	<0.80	<4.1

Analytical Method: mod. OS	SHA PV2120/mod. EPA TO15; GC/MS			Supervisor: N	BLD
Collection Media : Mini Ca	an	Approved by :	BLD		
Submitted by : SAP		Date	08-OCT-21		

	Client	: Phase Separation Science, Inc.	Account No.: 15354
6601 Kirkville Road	Site	: CORA KELLY SCHOOL	Login No. : L548282
East Syracuse, NY 13057	Project No.	: 4920002	
(315) 432-5227	Date Sampled	: 30-SEP-21	Date Analyzed : 08-OCT-21
FAX: (315) 437-0571	Date Received	: 05-OCT-21	Report ID : 1268767
www.sgsgalson.com			

Galson ID: Client ID:				L548282-1 CK-CLASS 26		
	LOQ ppbv	LOQ ug/m3	ppbv	ug/m3		
n-Propylbenzene	0.80	3.9	<0.80	<3.9		
4-Ethyltoluene	0.80	3.9	<0.80	<3.9		
1,3,5-Trimethylbenzene	0.80	3.9	<0.80	<3.9		
1,2,4-Trimethylbenzene	0.80	3.9	<0.80	<3.9		
Benzyl Chloride	0.80	4.1	<0.80	<4.1		
1,3-Dichlorobenzene	0.80	4.8	<0.80	<4.8		
1,4-Dichlorobenzene	0.80	4.8	<0.80	<4.8		
1,2-Dichlorobenzene	0.80	4.8	<0.80	<4.8		
Naphthalene	0.80	4.2	<0.80	<4.2		

Analytical Method: mod. OSHA PV2120/mod. EPA TO15; GC/MS	Supervisor: BLD
Collection Media : Mini Can	Approved by : BLD
Submitted by : SAP	Date : 08-OCT-21

GALSON

LABORATORY FOOTNOTE REPORT

Site : CORA KELLY SCHOOL Project No. : 4920002 6601 Kirkville Road Date Sampled : 30-SEP-21 East Syracuse, NY 13057 (315) 432-5227 Date Received: 05-OCT-21 FAX: (315) 437-0571 Date Analyzed: 08-OCT-21 www.sgsgalson.com

Client Name : Phase Separation Science, Inc.

Account No.: 15354 Login No. : L548282

L548282 (Report ID: 1268767):

NYSDOH does not offer a certification for the following compounds: Propylene, Ethyl Acetate, Tetrahydrofuran, Methyl n-Butyl Ketone, 4-Ethyl Toluene, n-Butane, Pentane, Ethyl Bromide, Nonane, and n-Propylbenzene. SOPs: in-vocs(40)

L548282-1 (Report ID: 1268767):

Acetone result may be biased high due to co-elution with 2-methylbutane.

L548282 (Report ID: 1268767):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
1,1,2,2-Tetrachloroethane	+/-14%	98.9%
1,1,2-Trichloroethane	+/-12.6%	97.6%
1,1-Dichloroethane	+/-15.4%	96.5%
1,1-Dichloroethene	+/-15.7%	98.2%
1,2,4-Trimethylbenzene	+/-15%	105%
1,2-Dibromoethane	+/-13.5%	99.8%
1,2-Dichlorobenzene	+/-12.4%	103%
1,2-Dichloroethane	+/-17.6%	98.6%
1,2-Dichloropropane	+/-14.8%	96.2%
1,3,5-Trimethylbenzene	+/-13.2%	103%
1,3-Dichlorobenzene	+/-12.6%	102%
1,4-Dichlorobenzene	+/-13.3%	102%
2,2,4-Trimethylpentane	+/-15.1%	97.9%
2-Chlorotoluene	+/-13.2%	104%
4-Ethyltoluene	+/-13.9%	104%
Acrolein	+/-21.8%	93.1%
Acrylonitrile	+/-16.4%	97.9%
Allyl Chloride	+/-18.7%	97.5%
Acetonitrile	+/-17.4%	100%
Acetone	+/-14.6%	97.4%
Bromodichloromethane	+/-12.9%	100%
Bromoform	+/-14.4%	103%
1,3-Butadiene	+/-16.9%	97.5%
n-Butane	+/-18.2%	95.9%
Benzene	+/-13.3%	97.3%
Benzyl Chloride	+/-15%	109%
Carbon Disulfide	+/-13.8%	96.5%

East Syracuse, NY 13057

(315) 432-5227

FAX: (315) 437-0571

www.sgsgalson.com

6601 Kirkville Road

Client Name : Phase Separation Science, Inc. Site : CORA KELLY SCHOOL Project No. : 4920002

Date Sampled : 30-SEP-21 Date Received: 05-OCT-21 Date Analyzed: 08-OCT-21

Account No.: 15354 Login No. : L548282

LABORATORY FOOTNOTE REPORT

Carbon Tetrachloride	+/-15.7%	100%
cis-1,2-Dichloroethylene	+/-16%	98.6%
cis-1,3-Dichloropropene	+/-14.6%	101%
Chlorobenzene	+/-13.3%	97.5%
Dibromochloromethane	+/-13%	102%
Chloroform	+/-14.1%	97.7%
Cumene	+/-13.9%	101%
Cyclohexane	+/-15.1%	100%
1,4-Dioxane	+/-13.7%	101%
Ethyl Acetate	+/-17.9%	98.4%
Ethylbenzene	+/-14.7%	101%
Chloroethane	+/-16.7%	96.9%
Ethyl Bromide	+/-13%	97.4%
Freon-11	+/-15.5%	99.4%
Freon-113	+/-13.2%	96.7%
Freon-114	+/-14.5%	98.8%
Freon-12	+/-15.3%	99.2%
Heptane	+/-16.1%	99.1%
Isopropyl Alcohol	+/-20.8%	96.3%
1,1,1-Trichloroethane	+/-15.1%	99.2%
Bromomethane	+/-13%	97%
Chloromethane	+/-17.9%	96.3%
Methylene Chloride	+/-14.4%	93.4%
Methyl Ethyl Ketone	+/-17.7%	97.8%
Methyl Methacrylate	+/-16%	102%
Methyl Isobutyl Ketone	+/-18.2%	99.4%
Methyl Butyl Ketone	+/-18.7%	105%
m & p-Xylene	+/-14%	100%
Methyl tert-Butyl Ether	+/-15.4%	100%
Naphthalene	+/-20.2%	111%
Hexane	+/-15.6%	98.1%
Nonane	+/-16.7%	103%
n-Propylbenzene	+/-13.2%	103%
o-Xylene	+/-13.9%	101%
Propylene	+/-18.8%	96.3%
Pentane	+/-17.9%	97.1%
Styrene	+/-15.2%	104%
Trichloroethylene	+/-12.8%	98.8%
tert-Butyl Alcohol	+/-18.4%	101%
Tetrachloroethylene	+/-13.1%	98.9%
Tetrahydrofuran	+/-19%	99%
Toluene	+/-14.4%	99.6%
trans-1,2-Dichloroethene	+/-15.8%	97.6%
trans-1,3-Dichloropropene	+/-14.8%	103%
Vinyl Acetate	+/-22.4%	96.1%

Page 10 of 13 Report Reference:1 Generated:12-OCT-21 08:05

Client Name : Phase Separation Science, Inc.

+/-13.8%

+/-15.6%

LABORATORY FOOTNOTE REPORT

	Site : Project No. :	CORA KELLY SCHOOL 4920002	
6601 Kirkville Road			
East Syracuse, NY 13057	Date Sampled :	30-SEP-21	Account No.: 15354
(315) 432-5227	Date Received:	05-OCT-21	Login No. : L548282
FAX: (315) 437-0571	Date Analyzed:	08-OCT-21	
www.sgsgalson.com			

Vinyl Bromide Vinyl Chloride 97.7% 97.7%

Page 11 of 13 Report Reference:1 Generated:12-OCT-21 08:05

hain of Custody Form for Subcontracted Analyse
W.O. No. : 21100121 Project Location :Cora Kelly SchoolProject Number :4920002
Report To LOD : No

gray cart

Page 1 of 1

.

Phase Separation Sc 6630 Baltimore Nati Baltimore, MD 2122 Phone: (410) 747-87 Fax: (410) 788-8723 For Questions or	ional Pike 28 770	Amber Confer	Pro Pro	ject Number port To LOD		 -	Samples Transferred To SGS North America - N 6601 Kirkville Road East Syracuse, NY 130 Old SGS Galson Labs. Phone : 315-432-5227	Y 57 hsc
Lab Sample ID	Field Sample ID	Date Sampled	Time Sampled	Matrix	Analyses Required	Methoo	Type of Container	Preservative
21100121-001	CK- Class 26	09/30/21	20:48	Air	VOCs in Air by GC/MS (subbed)	TO-15	NONSC	NON
Send Repor	rables Required t Attn : reporting@ C	@phaseonline.co	LAPS			-	invoicing@phase	online.com
Comments :								
Samples Relinquishe	ed By: Mind W	Date : 1010	111	Гіте:	Samples Received By :			
Samples Relinquishe	:d By:	Date :		Time :	_ Samples Received By:		,	
Samples Relinquishe	:d By:	Date:		Time:	Samples Received By: Samples Received By: Samples Received By:	vse Michelle	- Krause 10/5/	ZI 11 ^{IV}
							1Z2313E40165932079 Date:10/05/21 Shipper:UPS	a
							Initials:MAK	
	· .							

SGS_G	ALSON	New Client		30 Baltim	ore Nati	onal Pike		Invoice	^{⊤₀*} ∶ <u>Phase \$</u>	Separation So	ience	
		Client Account	No.*: Ba	iltimore, N	1D 2122	8						
Tel: (315) 43	se, NY 13057		 Phone No.* : <u>41</u> Cell No. :	: 410-747-8770				Phone No.: <u>410-747-8770</u> Email : <u>invoicing@phaseonline.com</u>				
		I	Email Results to : Amber Confer					P.O. I	No. :			
www.sgsgalson.com Email address: <u>reporting@phaseonline.com</u>					Credit Ca	ard : 🗌 Card on	File Call for C	redit Card Info.				
Need Results By:	(surcharge)		\checkmark	Samples sub	omitted usi	ng the FreePumpLoan™	Program	Samples	submitted using t	the FreeSamplingBad	ges™Program	
Standard	(surcharge) 0%	Site Name : Cora H	Kelly School		Pri	oject : ACPS IAQ Te	estina	San	pled by : Clien	t		
4 Business Days	35%	Comments :		<u> </u>			J		Children Children		,	
3 Business Days	50%											
2 Business Days	75%											
Next Day by 6pm	100%	List description of inc	lustry or Process/interfe	erences prese	ent in samp	ling area :	State sample		Please indicate	which OEL this data v	vill be used for :	
Next Day by Noon	150%			collected in (e.g., NY)						ACGIH TLV	Cal OSHA	
] Same Day	200%					- 1	VA		MSHA	Other (specify):		
Sample Identific (Maxmium of 20 Cha		Date Sampled	Collection Medium	Sampl	e Volume le Time e Area*	Sample Units*: L, ml,min,in2,cm2,ft2		Analysis Requested*		Method Reference	Hexavalent Chromiu Process (e.g., weldir plating, painting, etc	
K-Class 26		09/30/21	Canister	1L		ug/m^3	voc			TO-15 (list)		
			Canister	1L		ug/m^3	voc			TO-15 (list)		
			Canister	1L		ug/m^3	VOC			TO-15 (list)		
			Canister	1L		ug/m^3	VOC			TO-15 (list)		
			Canister	1L		ug/m^3	voc			TO-15 (list)		
		<u> </u>	Canister	1L		ug/m^3	voc		· ·	TO-15 (list)		
			Canister	1L	-	ug/m^3	voc			TO-15 (list)		
			Canister	1L		ug/m^3	VOC			TO-15 (list)		
			Canister	1L		ug/m^3	voc			TO-15 (list)		
			Canister	1L		ug/m^3	VOC			TO-15 (list)		
			Canister	1L		ug/m^3	voc			TO-15 (list)		
^Galson Laboratories will	subsititute our	routine/preferred met	1 ·	the method	listed on th		checked 🗸	Use method	s) listed on COC		l	
or metals analysis: if requ										· · · · · · · · · · · · · · · · · · ·		
For crystalline silica: form										······································		
hain of Custody		nt Name/Signature		Date	Time	Т		Print Nan	ne/Signature		ate Time	
	ver 7	5		4121		Received by :						
		<u> </u>				Received by	·····			rause 1051	(C	

Case Narrative

Project Name: ACPS IAQ PSS Project No.: 21100121

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Soil gas/indoor air not indicated on COC; sample is indoor air. Incoming pressure not taken upon receipt; incoming pressure will be taken by subcontracting lab.

21100121: Analyses associated with analyst code 4051 were performed by

SGS North America - NY, 6601 Kirkville Road, East Syracuse, NY 13057 - NY 11626

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

www.phaseonline.com

PHASE SEPARATION SCIENCE, INC.

email: info@phaseonline.com

2221014121	PSS Work Order #: PAGE 1 OF 21 21100121 07.10				LIENT: Total Environmental Concepts, Inc. *OFFICE LOC.: Lorton									
	U.V.					1	10012	211					JECT MGR: Karl Ford	*PROJE
									4346	(703) 567-4	*PHONE NO:		kford@teci.pro	EMAIL:
		Air *	ab *	er -ab	* a	* *		* 3		0.: 492000		sting	JECT NAME: ACPS IAQ te	
	I List	ndoor/Ambient Air *	Soil Gas / Subslab	Incoming Canister Pressure ("Hg) Lab	Canister Pressure * in field ("Hg) Stop	Canister Pressure in field ("Hg) Start	Sample Reg. ID *				P.O. NO.:	loor	Cora Kelly Sch	SITE LO
Special List Emergencial List Emergencial List	TO-15 Full List Special List	or/Am	Gas /	ming ssure (ister F eld ("H	ister F eld ("H	ple R	* ©					LER(S): Channing Jack	
C REMARKS	Spe	Indo	Soil	Inco Pres	Can in fie	Can in fie	Sam	Can ID	*Time Stop (24hr clock)	*DATE STOP	*Time Start (24hr clock)	*DATE START	*SAMPLE IDENTIFICATION	2 LAB #
	~	·			6	30	04548	WA961	20:48	9/30/21	17:08	9/30/21	CK - Class 26	
				12										
							-							
						-								
														0 - 1
				-	_					-				
				-										
		≓⊨		-										-
Shipping Carrier:			2-Day		3-Day		JV 5-Day	4	70.,	Received By:	Time 17:30	^{Date} 10/1/21	nuished By: (1) nning Jackson	4
		1	otilel				ta Deliverabl	Da		Received By:	Time	Date	quished By: (2)	Relinqu
						tions:	ecial Instruc	Sp		Received By:	Time	Date	quished By: (3)	Relinqu
										Received By:	Time	Date	quished By: (4)	Relinqu
	Sh				3-Day Emerge	Day Ies Requi	ta Deliverabl	Da	20:	Received By: Received By:	Time Time	10/1/21 Date Date	nning Jackson quished By: (2) quished By: (3)	Chan Relingu Relingu

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED Version 1.000

Project Name: ACPS IAQ PSS Project No.: 21100121

Client Name	Total Environmental Concepts -	Lortc	Received	l By	Brad Crozi	er
Disposal Date	11/05/2021		Date Rec	eived	10/01/2021	05:30:00 PM
			Delivered	d By	Client	
			Tracking	-	Not Applical	ble
			Logged I	n By	Amber Cor	nfer
Shipping Contai	ner(s)					
No. of Coolers	0					
			lce			/A
Custody Seal(s	•	N/A	•	o (deg C	,	
Seal(s) Signed	/ Dated?	N/A	Temp	Blank	Present N	0
Documentation			Samp	oler Nar	me <u>Cha</u>	anning Jackson
COC agrees wi	th sample labels?	Yes	MD D	W Cer	t. No. <u>N/A</u>	:
Chain of Custo	dy	Yes				
Sample Contain	er		Custo	ody Sea	al(s) Intact?	Not Applicable
Appropriate for	Specified Analysis?	Yes	Seal(s) Sian	ed / Dated	Not Applicable
Intact?		Yes	Coal(o) Olgin	ou, Dalou	not ripplicable
Labeled and La	bels Legible?	Yes				
Holding Time			Total	No. of	Samples Re	eceived 1
All Samples Re	ceived Within Holding Time(s)?	Yes	Total	No. of	Containers	Received 1
Preservation						
Total Metals				(pH	l<2)	N/A
Dissolved Meta	ls, filtered within 15 minutes of co	ollectio	n	(pH	l<2)	N/A
	us, filtered within 15 minutes of c	ollectio	on			N/A
Cyanides					l>12)	N/A
Sulfide					l>9)	N/A
	d filtered), COD, Phenols				<2)	N/A
TOX, TKN, NH	-				<2)	N/A
	OA Vials Rcvd Preserved)			(pH	l<2)	N/A
	ave zero headspace?	· - 1)				N/A
· ·	at least one unpreserved VOA v	/ial)				N/A
524 VOC (Revo	l with trip blanks)			(pH	l<2)	N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Soil gas/indoor air not indicated on COC; sample is indoor air. Incoming pressure not taken upon receipt; incoming pressure will be taken by subcontracting lab.

Samples Inspected/Checklist Completed By: Amber Confer

Date: 10/04/2021

PM Review and Approval: NY Jackson Lyr Page: 1800f 18

Date: 10/04/2021 Version 1.000

www.phaseonline.com

PHASE SEPARATION SCIENCE, INC.

email: info@phaseonline.com

(1	*CLIENT	/ *CLIENT: *OFFICE LOC.: *PROJECT MGR:					PSS Work Order #: PAG				PAGE _	PAGE OF				
-	EMAIL: *PROJE	ECT NAME:		*PHONE NO: (PROJECT NO P.O. NO.:	0.:		Can ID *	Sample Reg. ID *	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab *	Indoor/Ambient Air *	TO-15 Full List	Special List	
2		*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can	Sam	Cani in fie	Cani in fie	Incol Pres	Soil	opul	TO-,	Spec	REMARKS
		ļJ		<u> </u> !				+	 			<u> </u>	<u> </u> '	'	├	
Ì																
			 			 	 		ļ!	ļ'			<u> </u> '		<u> </u>	
	L		 	'		 	 	<u> </u>	ļ!	'	<u> </u>		 '	ļ'	<u> </u>	
		 		ļ!]	<u> </u>	 	+	<u> </u>]		<u> </u>	<u> </u>	 '	'		
ł		 		·'			<u> </u>	+				<u> </u>	<u> </u> '			
				+			<u> </u>	+					 '	'		
Ţ									<u> </u>							
5	Relinqu	uished By: (1)	Date	Time	Received By:		(e	4 ⊂ *Reques	sted TAT	(One T/] 3-Day] Emerg	AT per CC)C) 2-Da] Oth	ıy er	Ship	ping C	Carrier:
	Relinqu	uished By: (2)	Date	Time	Received By:		D	ata Deliverable			<u> </u>		<u> </u>			
ł	Relinqu	uished By: (3)	Date	Time	Received By:		S	pecial Instruct	tions:							
ŀ	Relinqu	uished By: (4)	Date	Time	Received By:											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

www.phaseonline.com

PHASE SEPARATION SCIENCE, INC.

email: info@phaseonline.com

(1	*CLIENT	/ *CLIENT: *OFFICE LOC.: *PROJECT MGR:					PSS Work Order #: PAG				PAGE _	PAGE OF				
-	EMAIL: *PROJE	ECT NAME:		*PHONE NO: (PROJECT NO P.O. NO.:	0.:		Can ID *	Sample Reg. ID *	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab *	Indoor/Ambient Air *	TO-15 Full List	Special List	
2		*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can	Sam	Cani in fie	Cani in fie	Incol Pres	Soil	opul	TO-,	Spec	REMARKS
		ļJ		<u> </u> !				+	 			<u> </u>	<u> </u> '	'	├	
Ì																
			 			 	 		ļ!	ļ'			<u> </u> '		<u> </u>	
	L		 	'		 	 	<u> </u>	ļ!	'	<u> </u>		 '	ļ'	<u> </u>	
		 		ļ!]	<u> </u>	 	+	<u> </u>]		<u> </u>	<u> </u>	 '	'		
ł		 		·'			<u> </u>	+				<u> </u>	<u> </u> '			
							<u> </u>	+					 '	'		
Ţ									<u> </u>							
5	Relinqu	uished By: (1)	Date	Time	Received By:		(e	4 ⊂ *Reques	sted TAT	(One T/] 3-Day] Emerg	AT per CC)C) 2-Da] Oth	ıy er	Ship	ping C	Carrier:
	Relinqu	uished By: (2)	Date	Time	Received By:		D	ata Deliverable			<u> </u>		<u> </u>			
ł	Relinqu	uished By: (3)	Date	Time	Received By:		S	pecial Instruct	tions:							
ŀ	Relinqu	uished By: (4)	Date	Time	Received By:											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

www.phaseonline.com

PHASE SEPARATION SCIENCE, INC.

email: info@phaseonline.com

(1	*CLIENT	/ *CLIENT: *OFFICE LOC.: *PROJECT MGR:					PSS Work Order #: PAG				PAGE _	PAGE OF				
-	EMAIL: *PROJE	ECT NAME:		*PHONE NO: (PROJECT NO P.O. NO.:	0.:		Can ID *	Sample Reg. ID *	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab *	Indoor/Ambient Air *	TO-15 Full List	Special List	
2		*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can	Sam	Cani in fie	Cani in fie	Incol Pres	Soil	opul	TO-,	Spec	REMARKS
		ļJ		<u> </u> !				+	 			<u> </u>	<u> </u> '	'	├	
Ì																
			 			 	 		ļ!	ļ'			<u> </u> '		<u> </u>	
			 	'		 	 	<u> </u>	ļ!	'	<u> </u>		 '	ļ'	<u> </u>	
		 		ļ!]	<u> </u>	 	+	<u> </u>]		<u> </u>	<u> </u>	 '	'		
ł		 		·'			<u> </u>	+				<u> </u>	<u> </u> '			
				+			<u> </u>	+					 '	<u> </u>		
Ţ									<u> </u>							
5	Relinqu	uished By: (1)	Date	Time	Received By:		(e	4 ⊂ *Reques	sted TAT	(One T/] 3-Day] Emerg	AT per CC)C) 2-Da] Oth	ıy er	Ship	ping C	Carrier:
	Relinqu	uished By: (2)	Date	Time	Received By:		D	ata Deliverable			<u> </u>		<u> </u>			
ł	Relinqu	uished By: (3)	Date	Time	Received By:		S	pecial Instruct	tions:							
ŀ	Relinqu	uished By: (4)	Date	Time	Received By:											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Appendix D: Formaldehyde Analytical Results

Project Name: ACPS IAQ Testing PSS Project No.: 21092016

September 29, 2021

Karl Ford Total Environmental Concepts - Lorton 8382 Terminal Road, Suite B Lorton, VA 22079

Reference: PSS Project No: **21092016** Project Name: ACPS IAQ Testing Project Location: Cora Kelly Project ID.: 4920002

Dear Karl Ford:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21092016**.

Certificate of Analysis

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on October 25, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

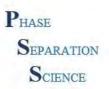
Laboratory Manager

Project Name: ACPS IAQ Testing PSS Project No.: 21092016

Project ID: 4920002

The following samples were received under chain of custody by Phase Separation Science (PSS) on 09/20/2021 at 03:00 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
21092016-001	CK- Hall 45-46	AIR	09/17/21 00:00
21092016-002	CK- Office	AIR	09/17/21 00:00
21092016-003	CK- Library	AIR	09/17/21 00:00
21092016-004	CK- Cafeteria	AIR	09/17/21 00:00
21092016-005	CK- Class 29	AIR	09/17/21 00:00
21092016-006	CK- Class 26	AIR	09/17/21 00:00
21092016-007	CK- Hall 20	AIR	09/17/21 00:00
21092016-008	CK- Class 8	AIR	09/17/21 00:00
21092016-009	CK- Class 11	AIR	09/17/21 00:00
21092016-010	CK- Hall 15-17	AIR	09/17/21 00:00
21092016-011	CK- Hall 38-39	AIR	09/17/21 00:00
21092016-012	CK- Class 40	AIR	09/17/21 00:00


Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- В A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- С Results Pending Final Confirmation.
- The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated. Е
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the MDL. J
- This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the MDL minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL. PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Ms. Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228 September 27, 2021

Account# 15354

Login# L547195

Dear Amber Confer:

Enclosed are the analytical results for the samples received by our laboratory on September 22, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa-Luab

Lisa Swab Laboratory Director

Enclosure(s)

Account : 15354 Login No. : L547195

ANALYTICAL REPORT

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector		
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,		
			Environmental Microbiology		

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials
Texas	Texas Dept. of Licensing and	Lab ID: 1042	Mold Analysis Laboratory license
	Regulation		

Legend

< - Less than	mg - Milligrams	MDL - Method Detection Limit	ppb - Parts per Billion
> - Greater than	ug - Micrograms	NA - Not Applicable	ppm - Parts per Million
I - Liters	m3 - Cubic Meters	NS - Not Specified	ppbv - ppb Volume
LOQ - Limit of Quantitation	kg - Kilograms	ND - Not Detected	ppmv - ppm Volume
ft2 - Square Feet	cm2 - Square Centimeters	in2 - Square Inches	ng - Nanograms

```
Version 1.000
```


6601 Kirkville Road East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sgsgalson.com

LABORATORY ANALYSIS REPORT

Client	: Phase Separation Science, Inc.	Account No.: 15354
Site	: CORA KELLY	Login No. : L547195
Project No.	: ACPS IAQ TESTING - 4920002	
Date Sampled	: 17-SEP-21	Date Analyzed : 23-SEP-21
Date Received	: 22-SEP-21	Report ID : 1266397

Formaldehyde

		Time	Total	Conc	
<u>Sample ID</u>	<u>Lab ID</u>	minutes	uq	mg/m3	ppm
CK - HALL 45-46	L547195-1	233	<0.4	<0.01	<0.01
CK - OFFICE	L547195-2	237	<0.4	<0.01	<0.01
CK - LIBRARY	L547195-3	237	<0.4	<0.01	<0.01
CK – CAFETERIA	L547195-4	235	<0.4	<0.01	<0.01
CK – CLASS 29	L547195-5	230	<0.4	<0.01	<0.01
CK – CLASS 26	L547195-6	229	<0.4	<0.01	<0.01
CK - HALL 20	L547195-7	229	<0.4	<0.01	<0.01
CK - CLASS 8	L547195-8	228	<0.4	<0.01	<0.01
CK - CLASS 11	L547195-9	228	<0.4	<0.01	<0.01
CK - HALL 15-17	L547195-10	227	<0.4	<0.01	<0.01
CK - HALL 38-39	L547195-11	235	<0.4	<0.01	<0.01
CK - CLASS 40	L547195-12	234	<0.4	<0.01	<0.01

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of Quantitation: 0.4 ug	Submitted by: JLL	Approved by: MLN
Analytical Method : mod. OSHA 1007; HPLC/UV	Date : 27-SEP-21	
Collection Media : Assay 581	Supervisor : MWJ	

```
Version 1.000
```


LABORATORY FOOTNOTE REPORT

	Client Name	: Phase Separation S	Science, Inc.
	Site	CORA KELLY	
	Project No.	ACPS IAQ TESTING -	- 4920002
6601 Kirkville Road			
East Syracuse, NY 13057	Date Sampled	17-SEP-21	Account No.: 15354
(315) 432-5227	Date Received	22-SEP-21	Login No. : L547195
FAX: (315) 437-0571	Date Analyzed	23-SEP-21	
www.sqsqalson.com			

L547195 (Report ID: 1266397):

Total ug corrected for a desorption efficiency of 96%. FORMALDEHYDE results have been corrected for the average background found on the media: 0.1178 ug for lot #4B21 (samples 1-12). SOPs: LC-SOP-4(23)

L547195 (Report ID: 1266397):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
Formaldehyde	+/-12.1%	95.3%

```
Version 1.000
```

SGS G 22313E40164686427 ate: 09/22/21	ALSON	New Client	663	ase Separation S 80 Baltimore Natio timore, MD 2122	onal Pike	Invoice	^{To* :} Phase Se		
hipper:UPS			Phone No.* : 41(-747-8770		Phone	No.: 410-747-87	70	
hitials:MAK			Cell No. :	-141-0110				phaseonline.com	
		9	Email Results to : Am	ber Confer			No. : ODC 49200		1
rep:UNKNOWN				orting@phaseonli	ne.com		ard : Card on Fil		dit Card Info.
					as the FreePumpleseTM	Broaman D Samalar	automitted using the	e FreeSamplingBadge	TM Decarom
Need Results By:	(surcharge)				ng the FreePumpLoan™		s submitted using the	e FreeSamplingBadge	s Program
Standard 4 Business Days	0%	Site Name : Cora I	Kelly	Pro	oject : ACPS IAQ te	sting - 4920002 Sar	mpled by: Karl Fo	ord	
4 Business Days	35%	Comments :							
3 Business Days	50%	Dosimeter cart	rige # noted in the	e (Hexavelent Chi	romium Process) o	colum			
2 Business Days	75%					C	Diana la diana a		he word for a
Next Day by 6pm	100%	List description of ind	dustry or Process/interfe	rences present in samp	ang area :	State samples were collected in (e.g., NY)	OSHA PEL	hich OEL this data will ACGIH TLV	Cal OSHA
Next Day by Noon Same Day	200%	Public grade	school building			VA		Other (specify):	<u> </u>
Sample Identifica	Sample Identification* Date Sampled Collection			Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Req	Analysis Requested*		Hexavalent Chrom Process (e.g., weld plating, painting, e
CK - Hall 45-46		09/17/21	Assay N581 Aldehyde Badge	233	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4909
CK - Office		09/17/21	Assay N581 Aldehyde Badge	237	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4643
CK - Library		09/17/21	Assay N581 Aldehyde Badge	237	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4687
CK - Cafeteria		09/17/21	Assay N581 Aldehyde Badge	235	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD5391
CK - Class 29		09/17/21	Assay N581 Aldehyde Badge	230	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4248
CK - Class 26		09/17/21	Assay N581 Aldehyde Badge	229	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD5122
CK - Hall 20-19-02	9121121	09/17/21	Assay N581 Aldehyde Badge	229	Min	Formaldehyde	-		PD5336
CK - Class 8	4-9-1	09/17/21	Assay N581 Aldehyde Badge	228	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD5015
CK - Class 11		09/17/21	Assay N581 Aldehyde Badge	228	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4783
CK - Hall 15-17		09/17/21	Assay N581 Aldehyde Badge	227	Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4344
			Assav N581 Aldehvde Badge	2		Formaldehvde		mod. OSHA 1007: TPLC/UV	PD4550
CK - Hall 38-39			and the second se		the second s		tal listed on COC		
	aubsitituta ou	09/17/21 r routine/preferred met		the method listed on t		Formaldehyde s checked: 🗹 Use methor e for certain analytes - see S		mod. OSHA 1007: TPLC/UV	PD4550
^Galson Laboratories will For metals analysis: if req	uesting an ana								
AGalson Laboratories will For metals analysis: if requ For crystalline silica: form	uesting an ana (s) of silica nee	eded must be indicated	(Quartz, Cristobalite, a	nd/or Tridymite)* :	T 1	Print Na	me/Signature	Da	te Tim
For metals analysis: if requ	uesting an ana (s) of silica nee Pr	ded must be indicated int Name/Signature	l (Quartz, Cristobalite, a		T	Print Na	me/Signature	Da	

							2109/2016				
SGS	GALSON	New Client? Report To* : Phase Separation Science 6630 Baltimore National Pike Client Account No.*:						^{To*} : <u>Phase S</u>	Separation Scie	ence	
East Sy Tel: (3 88	irkville Rd vracuse, NY 13057 15) 432-5227 8-432-LABS (5227) gsgalson.com		Phone No.* :410 Cell No. : Email Results to : <u>Am</u> Email address <u>: rep</u>	ber Confe	r	ne.com	Em P.O. 1	No.: <u>410-747-8</u> nail : <u>invoicing@</u> No. : <u>ODC 4920</u> ard : Card on F	phaseonline.com		
Need Results By	(surcharge)			Samples subr	mitted usin	g the FreePumpLoan™ I	Program Samples	submitted using th	he FreeSamplingBadge	s [™] Program	
Stanc	and a second where were	Site Name : Cora	Kelly		Pro	ject : ACPS IAQ te	sting - 4920002 Sam	npled by: Karl F	ord		
4 Business D		Comments :									
3 Business D			rige # noted in the	(Hexavel	lent Chr	omium Process) o	olum				
2 Business D		Bosimeter cart			Sint Onio					1.000	
Next Day by 6		List description of inc	dustry or Process/interfer	rences preser	nt in sampli	ing area :	State samples were	Please indicate v	which OEL this data wil	l be used for :	
Next Day by N						· · · · · ·	collected in (e.g., NY)			Cal OSHA	
Same	Day 200%	Public grade :	school building				VA	MSHA	MSHA Other (specify):		
	entification* 1 20 Characters)	Date Sampled Collection Medium Sample Volume Sample Time Sample Area* Sample Units*: L, ml,min,in2,cm2,ft2 Analysis Requested* Method Reference^						Hexavalent Chrom Process (e.g., weld plating, painting, e			
K - Class 40		09/17/21	Assay N581 Aldehyde Badge	234		Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4217	
								11 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
							s checked: 🗹 Use method e for certain analytes - see S				
For crystalline silic	a: form(s) of silica need	ded must be indicated	(Quartz, Cristobalite, ar	nd/or Tridymi	ite)* :			and the second		-	
	Pri	nt Name/Signature		Date	Time		Print Na	me/Signature	Da	ite Tin	
hain of Custody	1			and the second se	11 00				the second s		
hain of Custody Ielinquished by :	Channing Jacks	on	09/	20/21	11:00	Received by :			V. 9/2	2/2/ 10	

Chain of Custody Form for Subcontracted Analyses

Phase Separation Science, Inc	
6630 Baltimore National Pike	
Baltimore, MD 21228	
Phone: (410) 747-8770	
Fax: (410) 788-8723	

W.O. No. : 21092016

Project Location : Cora Kelly Project Number: 4920002

Report To LOD : No.

For Questions or issues please contact: Amber Confer

Samples Transferred To: SGS North America - NY

6601 Kirkville Road East Syracuse, NY 13057

Old SGS Galson Labs. bsc Phone : 315-432-5227

Lab Sample ID	Field Sample ID	Date Sampled	Time Sampled	Matrix	Analyses Required	Method	Type of Container	Preservative
21092016-001	CK- Hall 45-46	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-002	CK- Office	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-003	CK- Library	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-004	CK- Cafeteria	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-005	CK- Class 29	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-006	CK- Class 26	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-007	CK- Hall 20	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-008	CK- Class 8	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-009	CK- Class 11	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-010	CK- Hall 15-17	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-011	CK- Hall 38-39	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21092016-012	CK- Class 40	09/17/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON

Report Due On :09/29/21 05:00

Data Deliverables Required: COA

Airbill No.:

Send Report Attn : reporting@phaseonline.com

LAPS

Carrier :

Perform Q.C. on Sample :

Send InvoiceAttn : invoicing@phaseonline.com

Condition Upon Receipt :					
Comments :					
Samples Relinquished By :	2 con Date: 9/21/2	Time:	Samples Received By :		
Samples Relinquished By:	Date :	Time :	Samples Received By:		
Samples Relinquished By:	Date:	Time:	Samples Received By: Michelle Krause Michelle Krause	9/22/21 1	007

PHASE	
SEPARATION	
SCIENCE	

Project Name:ACPS IAQ TestingPSS Project No.:21092016

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

21092016: Analyses associated with analyst code 4051 were performed by SGS North America - NY, 6601 Kirkville Road, East Syracuse, NY 13057 - NY 11626

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

21092010

SGS	GALSO	New Clie Client Accou		6630 Ba	Separation Itimore Na e, MD 212	tional Pike	Invoice	e To* : <u>Phase</u>	Separation S	cience		
6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227 888-432-LABS (5227)			Phone No.* : Cell No. :	410-747-	-8770			Phone No.: <u>410-747-8770</u>				
		,	Email Results to :	Amber C	onfor		E	mail: invoicing	@phaseonline.co	m		
~~~~~	sgsgalson.com		Email address:	reporting	@phaseon	line com	P.U.	No. : ODC 492			_	
Need Results B	y: (surcharge)	1		_		sing the FreePumpLoan ^T		Card : Card on	_			
	idard 0%	Site Name : Cora					_	s submitted using	the FreeSamplingBad	ges [™] Progran	n	
4 Business	Days 35%	Comments :	a riony		Р	roject : ACPS IAQ t	esting - 4920002 Sar	mpled by: Karl	Ford			
3 Business	Days 50%		rtrigo # noted in	- (1)		and the state						
2 Business	Days 75%	Doomictor ca	ninge # noted in	ine (Hex	avelent Cr	romium Process)	colum					
Next Day by	6pm 100%	List description of it	ndustry or Process/inte	rferences p	resent in sam	oling area :	State complexity	-				
Next Day by N	loon 150%					ping area .	State samples were collected in (e.g., NY)	Please indicate	which OEL this data w	-		
Same	Day 200%	Fublic grade	school building				VA	MSHA	Other (specify):	Cal OS	SHA	
Sample Identification* (Maxmium of 20 Characters)		Date Sampled	Collection Medius	m Sa	nple Volume mple Time mple Area*	Sample Units*: L, ml,min,in2,cm2,ft2			Method Reference	Hexavalent Process (e.g		
CK - Hall 45-46		09/17/21	Assay N581 Aldehyde Bad		Min		Formaldehyde			plating, painting, etc.		
CK - Office		09/17/21	Assay N581 Aldehyde Bad	-		Min		mod. OSHA 1007: TPLC/U	PD4909			
CK - Library		09/17/21	Assay N581 Aldehyde Bad				Formaldehyde	mod. OSHA 1007: TPLC/U		_		
CK - Cafeteria		09/17/21	Assay N581 Aldehyde Bad			Min	Formaldehyde	mod. OSHA 1007: TPLC/U	PD4687	0		
CK - Class 29		09/17/21	Assay N581 Aldehyde Bad			Min	Formaldehyde	mod. OSHA 1007: TPLC/U	PD5391			
CK - Class 26		09/17/21				Min	Formaldehyde	mod. OSHA 1007: TPLC/UN	PD4248	1		
CK - Hall 20-49-02-9/21/21		09/17/21	Assay N581 Aldehyde Badg			Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	PD5122	[		
CK - Class 8		09/17/21	Assay N581 Aldehyde Badg			Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD5336		
CK - Class 11		09/17/21	Assay N581 Aldehyde Badg			Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD5015	j	
CK - Hall 15-17			Assay N581 Aldehyde Badg			Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4783	-	
		09/17/21	Assay N581 Aldehyde Badg	227		Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	PD4344	_	
K - Hall 38-39		09/17/21	Assay N581 Aldehyde Badg			Min	Formaldehyde		mod. OSHA 1007: TPLC/UV			
Galson Laboratorie	s will subsititute our n	outine/preferred met	hod if it does not match	the metho	od listed on the	e COC unless this box is	checked: Vse method(s	) listed on COC		. 04000		
or metals analysis.	requesting an analyt	e with the option of a	a lower LOQ, please inc	licate if the	lower LOQ is	required (only available	for certain analytes - see SA	G):				
or crystamme sinca.	form(s) of silica neede	d must be indicated	(Quartz, Cristobalite, a	nd/or Tridy	mite)* :			<b>•</b> //				
ain of Custody Print Name/Signature				Date Time			Print Name/Signature					
	elinquished by : Channing Jackson			09/20/21 11:00		Received by :	any log		Date 9,20,21		Time	
elinquished by : C elinquished by :						increased of a			14.00 0			

Version 1.000

# 2109-2016

SGS	GALSON	Client Account	66	Phase Separation Science 6630 Baltimore National Pike Baltimore, MD 21228				Invoice	^{ro* :} Phase S	Separation Scie	ence	
6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227 888-432-LABS (5227) www.sgsgalson.com		Phone No.* : <u>410-747-8770</u> Cell No. : Email Results to : <u>Amber Confer</u> Email address: <u>reporting@phaseonline.com</u>						Phone No.: <u>410-747-8770</u> Email : <u>invoicing@phaseonline.com</u> P.O. No. : <u>ODC 4920002-001</u> Credit Card : Card on File Call for Credit Card Info.				
Need Results B	y: (surcharge)			Samples s	ubmitted usi	ng the FreePumpLoan™	Program	Samples	submitted using th	ne FreeSamplingBadge	s [™] Program	
Stan	dard 0%	Site Name : Cora	Kelly		Pr	oject : ACPS IAQ te	sting - 49	20002 Sam	pled by: Karl F	ord		_
4 Business	Days 35%	Comments :						LOUGE OUN	pice by . Train i	olu		
3 Business	Days 50%	Dosimeter cartrige # noted in the (Hexavelent Chromium Process) colum										
2 Business	Days 75%	D connotor dur		o (monu	voient on	011101111100033/1	Joium					
Next Day by	6pm 100%	List description of in	dustry or Process/interfe	rences pre	esent in samp	ling area :	State sam	ples were	Please indicate v	which OEL this data wil	be used for :	
2 Business     Next Day by     Next Day by     Next Day by     Same	loon 150%	Dublic grade	ashaal building				collected i	n (e.g., NY)	OSHA PEL		Cal OSH	
Same	Day 200%	Public grade	school building				VA		MSHA	Other (specify):		
	dentification* of 20 Characters)	Date Sampled	Collection Medium	Sam	ple Volume ple Time ple Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Reques		ested*	Method Reference^	Hexavalent Chi Process (e.g., v plating, paintin	welding
CK - Class 40		09/17/21	Assay N581 Aldehyde Badge	234		Min	Formaldehyde			mod. OSHA 1007: TPLC/UV	and the second second	
For metals analysis	: if requesting an analy	te with the option of	thod if it does not match a lower LOQ, please indi (Quartz, Cristobalite, ar	cate if the	lower LOQ is							
Chain of Custody	20	t Name/Signature			1	1 1		<b>D</b> .1	10:		- 1	
	Channing Jackso		Date 20/21	Time 11:00	Provinced but		Print Nam	e/Signature	Dat	e T	Time	
Relinquished by :	enanning vaohot	09/	20121	11.00	Received by : Received by :	1					-	
		* F	Samples Required fields, failure	received to comp	lete these fi	will be considered as	next day's delay in yo	s business our samples bei Version		Р	age 2 of	2



Client Name	Total Environmental Concepts -	Lortc	Received E	By A	Amber Con	fer
Disposal Date	10/25/2021		Date Recei	<b>ved</b> (	09/20/2021	03:00:00 PM
			Delivered E	By (	Client	
			Tracking N	<b>o</b> N	Not Applicab	le
			Logged In	Bv A	Amber Con	fer
Shipping Contai No. of Coolers	<b>ner(s)</b> 0					
Custody Seal(s Seal(s) Signed		N/A N/A	lce Temp ( Temp B			
Documentation COC agrees wi Chain of Custo	th sample labels? dy	Yes Yes	Sample MD DW		-	Ford
Sample Contain Appropriate for Intact? Labeled and La	Specified Analysis?	Yes Yes Yes	•		(s) Intact? d / Dated	Not Applicable Not Applicable
Holding Time			Total N	o. of Sa	amples Re	ceived 12
All Samples Re	ceived Within Holding Time(s)?	Yes	Total N	o. of C	ontainers F	Received 12
Orthophosphor Cyanides Sulfide TOC, DOC (fiel TOX, TKN, NH VOC, BTEX (V Do VOA vials h 624 VOC (Rcvo	ls, filtered within 15 minutes of co us, filtered within 15 minutes of c d filtered), COD, Phenols 3, Total Phos OA Vials Rcvd Preserved) ave zero headspace? d at least one unpreserved VOA v d with trip blanks)	ollectic		(pH< (pH> (pH> (pH> (pH< (pH< (pH<	:2) -12) -9) :2) :2) :2) :2)	N/A N/A N/A N/A N/A N/A N/A N/A N/A

# Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:

Date: 09/21/2021

PM Review and Approval:

NY Hackson

Amber Confer

Date: 09/21/2021

Lynn Jackson Page 14 of 14

Version 1.000

SGS	GALSON	New Client?	Report To* :					Invoice T	o* :			
000	UALOUI	Client Account N	lo.*:									
6601 K	rkville Rd							_				
East Sy	racuse, NY 13057							Phone I	No.:			
	5) 432-5227 8-432-LABS (5227)		Cell No. :					Em	ail :			
	gsgalson.com	E							lo. :			
00000.5	gsgalson.com		Email address:					Credit Ca	rd : 🗌 Card on Fi	le 🗌 Call for	Credit Card	Info.
Need Results By:	(surcharge)			Samples su	Ibmitted usir	ng the FreePumpLoan™	Program	Samples	submitted using th	e FreeSamplingBa	dges [™] Prog	ram
Stand	ard 0%	Site Name :			Pro	oject :		Sam	pled by :			
4 Business D	ays 35%	Comments :										
3 Business D	ays 50%											
2 Business D	ays 75%											
Next Day by 6	om 100%	List description of indu	istry or Process/interfe	rences pres	ent in sampl	ling area :	State sam			hich OEL this data	will be use	d for :
Next Day by No	oon 150%						collected	in (e.g., NY)	OSHA PEL	ACGIH TLV	Cal	OSHA
Same E	ay 200%								MSHA	Other (specify	:	
	entification* 20 Characters)	Date Sampled	Collection Medium	Samp	e Volume ble Time ble Area*	Sample Units*: L, ml,min,in2,cm2,ft2		Analysis Requ	ested*	Method Reference	e^ Process	ent Chromium (e.g., welding painting, etc.)*
											_	
											_	
AGalson Laboratoria	s will subsititute ou	r routine/preferred metho	od if it does not match	the method	d listed on th	l le COC unless this box i	s checked:	Use method	s) listed on COC			
		yte with the option of a							•			
		ded must be indicated (0				· •						
Chain of Custody		nt Name/Signature		, Date	Time			Print Nam	ne/Signature		Date	Time
Relinquished by :		0				Received by :			0			-
Relinquished by :					1	Received by :						
		* Re				will be considered as ields may result in a			ing processed.	I	Page	of

SGS	GALSON	New Client?	Report To* :					Invoice T	o* :			
000	UALOUI	Client Account N	lo.*:									
6601 K	rkville Rd							_				
East Sy	racuse, NY 13057							Phone I	No.:			
	5) 432-5227 8-432-LABS (5227)		Cell No. :					Em	ail :			
	gsgalson.com	E							lo. :			
00000.5	gsgalson.com		Email address:					Credit Ca	rd : 🗌 Card on Fi	le 🗌 Call for	Credit Card	Info.
Need Results By:	(surcharge)			Samples su	Ibmitted usir	ng the FreePumpLoan™	Program	Samples	submitted using th	e FreeSamplingBa	dges [™] Prog	ram
Stand	ard 0%	Site Name :			Pro	oject :		Sam	pled by :			
4 Business D	ays 35%	Comments :										
3 Business D	ays 50%											
2 Business D	ays 75%											
Next Day by 6	om 100%	List description of indu	istry or Process/interfe	rences pres	ent in sampl	ling area :	State sam			hich OEL this data	will be use	d for :
Next Day by No	oon 150%						collected	in (e.g., NY)	OSHA PEL	ACGIH TLV	Cal	OSHA
Same E	ay 200%								MSHA	Other (specify	:	
	entification* 20 Characters)	Date Sampled	Collection Medium	Samp	e Volume ble Time ble Area*	Sample Units*: L, ml,min,in2,cm2,ft2		Analysis Requ	ested*	Method Reference	e^ Process	ent Chromium (e.g., welding painting, etc.)*
											_	
											_	
AGalson Laboratoria	s will subsititute ou	r routine/preferred metho	od if it does not match	the method	d listed on th	l le COC unless this box i	s checked:	Use method	s) listed on COC			
		yte with the option of a							•			
		ded must be indicated (0				· •						
Chain of Custody		nt Name/Signature		, Date	Time			Print Nam	ne/Signature		Date	Time
Relinquished by :		0				Received by :			0			-
Relinquished by :					1	Received by :						
		* Re				will be considered as ields may result in a			ing processed.	I	Page	of

Appendix E: 4-PCH Analytical Results



September 29, 2021

Karl Ford Total Environmental Concepts - Lorton 8382 Terminal Road, Suite B Lorton, VA 22079

Reference: PSS Project No: **21092015** Project Name: ACPS IAQ Testing Project Location: Cora Kelly Project ID.: 4920002

Dear Karl Ford:





This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21092015**.

**Certificate of Analysis** 

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on October 25, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

**Dan Prucnal** 

Laboratory Manager

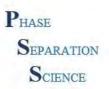




# **Project ID: 4920002**

The following samples were received under chain of custody by Phase Separation Science (PSS) on 09/20/2021 at 03:00 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
21092015-001	CK- Hall 45-46	AIR	09/17/21 00:00
21092015-002	CK- Office	AIR	09/17/21 00:00
21092015-003	CK- Library	AIR	09/17/21 00:00
21092015-004	CK- Cafeteria	AIR	09/17/21 00:00
21092015-005	CK- Class 29	AIR	09/17/21 00:00
21092015-006	CK- Class 26	AIR	09/17/21 00:00
21092015-007	CK- Hall 20	AIR	09/17/21 00:00
21092015-008	CK- Class 8	AIR	09/17/21 00:00
21092015-009	CK- Class 11	AIR	09/17/21 00:00
21092015-010	CK- Hall 15-17	AIR	09/17/21 00:00
21092015-011	CK- Hall 38-39	AIR	09/17/21 00:00
21092015-012	CK- Class 40	AIR	09/17/21 00:00


Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

### Standard Flags/Abbreviations:

- В A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- С Results Pending Final Confirmation.
- The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated. Е
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the MDL. J
- This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the MDL minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL. PSS Reporting Limit.
- U Not detected.



## **Certifications:**

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015



Ms. Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228

September 29, 2021

Account# 15354

Login# L547200

Dear Amber Confer:

Enclosed are the analytical results for the samples received by our laboratory on September 22, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa-Luab

Lisa Swab Laboratory Director

Enclosure(s)



# Account : 15354 Login No. : L547200

# ANALYTICAL REPORT

## **Terms and Conditions & General Disclaimers**

- This document is issued by the Company under its General Conditions of Service accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

## **Analytical Disclaimers**

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at <a href="https://www.sgsgalson.com">www.sgsgalson.com</a>.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at <a href="http://www.sgsgalson.com">http://www.sgsgalson.com</a> in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,
			Environmental Microbiology

State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials
Texas	Texas Dept. of Licensing and	Lab ID: 1042	Mold Analysis Laboratory license
	Regulation		

### Legend

	Parts per Million ppb Volume - ppm Volume anograms
--	-------------------------------------------------------------

```
Version 1.000
```



6601 Kirkville Road East Syracuse, NY 13057

FAX: (315) 437-0571 www.sgsgalson.com

(315) 432-5227

### LABORATORY ANALYSIS REPORT

Client Site Project No	<ul><li>Phase Separation Science, Inc.</li><li>CORA KELLY</li><li>ACPS IAO TESTING-4920002</li></ul>	Account No.: 15354 Login No. : L547200
Date Sampled Date Received	: 17-SEP-21	Date Analyzed : 24-SEP-21 Report ID : 1267058

### 4-Phenylcyclohexene (4PCH low LOQ)

		Air Vol	Front	Back	Total	Conc	ppm
<u>Sample ID</u>	<u>Lab ID</u>	liter	uq	uq	uq	mg/m3	
CK-HALL 45-46	L547200-1	46.6	<0.2	<0.2	<0.2	<0.004	<0.0007
CK-OFFICE	L547200-2	47.4	<0.2	<0.2	<0.2	<0.004	<0.0007
CK-LIBRARY	L547200-3	47.4	<0.2	<0.2	<0.2	<0.004	<0.0007
CK-CAFETERIA	L547200-4	47	<0.2	<0.2	<0.2	<0.004	<0.0007
CK-CLASS 29	L547200-5	46	<0.2	<0.2	<0.2	<0.004	<0.0007
CK-CLASS 26	L547200-6	45.8	<0.2	<0.2	<0.2	<0.005	<0.0007
CK-HALL	L547200-7	45.8	<0.2	<0.2	<0.2	<0.005	<0.0007
CK-CLASS 8	L547200-8	45.6	<0.2	<0.2	<0.2	<0.005	<0.0007
CK-CLASS 11	L547200-9	45.6	<0.2	<0.2	<0.2	<0.005	<0.0007
CK-HALL 15-17	L547200-10	45.4	<0.2	<0.2	<0.2	<0.005	<0.0007
CK-HALL 38-39	L547200-11	47	<0.2	<0.2	<0.2	<0.004	<0.0007
CK-CLASS 40	L547200-12	46.8	<0.2	<0.2	<0.2	<0.004	<0.0007

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of Quantitation: 0.2 ug	Submitted by: BDK	Approved by: NKP
Analytical Method : mod. NIOSH 1501; GC/PID Collection Media : 226-01	Date : 29-SEP-21 Supervisor : KAG	

```
Version 1.000
```



GALSON

LABORATORY FOOTNOTE REPORT

Client Name : Phase Separation Science, Inc. Site : CORA KELLY Project No. : ACPS IAQ TESTING-4920002 6601 Kirkville Road East Syracuse, NY 13057 Date Sampled : 17-SEP-21 Account No.: 15354 (315) 432-5227 Date Received: 22-SEP-21 Login No. : L547200 FAX: (315) 437-0571 Date Analyzed: 24-SEP-21 www.sgsgalson.com

### L547200 (Report ID: 1267058):

Total ug corrected for a desorption efficiency of 97%. SOPs: GC-SOP-16(26), GC-SOP-8(27), GC-SOP-12(20)

L547200 (Report ID: 1267058):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter		Accuracy	Mean Recovery
4-Phenylcyclohexene	(4PCH low LOQ)	+/-18%	88.2%

Page 4 of 7 Report Reference:1 Generated:29-SEP-21 13:27

	L5	47200		21	192015			
SGS GAISO		66: 	ase Separation S 30 Baltimore National Itimore, MD 2122	onal Pike	Invoice To	o* : Phase Se	paration Scie	
Z2313E40164686427 ate:09/22/21 hipper:UPS	Client Account I	No.*:						$(\neg)$
nitials:MAK		Phone No.* : 41(	)-747-8770		Phone N	o.: <u>410-747-877</u>	70	
rep : UNKNOWN		Cell No. :					haseonline.com	$\sim$
	E	Email Results to <u>An</u>	ber Confer orting@phaseonli	no. 00m		o. : <u>ODC 49200(</u> d : Card on File		dia Cand Infa
1	1	Email address. ret	orung@phaseonii	ne.com			Call for Cree	dit Card into.
Need Results By: (surcharge)			Samples submitted usi	ng the FreePumpLoan™	Program 🗍 Samples s	ubmitted using the l	FreeSamplingBadge	s™Program
Standard 0%	Site Name : Cora	Kelly	Pr	oject : ACPS IAQ te	sting - 4920002 Samp	oled by : Karl For	rd	
4 Business Days 35%	Comments :							
3 Business Days 50%	_							
2 Business Days 75%     Next Day by 6pm 100%	List description of ind	ustry or Process/interfe	rences present in same	ling area :	State samples were	Please indicate whi	ich OEL this data wil	be used for :
Next Day by Noon 150%					collected in (e.g., NY)	OSHA PEL		Cal OSHA
Same Day 200%	Public grade s	school			VA	🗋 МЅНА 📋	Other (specify):	
Sample Identification* (Maxmium of 20 Characters)	Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Reque	ested*	Method Reference^	Hexavalent Chromium Process (e.g., welding plating, painting, etc.)*
CK - Hall 45-46	09/17/21	Sm Charcoal tubes / 226-01	46.6	L	4-Phenylcyclohexene	I	mod. NIOSH 1501	
CK - Office	09/17/21	Sm Charcoal tubes / 226-01	47.4	L	4-Phenylcyclohexene		mod. NIOSH 1501	
CK - Library	09/17/21	Sm Charcoal tubes / 226-01	47.4	L	4-Phenylcyclohexene		mod. NIOSH 1501	
CK - Cafeteria	09/17/21	Sm Charcoal tubes / 226-01	47.0	L	4-Phenylcyclohexene	1	mod. NIOSH 1501	
CK - Class 29	09/17/21	Sm Charcoat tubes / 226-01	46.0	L	4-Phenylcyclohexene	1	mod. NIOSH 1501	
CK - Class 26	09/17/21	Sm Charcoal tubes / 226-01	45.8	L	4-Phenylcyclohexene		mod. NIOSH 1501	
CK - Glass 20-19- 0n 9/21	1 09/17/21	Sm Charcoal tubes / 226-01	45.8	L	4-Phenylcyclohexene		mod. NIOSH 1501	
CK - Class 8	09/17/21	Sm Charcoal tubes / 226-01	45.6	L	4-Phenylcyclohexene		mod. NIOSH 1501	
CK - Class 11	09/17/21	Sm Charcoal tubes / 226-01	45.6	L	4-Phenylcyclohexene		mod. NIOSH 1501	
CK - Hall 15-17	09/17/21	Sm Charcoal tubes / 226-01	45.4	L	4-Phenylcyclohexene	1	mod. NIOSH 1501	
CK - Hall 38-39	09/17/21	Sm Charcoal tubes / 226-01	47.0	L	4-Phenylcyclohexene		mod. NIOSH 1501	
AGalson Laboratories will subsititute of	ur routine/preferred met	hod if it does not match	the method listed on t	ne COC unless this box i	s checked: 🔽 Use method(s	s) listed on COC		
For metals analysis: if requesting an an	alyte with the option of a	a lower LOQ, please ind	icate if the lower LOQ i	s required (only availabl	e for certain analytes - see SA	G):		
For crystalline silica: form(s) of silica ne	eded must be indicated	(Quartz, Cristobalite, a	nd/or Tridymite)* :					
	rint Name/Signature		Date Time			e/Signature	Da	
Relinquished by : Channing Jack			/20/21 11:30		anyo		9/20	1
Relinquished by: Arm	6m		4/21	Received by :	Michelle Krause	Michalle +	LAAL 9/22	2 1007
	* R				s next day's business delay in your samples bei 20:29-SEP-21:13:27	ng processed.	, 	Page_1_ of _2_

í	SGS	GALSON	New Client		663	ase Sepa 30 Baltim timore, N	ore Natio	nal Pike		Invoice To	•* : <u>Phase Se</u>	eparatio	on Scie	ence	
	Tel: (315	kville Rd acuse, NY 13057 ) 432-5227 432-LABS (5227)	Phone No.* : <u>410-747-8770</u> Cell No. : Email Results to : <u>Amber Confer</u>							Phone No.: <u>410-747-8770</u> Email : <u>invoicing@phaseonline.com</u> P.O. No. : <u>ODC 4920002-001</u>					
					ress: reporting@phaseonline.com					Credit Card : Card on File Call for Credit Card Info.					
						Samples submitted using the FreePumpLoan [™] Program Samples submitted using the FreeSam								TM Progra	m
	Need Results By:	(surcharge)				Samples sur		-			_	-	ingbadge.	s riogia	
	Standa	rd 0%	Site Name : Cora	Kelly		<u></u>	Pro	ject : ACPS IAQ te	sting - 492	20002 Samp	led by: Karl Fo	ord			
	4 Business Da	/s 35%	Comments :												
	3 Business Da	/s 50%													
	2 Business Da	ys 75%							1						
	Next Day by 6p	n 100%	List description of industry or Process/interferences present in sampling area :							es were	Please indicate w				
	Next Day by No	on 150%	Public grade school							collected in (e.g., NY)					JSHA
	Same Da	y 200%					VA MSHA Other (specify):								
Sample Identification* Date Sampled Co (Maxmium of 20 Characters)			Collection M	Medium Sample Volume Sample Time Sample Area*			Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*			Method Reference^ Proces		Process (e	exavalent Chromium rocess (e.g., welding ating, painting, etc.)*	
CK - Class 40			09/17/21	Sm Charcoal tubes	/ 226-01	46.8		L	4-Phenylcy	clohexene		mod. NIC	SH 1501	1	
											<u></u>				
	·····		<u></u>	<u> </u>											
	<u> </u>										·····				
	·														
			·	1		1			t		- <u>.</u>	1			
												<u> </u>			
			<u></u>			<del> </del>			· · · ·					<u></u>	
				<u> </u>		<u> </u>				_				L	
^G	alson Laboratorie:	will subsititute our	routine/preferred met	hod if it does no	ot match	the method	listed on th	e COC unless this box i	s checked:	Use method(s	s) listed on COC				
For	metals analysis:	f requ <del>es</del> ting an anal	yte with the option of	a lower LOQ, ple	ease ind	icate if the l	ower LOQ is	required (only availabl	e for certain	analytes - see SA	G):		- 4 fr - a fr - b - b - b - b - b - b - b - b - b -		
For	crystalline silica:	form(s) of silica nee	ded must be indicated	(Quartz, Cristob	alite, a	nd/or Tridyn	nite)* :								
Cha	in of Custody	Pri	nt Name/Signature			Date	Time			Print Nam	e/Signature		Da	te	Time
		hanning Jacks	on		09/	/20/21	11:30	Received by :	an	W 70	56-1		9/201	M	1500
	inquished by :	ster-1	65		917	21/21		Received by M			A	Gracus	922	21	1007
	elinquished by: 0.4.4.6.6.6.6.7.7.7.7.7.7.7.7.7.7.7.7.7.7											)	F	Page_2_	of _2_

.



Phase Separation Science, Inc

6630 Baltimore National Pike

Samples Relinquished By: _____

Baltimore, MD 21228

Phone: (410) 747-8770

# Chain of Custody Form for Subcontracted Analyses

Project Location : Cora Kelly

Project Number: 4920002

21092015

W.O. No. :

Preservative

NON

Fax: (410) 788-8723			Rep	ort To LOI	): No	 Old S	Old SGS Galson Labs. bsc				
For Questions or	issues please contact: A	Amber Confer		Report I	Due On :09/29/21 05:00	Phon	315-432-5227				
Lab Sample ID	Field Sample ID	Date Sampled	Time Sampled	Matrix	Analyses Required	Method	Type of Container	Preserv			
21092015-001	CK- Hall 45-46	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-002	CK- Office	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-003	CK- Library	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-004	CK- Cafeteria	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-005	CK- Class 29	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-006	CK- Class 26	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-007	CK- Hall 20	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-008	CK- Class 8	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-009	CK- Class I1	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-010	CK- Hall 15-17	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-011	CK- Hall 38-39	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
21092015-012	CK- Class 40	09/17/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NO			
Send Repor	rables Required t Attn : reporting	@phaseonline.co	mups		-	. on Sample : InvoiceAttn : _i	nvoicing@phasec	<u>mline.com</u>			
Condition Upon Rec	ceipt :										
Comments :	-										
Samples Relinquishe	ed By : Oler Co	Date : 9/2		Гіте: Тіте :	Samples Received By :		••••••••••••••••••••••••••••••••••••••				

Samples Transferred To: SGS North America - NY

6601 Kirkville Road East Syracuse, NY 13057

Page 7 of 7 Report Reference:1 Generated:29-SEP-21 13:27

Version 1.000

Date: _____ Time: ____ Samples Received Bliehelle Krause Michelle Krause 9/22/21 1007

PHASE	
SEPARATION	
SCIENCE	

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

# Sample Receipt:

All sample receipt conditions were acceptable.

21092015: Analyses associated with analyst code 4051 were performed by SGS North America - NY, 6601 Kirkville Road, East Syracuse, NY 13057 - NY 11626

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

# 21092015

SGS (	GALSON	-	-0-2	more Natio	onal Pike			Dice To*: Phase Separation Science							
		Client Account	t No.*: Ba	Baltimore, MD 21228					-						
	use, NY 13057	Cell No. : Email Results to : Amber Confer							No.: 410-747-	8770					
Tel: (315) 4 888-43	432-5227 32-LABS (5227)								Email : <u>invoicing@phaseonline.com</u> P.O. No. : <u>ODC 4920002-001</u>						
www.sgsg	alson.com														
			Email address: re	porting@	phaseonli	ne.com		Credit Ca	rd : Card on	File Call f	or Cred	lit Card In	nfo.		
Need Results By:	(surcharge)			Samples submitted using the FreePumpLoan [™] Program Samples submitted using the FreeSamplingBadges [™] Program									m		
Standard	0%	Site Name : Cora	Kelly		Pro	oject : ACPS IAQ te	sting - 492	0002 Samj	oled by : Karl	Ford					
4 Business Days 3 Business Days	35%	Comments :													
	50%														
2 Business Days	75%										_				
Next Day by 6pm Next Day by Noon	100%	List description of in	List description of industry or Process/interferences present in sampling area : State samples were Collected in (e.g., NY)									_			
Same Day	200%	Public grade school									ACGIH TLV Cal OSHA				
Sample Identifi (Maxmium of 20 C	ication*	Date Sampled	Collection Medium	Sam	ple Volume ple Time ple Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*		<u> </u>	Method Refere	1	Hexavalent Chromium Process (e.g., welding			
CK - Hall 45-46		09/17/21	Sm Charcoal tubes / 226-01	46.6	pieraeu	L	4-Phenylcyc	lohexene		mod. NIOSH	1501	plating, pa	ainting, etc.)*		
CK - Office		09/17/21	Sm Charcoal tubes / 226-01	47.4		L	4-Phenylcyc			mod. NIOSH		-			
CK - Library		09/17/21	Sm Charcoal tubes / 226-01	47.4	1	L	4-Phenylcyclohexene			mod. NIOSH	-	-			
CK - Cafeteria		09/17/21	Sm Charcoal tubes / 226-01	47.0		L	4-Phenylcyclohexene			mod. NIOSH 1501					
CK - Class 29		09/17/21	Sm Charcoal tubes / 226-01	/ 226-01 46.0		L	4-Phenylcyclohexene			mod. NIOSH 1501					
CK - Class 26	. 11	09/17/21	Sm Charcoal tubes / 226-01	/ 226-01 45.8		L	4-Phenylcyclohexene			mod. NIOSH 1501					
CK - Class 20-19-	an 9/21/21	09/17/21	Sm Charcoal tubes / 226-01	45.8		L	4-Phenylcyc	lohexene		mod. NIOSH	1501	1.1			
CK - Class 8		09/17/21	Sm Charcoal tubes / 226-01	45.6		L	4-Phenylcyc	lohexene		mod. NIOSH	1501				
CK - Class 11		09/17/21	Sm Charcoal tubes / 226-01	45.6	11	L	4-Phenylcyc	lohexene		mod. NIOSH	1501				
CK - Hall 15-17		09/17/21	Sm Charcoal tubes / 226-01	45.4	1.0	L	4-Phenylcyc	lohexene	-	mod. NIOSH	1501				
CK - Hall 38-39		09/17/21	Sm Charcoal tubes / 226-01	47.0		L	4-Phenylcyc	lohexene		mod. NIOSH	1501				
AGalson Laboratories wil	Il subsititute our r	outine/preferred met	hod if it does not match	the metho	d listed on the	e COC unless this box is	checked:	Use method(s	listed on COC						
For metals analysis: if rec								-							
For crystalline silica: form	n(s) of silica need	ed must be indicated	(Quartz, Cristobalite, an	nd/or Tridyr	mite)* :				_						
Chain of Custody	1.2.4.6	t Name/Signature	1	Date	Time			Print Name	e/Signature	Da			Time		
	inning Jackso		09/	20/21	11:30	Received by :	are	1208	2	9/201		2	ISUD		
Relinquished by: any logo				1121	1	Received by :									

# 21092015

SGS GALSON			New Client? Report To* : Phase Separation Science 6630 Baltimore National Pike Client Account No.*: Baltimore, MD 21228						Invoice 7	^{ro* :} Phase :	Separati	on Scie	ence				
	East S Tel: (3 88	(irkville Rd yracuse, NY 13057 15) 432-5227 88-432-LABS (5227) sgsgalson.com	Cell No :							Phone No.: <u>410-747-8770</u> Email : <u>invoicing@phaseonline.com</u> P.O. No. : <u>ODC 4920002-001</u> Credit Card : Card on File Call for Credit Card Info.							
	Need Results By	: (surcharge)			Samples su	bmitted usin	submitted using t	the FreeSamp	olingBadge	s [™] Progra	m						
Z	Stand	dard 0%	Site Name : Cora	Kelly	Project : ACPS IAQ testing - 4920002 Sampled by : Karl Ford								rd				
	4 Business D	Days 35%	Comments :														
	3 Business D	Days 50%															
	2 Business D	Days 75%															
	Next Day by 6	ipm 100%	List description of in	dustry or Process/interfe	les were	Please indicate			be used	for :							
	Next Day by N	oon 150%	Public grade	school	n (e.g., NY) OSHA PEL ACGIH TLV Cal OSHA												
	Same	Day 200%	i ublic grade	301001		MSHA	Other (s	specify):									
		entification* f 20 Characters)	Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area*		Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*		ested*	Method Reference^		Hexavalent Chromium Process (e.g., welding plating, painting, etc.)				
CK - Class 40			09/17/21	09/17/21 Sm Charcoal tubes / 226-01			L	4-Phenylcyclohexene		mod. N		NIOSH 1501					
^Ga	Ison Laboratorie	es will subsititute our r	routine/preferred met	thod if it does not match	the method	listed on th	e COC unless this box is	checked:	Use method(s	s) listed on COC	-						
For	metals analysis:	if requesting an analy	te with the option of	a lower LOQ, please ind	licate if the lo	ower LOQ is											
-				(Quartz, Cristobalite, an			T						-				
-	n of Custody		t Name/Signature		Date (20/21	Time		6		e/Signature		Dat		Time			
	nquished by : nquished by :	Channing Jackso	55		20/21	11:30	Received by : Received by :	an	w 1 % 6	567		9/201	Ч	1500			
			* F	Samples	s received a		will be considered as ields may result in a			ng processed		Pa	age 2	of 2			



**Client Name** Total Environmental Concepts - Lort Received By Amber Confer **Disposal Date** 10/25/2021 Date Received 09/20/2021 03:00:00 PM **Delivered By** Client Not Applicable **Tracking No** Logged In By Amber Confer Shipping Container(s) No. of Coolers 0 N/A Ice Custody Seal(s) Intact? N/A Temp (deg C) N/A Temp Blank Present No Seal(s) Signed / Dated? Sampler Name Karl Ford Documentation MD DW Cert. No. COC agrees with sample labels? Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Holding Time Total No. of Samples Received 12 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 12 Preservation **Total Metals** (pH<2) N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2) N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12) N/A Sulfide (pH>9) N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2) TOX, TKN, NH3, Total Phos (pH<2) N/A VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2) N/A Do VOA vials have zero headspace? N/A 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2) N/A

Sample Receipt Checklist

# Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:

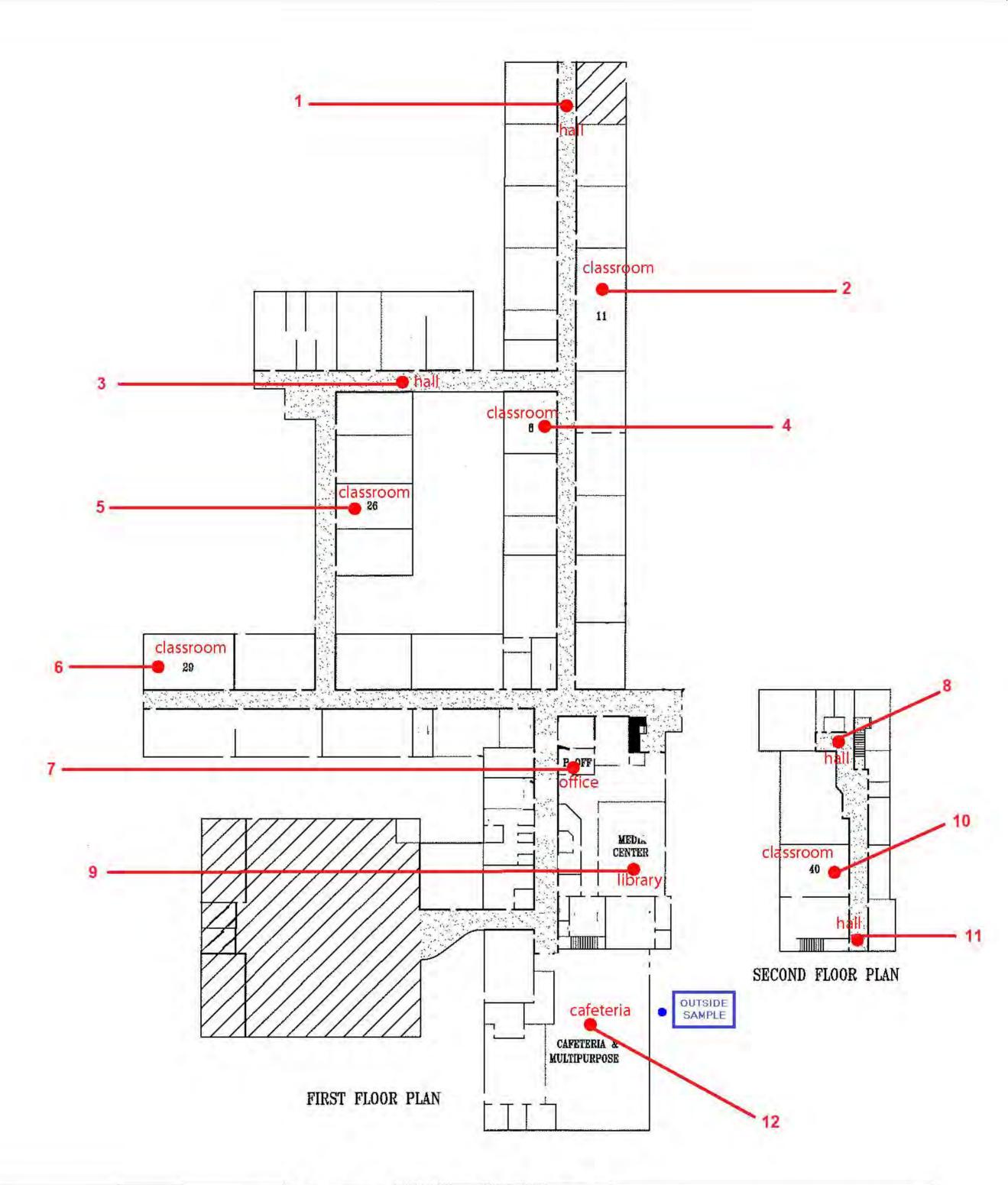
Date: 09/21/2021

PM Review and Approval:

Jackson)

Amber Confer

Date: 09/21/2021


Lynn Jackson Page 14 of 14


Version 1.000

SGS	GALSON	New Client?	Report To* :					Invoice T	o* :				
000	UALOUI	Client Account N	lo.*:										
6601 K	rkville Rd							_					
East Sy	racuse, NY 13057		Phone No.* :										
	5) 432-5227 8-432-LABS (5227)		Cell No. :					Em	ail :				
	gsgalson.com	E							lo. :				
00000.5	gsgalson.com		Email address:					Credit Ca	rd : 🗌 Card on Fi	le 🗌 Call for	Credit Card	Info.	
Need Results By:	(surcharge)		Samples submitted using the FreePumpLoan [™] Program							e FreeSamplingBa	dges [™] Prog	ram	
Stand	ard 0%	Site Name :			Pro	oject :		Sam	pled by :				
4 Business D	ays 35%	Comments :											
3 Business D	ays 50%												
2 Business D	ays 75%												
Next Day by 6	om 100%	List description of indu	istry or Process/interfe	rences pres	ent in sampl	ling area :	State sam			hich OEL this data	will be use	d for :	
Next Day by No	oon 150%						collected	in (e.g., NY)		ACGIH TLV Cal OSHA			
Same E	ay 200%								MSHA	Other (specify	:		
	entification* 20 Characters)	Date Sampled	Collection Medium	Samp	e Volume ole Time ole Area*	Sample Units*: L, ml,min,in2,cm2,ft2		Analysis Requ	ested*	Method Reference	e^ Process	ent Chromium (e.g., welding painting, etc.)*	
											_		
											_		
^Galson Laboratorie	s will subsititute ou	routine/preferred metho	od if it does not match	the methor	d listed on th	e COC unless this box i	s checked:	Use method(	s) listed on COC				
		yte with the option of a							•				
		ded must be indicated ((				· •							
Chain of Custody	Pri	nt Name/Signature		Date	Time			Print Nan	ne/Signature		Date	Time	
Relinquished by :		0				Received by :			0			-	
Relinquished by :					1	Received by :							
		* Re				will be considered as ields may result in a			ing processed.	I	Page	of	

SGS	GALSON	New Client?	Report To* :					Invoice T	o* :				
000	UALOUI	Client Account N	lo.*:										
6601 K	rkville Rd							_					
East Sy	racuse, NY 13057		Phone No.* :										
	5) 432-5227 8-432-LABS (5227)		Cell No. :					Em	ail :				
	gsgalson.com	E							lo. :				
00000.5	gsgalson.com		Email address:					Credit Ca	rd : 🗌 Card on Fi	le 🗌 Call for	Credit Card	Info.	
Need Results By:	(surcharge)		Samples submitted using the FreePumpLoan [™] Program							e FreeSamplingBa	dges [™] Prog	ram	
Stand	ard 0%	Site Name :			Pro	oject :		Sam	pled by :				
4 Business D	ays 35%	Comments :											
3 Business D	ays 50%												
2 Business D	ays 75%												
Next Day by 6	om 100%	List description of indu	istry or Process/interfe	rences pres	ent in sampl	ling area :	State sam			hich OEL this data	will be use	d for :	
Next Day by No	oon 150%						collected	in (e.g., NY)		ACGIH TLV Cal OSHA			
Same E	ay 200%								MSHA	Other (specify	:		
	entification* 20 Characters)	Date Sampled	Collection Medium	Samp	e Volume ole Time ole Area*	Sample Units*: L, ml,min,in2,cm2,ft2		Analysis Requ	ested*	Method Reference	e^ Process	ent Chromium (e.g., welding painting, etc.)*	
											_		
											_		
^Galson Laboratorie	s will subsititute ou	routine/preferred metho	od if it does not match	the methor	d listed on th	e COC unless this box i	s checked:	Use method(	s) listed on COC				
		yte with the option of a							•				
		ded must be indicated ((				· •							
Chain of Custody	Pri	nt Name/Signature		Date	Time			Print Nan	ne/Signature		Date	Time	
Relinquished by :		0				Received by :			0			-	
Relinquished by :					1	Received by :							
		* Re				will be considered as ields may result in a			ing processed.	I	Page	of	

Appendix F: Sampling Locations





Appendix G: Photographs



Cora Kelly, Media Center



Cora Kelly, Cafeteria



Cora Kelly, Second Floor Hall



Cora Kelly, Classroom



Cora Kelly, Hallway



Cora Kelly, Office