Marietta City Schools

2024–2025 District Unit Planner

Grade & Course: Physics	Topic: 2D Motion	Duration: 6 weeks				
Teachers: Physics PLC Teachers						
Georgia Standards and Content:						
SP1c-d						
c. Ask questions to compare and contrast	scalar and vector quantities.					
d. Analyze and interpret data of two-dime	ensional motion with constant acceleration.					
Resolve position, velocity, or acc	eleration vectors into components (x and y,	horizontal and vertical).				
Add vectors graphically and math	nematically by adding components.					
Interpret problems to show that	objects moving in two dimensions have ind	lependent motions along each coordinate axis.				
Design an experiment to investig	ate the projectile motion of an object by co	ollecting and analyzing data using kinematic equations.				
Predict and describe how change	es to initial conditions affect the resulting m	iotion.				
Calculate range and time in the a	air for a norizontally launched projectile.					
SP24						
d Plan and carry out an investigation to g	SP20 d. Blan and carry out an investigation to gather ovidence to identify the force or force component responsible for causing an object to move along a circular path					
Calculate the magnitude of a cer	atter evidence to identify the lorce of lorce					
Narrative / Background Information						
Prior Student Knowledge: (REFLECTION -	- PRIOR TO TEACHING THE UNIT)					
From 8th grade Physical Science						
Basic algebra						
Basic understanding of distance, speed, and acceleration						
From Previous unit (1D Motion)						
Solving constant velocity problems						
Solving position kinematic problems						
Definition of vector and examples						
Conceptual understanding of constant velocity vs acceleration						
The lows of physics distate the interactions of our physical world						
The laws of physics dictate the interactions of our physical world.						

Unit Phenomena (LEARNING PROCESS) The hammer throw in track & field requires precise motion in order to launch the hammer for max range					
MYP Inquiry Statement: Modeling changes in motion graphically and mathematically predicts future movement.					
MYP Global Context: Scientific and Technical Innovation					
Approaches to Learning Skills: Research Skills Thinking Skills Collaboration Skills Communication Skills	Disciplinary Core Ideas: (KNOWLEDGE & SKILLS) Vector Components Adding Vectors Graphically Adding Vectors Mathematically Projectile Motion	Crosscutting Concepts: (KNOWLEDGE & SKILLS) Cause & Effect (CC) Stability & Change (CC & MYP) Systems & System Models (CC & MYP) Patterns (CC)			
		MYP Key and Related Concepts: Select one Key Concept: Cause & Effect (CC)			
		Select one or more RC: Movement & Energy Systems & System Models (CC & MYP)			
Possible Preconcentions/Misconcentions: (REFLECTION - DRIOR TO TEACHING THE LINIT)					

Possible Preconceptions/Misconceptions: (REFLECTION – PRIOR TO TEACHING THE UNIT)

Students might not have prior knowledge about basic trig functions of sine, cosine, tangent, and Pythagorean theorem needed for adding vectors mathematically. Take time to review.

An object shot horizontally has no velocity in y axis thus will hit the ground at the same time as one dropped. Often students believe the one shot will hit the ground first. Students might not recognize that centripetal acceleration goes towards the center of the circle. They are used to feeling pushed the opposite way that a car turns and do not understand this is from Newton's 1st law.

Key Vocabulary: (KNOWLEDGE & SKILLS)

Vector Component **Resultant Vector**

Centripetal Acceleration Tangential						
Inquiry Questions:						
Factual						
Which di What ma	Which direction does an object's velocity and acceleration point when moving in circular motion? What mathematical operations can be used to determine the x and y components of a vector?					
Conceptual						
How doe How can How can Would a Debatable	How does an object in projectile motion move in the x and y axis? How can vectors be added graphically? How can vectors be added mathematically? Would a dropped or horizontally launched object hit the ground first? Debatable					
What de	monstrations/experiments could be run that would support the	e concepts of addition of vectors?				
MYP Objectives	Summative assessment					
MYP A MYP D	Assessment Task: 2D Summative Test: MYP A/D	Relationship between summative assessment task(s) and statement of inquiry: The assessment measures how well students determine vector quantities using graphical and mathematical through analysis. Conceptual understanding of the types of motion in projectile motion is tested as well as problem solving for projectile and centripetal acceleration.				
Unit Objectives: 2D Motion Need to Know - https://docs.google.com/document/d/17QhgtpgueY-WrWUi1VCPdXrcMFWG0u4ab3OoUqiUv3k/edit?usp=sharing						

Constant Velocity

Free Fall

Learning Activities and Experiences	Inquiry & Obtain: (LEARNING PROCESS)	Evaluate: (LEARNING PROCESS)	Communicate: (LEARNING PROCESS)
Week 1:	Students will analyze and measure the vector components of a trip through a city graphically.	Students solve for vector components graphically by counting out the components to scale.	Students create whiteboards showing their work to determine the addition of vectors graphically. They compare their results against the setup in class.
Week 2:	Students will analyze and measure the vector components of a trip through a city using trig functions	Students solve for where a boat would land on an opposing shore as it crosses a river.	Students create whiteboards showing their work to determine the location that a boat would land on an opposing shore.
Week 3:	Students observe a ball dropped and a ball launched to discuss conceptually what is projectile motion. Students take measurements for objects launched (time and range).	Students use the equations from projectile motion to predict where an object launched horizontally will land.	Students show work on a whiteboard predicting where a horizontally launched object will land and test their prediction using the projectile motion launchers.
Week 4:	Students examine a centripetal force set up with a stopper spinning causing a mass to be held up.	Students calculate the needed force to hold a mass up with a spinning stopper.	Students create whiteboards showing their work calculating the needed force to hold a mass up with a spinning stopper and compare their results with the actual mass.

Week 5: Remediat ion	Students complete a review quiz to diagnose strengths and weaknesses in the content.	Students complete review activities based upon quiz results.			
Resources (hyperlink to model lessons and/or resources): (click here for description)					
Discovery Education Science Techbook 2D Motion Schoology Unit: <u>https://marietta.schoology.com/group/1606049999/materials#/group/1606049999/materials?f=63015431</u>					
Reflection: Considering the planning, process and impact of the inquiry					
Prior to tead	ching the unit	During teaching	After teaching the unit		