
1

Python Programming Cover
Content Area: Sample Content Area

Course(s):
Time Period:
Length: Semester
Status: Published

Course Overview

In this course, students are introduced to programming and problem solving using the Python language.

Algorithm development and basic problem solving techniques are introduced using a procedural approach.

Topics covered include programming with numbers, strings, lists, tuples, sets, dictionaries, files, control

structures, functions with parameter passing, scope and the Python libraries. Finding and fixing errors, using

a debugger and an introduction to exception handling, are presented and implemented.

Course Name, Length, Date of Revision and Curriculum Writer

Python Programming

Elective

Sayreville War Memorial High School

2.5 Credits

Semester Course

Curriculum Writer: Atiyah Conry

2

Date Curriculum Approved/ Revised: 06/30/2024

Table of Contents

Table of Contents

Statement of Purpose

Unit 1: (I/O and Math in Python)

Unit 2: (Control Structures)

Unit 3: (Functions)

Unit 4: (Data Structures)

Unit 5: (File I/O)

3

Unit 01: Python I/O and Math
Content Area: Sample Content Area

Course(s):
Time Period: 1st Semester
Length: 13 days
Status: Awaiting Review

Summary of the Unit

This introductory Python programming unit will equip students with the fundamental building blocks of

coding and computational thinking. Students will first explore how computers process information, from

receiving input to producing output, gaining a deeper understanding of the technology they use every day.

Through hands-on practice with the user-friendly Replit.com online environment, students will create their

own Python programs, experiencing the power of code firsthand.

Building on these core concepts, students will master essential programming techniques. They will learn to

display information on screen, gather input from the user, store data effectively, and perform basic

calculations. This knowledge will enable them to create interactive programs that respond to user input and

manipulate data, opening up a world of creative possibilities. By the end of this unit, students will not only

be familiar with Python syntax, but they will also have developed problem-solving skills and a solid

foundation for future programming endeavors.

Enduring Understandings

Python is a high-level programming language consisting of commands used to store, manipulate, and

display data.

• Computers as Tools: Computers are powerful tools that can process information efficiently and

accurately when given precise instructions through programming.

• Input/Output Interaction: Programs interact with users by taking input, processing it, and providing

output. This interaction enables dynamic and personalized user experiences.

• Data Types and Operations: Different types of data require different handling, and specific

operations can transform and manipulate that data to solve problems and generate insights.

• Mathematical Problem Solving: Programming allows for the automation of mathematical

calculations, making it a valuable tool for solving complex problems and analyzing data.

• Syntax and Structure: Programming languages, like Python, have specific syntax rules and structures

that must be followed for instructions to be understood and executed by the computer.

Essential Questions

• How do computers communicate with humans through input and output?

• How can we use Python to gather information from users and respond effectively?

4

• Why are different data types (e.g., strings, integers, floats) important in programming, and how do

we convert between them?

• What are the fundamental mathematical operations in Python, and how can they be combined to

solve problems?

• How do programming concepts like variables and functions help us organize and structure our code

for clarity and efficiency?

• How can we use Python's math capabilities to create programs that analyze data, automate

calculations, and make decisions?

• What are the real-world applications of using Python for input/output operations and mathematical

computations?

• How does following the correct syntax and structure in Python ensure our code is interpreted and

executed accurately by the computer?

• How can we apply our knowledge of Python I/O and math to create interactive and useful programs?

Summative Assessment and/or Summative Criteria

Students will create a Python program that demonstrates their understanding of the unit's concepts. The

project should incorporate the following elements:

• Input/Output Interaction: The program should gather input from the user, process it, and provide

meaningful output.

• Data Manipulation: The program should use variables to store different types of data (e.g., strings,

integers, floats) and perform relevant operations on them.

• Mathematical Operations: The program should utilize at least two different mathematical operations

to solve a problem or generate a result.

• Code Structure: The program should be well-organized, with comments explaining the purpose of

different sections and clear variable names.

Project Examples:

• Calculator: A program that takes mathematical input from the user and performs the desired

operation(s).

• Unit Converter: A program that converts between different units of measurement (e.g., Celsius to

Fahrenheit, inches to centimeters).

• Interactive Story: A Mad Libs-style program that gathers words from the user and creates a story or

poem.

• Simple Data Analysis: A program that analyzes a set of data (e.g.,

Students will complete written assessment covering topics from unit 1

Resources

• Replit online ID

5

• Project STEM curriculum Python curriculumE

• Python API (https://docs.python.org/3.12/)

Unit Plan

Topic/Select
ion

Timeframe

General
Objectives

Instructional
Activities

Benchmarks/Assess
ments

Standar
ds

Computer

Programming

and hig level

programming

languages (1

day)

SWBAT

o Describe the

different

levels

of program

ming

languages

o Identify

high and

low level

languages

o Define

computer

programmin

g

o Teacher

will

discuss

computer

programm

ing and its

definition

o Teacher

will

discuss

levels of

programm

ing

language

and the

difference

between

the

different

levels

o Students

will

research

list of

common

and

uncommo

n high

level

programm

ing

languages

completion of

programming language

research activity

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

 Basic output

(1 day)

 SWBAT

o Create, run

and save a

python

program

o Teacher

will

review

and

discuss

 Updated hello world

project

Project Stem Coding

Activities Section 1.5

CS.9-

12.AP

https://docs.python.org/3.12/

6

o Define the

information

processing

cycle

o Use print

statements

in Python

the

informatio

n

processing

cycle

o Teacher

will

introduce

the replit

IDE

o Students

will create

hello

world

applicatio

n

o Teacher

will

discuss

the

different

componen

ts of the

Print

statement

CS.9-

12.DA

CS.9-

12.IC

Basic input (1

day)

SWBAT

o Be able to

define and

utilize input

and

variables

o Be able to

describe the

rules for

good

variable

naming

o Teacher

will

introduce

topic

o Teacher

will

discuss

Print

statements

and

variations

in Python

o Students

will

practice

writing

python

statements

Project Stem Coding

Activities Section 1.6

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

 Variables and

their types (1

day)

 SWBAT

o Be able to

define and

utilize

variables

o Be able to

distinguish

o Teacher

will

introduce

variable

data

structure

Project Stem Coding

Activities Section 1.7

CS.9-

12.AP

CS.9-

12.DA

7

between the

variable

types of

integer and

string

o TW

discuss

variable

types and

review

primitive

types in

Python

(int, float

and

String)

o SW

complete

Project

Stem

coding

activities

CS.9-

12.IC

Lab

Assignment:

Silly

Sentences (3

days)

SWBAT

o Demonstrat

e

knowledge

of variables

and print

statements

by

completing

Assignment

Students will

write program

that asks for user

input and

complete

sentences base on

the user input

Project Stem

Assignment:

Silly Sentences. Students

will use input and output

for

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Basic

Mathematical

equations (1

day)

SWBAT:

o Define and

utilize

floats,

operators

and

assignments

.

o List the

symbols for

the basic

operators

and

exponents.

o Perform the

order of

operations.

o Be able to

define and

utilize

modular

division

o Teacher

will

discuss

math

operators

and

statements

in Python

o Teacher

will

discuss

the

different

types of

division in

Python

o Students

will

complete

Project

Stem

coding

activities

Project Stem Coding

Activities Section 2.2 and

2.3

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

8

Math

Functions (1

day)

SWBAT

o Be able to

define and

utilize

import,

functions,

and

modules

o Know how

to calculate

the square

roots,

absolute

values, and

power of

numbers

o Be able to

generate

random

numbers

with the

random

function

o Teacher

will will

introduce

Math

functions

and how

they

enhance

arithmetic

in Python

programs

o Teacher

will

discuss

import

statements

and how

they bring

functional

ity into a

program

o Teacher

will

discuss

random

library

and

describe

the

psuedoran

dom

values in

programm

ing

languages

o Students

will

complete

project

stem

practice

activities

Project Stem Coding

Activities Section 2.4 and

2.5

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

 Lab

Assignment:

Room Area

(3 days)

SWBAT

o Demonstrat

e

knowledge

of input,

output and

math

operations

o Students

will write

program

to

calculate

the area of

given

room with

Project Stem: Room Area

assignment

CS.9-

12.AP

CS.9-

12.DA

9

in Python

by

completing

a room area

project

unusual

dimension

s

CS.9-

12.IC

Unit 1 Exam

(1 day)

Students will

demonstrate

knowledge of

python input,

output and

mathematical

operations by

completing Unit 1

Exam

Students will take

unit 1 Exam

 Unit Exam CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Standards

12.9.3.IT-PRG Programming & Software Development

CS.9-12.8.1.12.AP.1 Design algorithms to solve computational problems using a combination of original and
existing algorithms.

CS.9-12.8.1.12.AP.5 Decompose problems into smaller components through systematic analysis, using
constructs such as procedures, modules, and/or objects.

CS.9-12.8.1.12.AP.6 Create artifacts by using procedures within a program, combinations of data and
procedures, or independent but interrelated programs.

CS.9-12.8.1.12.CS.2 Model interactions between application software, system software, and hardware.

CS.9-12.8.1.12.CS.3 Compare the functions of application software, system software, and hardware.

CS.9-12.8.1.12.CS.4 Develop guidelines that convey systematic troubleshooting strategies that others can use
to identify and fix errors.

CS.9-12.8.1.12.DA.2 Describe the trade-offs in how and where data is organized and stored.

CS.9-12.8.1.12.DA.3 Translate between decimal numbers and binary numbers.

CS.9-12.8.1.12.DA.4 Explain the relationship between binary numbers and the storage and use of data in a
computing device.

CS.9-12.8.1.12.DA.5 Create data visualizations from large data sets to summarize, communicate, and support
different interpretations of real-world phenomena.

CS.9-12.8.1.12.IC.2 Test and refine computational artifacts to reduce bias and equity deficits.

CS.9-12.8.2.12.ED.1 Use research to design and create a product or system that addresses a problem and
make modifications based on input from potential consumers.

CS.9-12.8.2.12.ED.5 Evaluate the effectiveness of a product or system based on factors that are related to its
requirements, specifications, and constraints (e.g., safety, reliability, economic

10

considerations, quality control, environmental concerns, manufacturability, maintenance
and repair, ergonomics).

CS.9-12.8.2.12.ITH.3 Analyze the impact that globalization, social media, and access to open source
technologies has had on innovation and on a society’s economy, politics, and culture.

CS.9-12.DA Data & Analysis

 Successful troubleshooting of complex problems involves multiple approaches including
research, analysis, reflection, interaction with peers, and drawing on past experiences.

 Trade-offs related to implementation, readability, and program performance are
considered when selecting and combining control structures.

Suggested Modifications for Special Education, ELL and Gifted Students

Special Education Students:

• Visual Supports: Utilize visual aids like flowcharts and diagrams to illustrate the input/output

process and order of operations.

• Chunked Instruction: Break down tasks into smaller, manageable steps with clear instructions and

examples.

• Alternative Input Methods: Allow students to use voice-to-text or other assistive technologies for

inputting code or responses.

• Reduced Complexity: Modify assignments to focus on core concepts, reducing the number of steps

or complexity of calculations.

• Frequent Check-Ins: Provide regular feedback and guidance to ensure understanding and prevent

frustration.

• Extra Practice: Offer additional practice opportunities with scaffolding and support to build

confidence.

English Language Learners (ELLs):

• Visuals and Realia: Use visuals, diagrams, and real-world objects to reinforce vocabulary and

concepts.

• Simplified Language: Provide instructions and explanations in clear, concise language, avoiding

jargon and idioms.

• Bilingual Resources: Offer dictionaries or translation tools to support vocabulary acquisition.

• Peer Support: Pair ELLs with supportive peers to provide language scaffolding and collaboration

opportunities.

• Multilingual Coding Examples: Use code examples with comments in multiple languages to aid

understanding.

• Cultural Connections: Relate programming concepts to familiar cultural contexts or real-world

scenarios.

Gifted Students:

• Open-Ended Challenges: Offer open-ended projects or problems that allow for creativity and

exploration beyond the basic requirements.

• Advanced Concepts: Introduce more complex Python features like conditional statements or loops to

extend learning.

11

• Independent Research: Encourage students to research and explore additional libraries or modules

related to their interests.

• Mentoring Opportunities: Pair gifted students with mentors who can provide guidance and support in

their advanced explorations.

• Real-WorldApplications: Connect programming concepts to real-world problems or challenges in

fields like data science or artificial intelligence.

• Collaboration: Encourage collaboration with other gifted students to create more sophisticated or

innovative projects.

Suggested Technological Innovations/Use

• Students should use online resources to research topics covered

• Students will use java IDE to test and execute code

• Students will use Java API online resource

Cross Curricular/Career Readiness, Life Literacies and Key Skills Practice

9.1 21
st

 Century Life and Career Skills: All students will demonstrate the creative, critical thinking,

collaboration, and problem-solving skills needed to function successfully as both global citizens and

workers in diverse ethnic and organizational cultures.

9.3– Career and Technical Education Career Cluster: Information Technology (IT)

• 9.3.12.IT.11: Demonstrate knowledge of the hardware components associated with information systems.

• 9.3.12.IT-SUP.9: Employ technical writing and documentation skills in support of an information system.

Pathway: Programming & Software Development (IT-PRG)

• 9.3.12.IT-PRG.4: Demonstrate the effective use of software development tools to develop software

applications.

• 9.3.12.IT-PRG.5: Apply an appropriate software development process to design a software application.

• 9.3.12.IT-PRG.6: Program a computer application using the appropriate programming language.

• 9.3.12.IT-PRG.7: Demonstrate software testing procedures to ensure quality products.

English Language Arts

• Journal writing • Close reading of industry-related content • Create a brochure for a specific industry •

Keep a running word wall of industry vocabulary Social Studies • Research the history of a given

industry/profession • Research prominent historical individuals in a given industry/profession • Use

historical references to solve problems

World Language • Translate industry-content • Create a translated index of industry vocabulary • Generate a

translated list of words and phrases related to information technology

Math • Compare and contrast use of equations and variables in algebra and programming. • Program

graphics and use the properties of geometric shapes • Compare the computer graphic coordinate system with

the Cartesian coordinate plane in math • Compare probability and the use of random numbers in computer

programming. • Track and track various data, such as industry’s impact on the GDP, career opportunities or

12

among of individuals currently occupying careers

Fine & Performing Arts • Create a poster recruiting young people to focus their studies on a career in

Information Technology

Science • Research the environmental impact of a given career or industry • Research latest developments in

Information technology • Investigate applicable-careers in STEM fields

13

Unit 02: Control Structures
Content Area: Sample Content Area

Course(s):
Time Period: 1st Semester
Length: 19 days
Status: Awaiting Review

Summary of the Unit

This unit builds on the foundational programming concepts learned in the introductory Python unit. Students

will dive into control structures, the essential tools that allow programs to make decisions and repeat actions

based on specific conditions. They will explore conditional statements (if, else, elif) to create branching

paths within their code, enabling programs to respond differently depending on user input or other data.

Additionally, they will learn about loops (for, while) which empower programs to automate repetitive

tasks, making them more efficient and powerful.

Through a series of engaging exercises and projects, students will gain hands-on experience implementing

control structures to create more dynamic and interactive programs. They will learn to design logical flows,

test conditions, and control the execution of code blocks. By the end of the unit, students will have a solid

grasp of control structures, a fundamental building block for creating sophisticated and intelligent software.

Enduring Understandings

• Program Flow: Programs don't just execute line by line; control structures allow for dynamic

decision-making and repetition, altering the flow of execution based on conditions.

• Conditional Logic: Conditional statements (if, else, elif) enable programs to evaluate conditions and

execute different code blocks accordingly, making them adaptable and responsive.

• Loops and Iteration: Loops (for, while) automate repetitive tasks, allowing programs to process data

efficiently and perform actions a specified number of times or until a condition is met.

• Logical Thinking: Programming with control structures requires strong logical thinking skills to

design algorithms that effectively address different scenarios and problem-solving approaches.

• Code Efficiency: Control structures can significantly improve the efficiency and readability of code

by eliminating the need to write redundant instructions.

• Building Complexity: Control structures are the building blocks for creating complex and

sophisticated programs that can adapt to varying inputs and situations.

Essential Questions

• How do control structures (if-else statements and loops) change the way a program executes?

• How can we use conditional statements to create programs that make decisions based on different

inputs or conditions?

• What types of problems can be solved more efficiently using loops, and how do we choose the

appropriate type of loop (for or while)?

14

• How do boolean expressions (True/False) play a crucial role in controlling the flow of programs with

conditional statements and loops?

• What are the potential pitfalls or errors that can arise when using control structures, and how can we

debug our code effectively?

• How can we combine multiple control structures to create more complex programs with nested

conditions or multiple loops?

• How do control structures contribute to the overall logic and structure of a well-designed program?

• What are some real-world examples of programs that rely heavily on control structures to achieve

their functionality?

Summative Assessment and/or Summative Criteria

Option 1: Project-Based Assessment

Students will create a Python program that demonstrates their mastery of control structures. The project

should incorporate the following elements:

• Conditional Statements: The program should use if, else, and/or elif statements to make decisions

based on user input or other conditions.

• Loops: The program should use for or while loops to automate repetitive tasks.

• Logical Flow: The program should have a clear and logical flow of execution, with appropriate use

of indentation and control structures.

• Error Handling: The program should include basic error handling mechanisms to prevent crashes and

provide helpful feedback to the user.

Project Examples:

• Number Guessing Game: The program generates a random number, and the user has to guess it

within a certain number of attempts. The program provides feedback on whether the guess is too

high or too low.

• Quiz Game: The program asks the user a series of questions and keeps track of the score. The

program provides feedback on correct and incorrect answers.

• Text-Based Adventure: The program presents the user with a series of choices that affect the

outcome of the story. The program uses conditional statements to create branching paths.

• Grade Calculator: The program takes a list of grades from the user and calculates the average. The

program uses loops to iterate over the list of grades.

Resources

• Replit online ID

• Project STEM curriculum Python curriculumE

• Python API (https://docs.python.org/3.12/)

https://docs.python.org/3.12/

15

Unit Plan

Topic/Selectio
n

Timeframe

General
Objectives

Instructional
Activities

Benchmarks/Assessme
nts

Standard
s

Boolean

expressions and

logical operators

(1 day)

SWBAT

• Be able to

list the

symbols for

different

relational

operators

• Understand

and be able

to use

logical

operators

• Use logical

operators to

create

boolean

expressions

o Students

will

complete

Project

Stem

coding

Activities

Project Stem Coding

Activities Section 3.3

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

If Else

Statements

(2 days)

 SWBAT

o Be able to

define and

code if-else

statements

o Be able to

define and

code nested

elif (else-if)

statements

o Be able to

determine

when it

would be

appropriate

to use an if

statement,

if-else

statement,

o Teacher

will review

If Else

statements

and how

they

enhance the

enhance the

computer

program

o Students

will work

with

partners

to write

code that

will

o Students

will

complete

Project

Stem

Project Stem Coding

Activities Section 3.1 and

3.2

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

16

or else-if

statement

coding

Activities

Lab

Assignment:

Chat Bot (3

days)

Students will

Demonstrate

knowledge of if

statements by

creating a simple

chat bot

o Students

will

complete

chat bot

assignment

Project Stem: Chat Bot

Assignment

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

While Loops

(2 days)

 SWBAT

o Use a while

loop and a

do while

loop in a

Python

program

o Be able to

define and

code while

loops and

loop control

variables

o Describe

the purpose

of a loop in

a computer

program.

o Teacher

will

introduce

the idea of

the loop in

programmi

ng

o Students

will review

the

structure of

the while

loop

o Students

will

complete

Project

Stem

coding

Activities

Project Stem Coding

Activities Section 4.1

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Counting vs.

user controlled

loops

(2 days)

 SWBAT

o Be able to

end loops

using count

variables

and user

input

o Be able to

state when

to use them

o Teacher

will discus

s loops and

how the

two loop

structures

o Students

will will

work to

build

examples

of both

o Class will

discuss

scenarios

when one

should be

 .

Project Stem Coding

Activities Section 4.2 and

4.3

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

17

used over

the other

o Students

will

complete

Project

Stem

coding

Activities

Lab: guessing

game

(3 days)

 SWBAT

demonstrate

knowledge of the

while loop

o Students

will

complete

guessing

game

assignment

Guessing game:

 User will be asked to enter

numbers attempting to guess

secret random number until

they quit or get the answer

correct.

Enhanced: students will give

feedback about input (hot or

cold) based on guess

relationship to secret value.

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Range function

and for loops (2

days)

SWBAT

o Define and

utilize the

range

function

using 1, 2,

or 3

parameters

o Be able to

define and

code for

loops

o Learn when

to use a for

loop rather

than a while

loop

o Students

will comple

te Project

Stem

coding

Activities

Project Stem Coding

Activities Section 4.6,

4.7 and range practice

worksheet

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Loop

Algorithms (1

day)

SWBAT

o Use a for

loop with a

sum

variable to

o Students

will comple

te Project

Stem

coding

Activities

Project Stem Coding

Activities Section 4.9

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

18

sum a set of

variables

o use loops

for counting

and

summing

Lab

(2 days)

 SWBAT

o Demonstrat

e

knowledge

of do-while

loops and

conditional

statements

by

completing

the crack

the code

assignment.

o Students

will work

on the

"crack the

code"

programmi

ng

assignment.

o Extension:

Students

will be

asked to

add phase

of the

assignment

that users

would have

to pass to

"crack the

code"

In this assignment, you will

create a program requiring a

secret code to “unlock.” The

program should first

welcome the user and ask the

user to input his/her name.

Then the program will greet

the user using the entered

name.

To “crack the code,” the user

must input three integer

numbers which satisfy the

following conditions:

The first number must be the

number 3.

The second number can be

the number 1 or between 33

and 100, inclusive.

The third number must be a

positive number that is either

evenly divisible by 3 or

evenly divisible by 7

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Unit 2 Test

(1 day)

 SWBAT

• Demonstrat

e

knowledge

of loops

and

conditional

statements

by

completing

written

Students will will

take unit 2 exam

Unit 2 Test CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

19

assessemem

ts

Standards

12.9.3.IT-PRG Programming & Software Development

CS.9-12.8.1.12.AP.1 Design algorithms to solve computational problems using a combination of original

and existing algorithms.

CS.9-12.8.1.12.AP.5 Decompose problems into smaller components through systematic analysis, using

constructs such as procedures, modules, and/or objects.

CS.9-12.8.1.12.AP.6 Create artifacts by using procedures within a program, combinations of data and

procedures, or independent but interrelated programs.

CS.9-12.8.1.12.CS.2 Model interactions between application software, system software, and hardware.

CS.9-12.8.1.12.CS.3 Compare the functions of application software, system software, and hardware.

CS.9-12.8.1.12.CS.4 Develop guidelines that convey systematic troubleshooting strategies that others can

use to identify and fix errors.

CS.9-12.8.1.12.DA.2 Describe the trade-offs in how and where data is organized and stored.

CS.9-12.8.1.12.DA.3 Translate between decimal numbers and binary numbers.

CS.9-12.8.1.12.DA.4 Explain the relationship between binary numbers and the storage and use of data in a

computing device.

CS.9-12.8.1.12.DA.5 Create data visualizations from large data sets to summarize, communicate, and

support different interpretations of real-world phenomena.

CS.9-12.8.1.12.IC.2 Test and refine computational artifacts to reduce bias and equity deficits.

CS.9-12.8.2.12.ED.1 Use research to design and create a product or system that addresses a problem and

make modifications based on input from potential consumers.

CS.9-12.8.2.12.ED.5 Evaluate the effectiveness of a product or system based on factors that are related to its

requirements, specifications, and constraints (e.g., safety, reliability, economic considerations, quality

control, environmental concerns, manufacturability, maintenance and repair, ergonomics).

CS.9-12.8.2.12.ITH.3 Analyze the impact that globalization, social media, and access to open source

technologies has had on innovation and on a society’s economy, politics, and culture.

CS.9-12.DA Data & Analysis

Successful troubleshooting of complex problems involves multiple approaches including research, analysis,

reflection, interaction with peers, and drawing on past experiences.

Trade-offs related to implementation, readability, and program performance are considered when selecting

and combining control structures.

Suggested Modifications for Special Education, ELL and Gifted Students

Special Education Students:

20

• Visual Aids: Utilize flowcharts and diagrams to illustrate the flow of logic in control structures.

• Simplified Examples: Break down complex code into smaller, more manageable chunks with clear

explanations and visuals.

• Scaffolded Activities: Provide guided practice with gradually increasing complexity, starting with

fill-in-the-blank exercises and progressing to independent problem-solving.

• Reduced Cognitive Load: Limit the number of new concepts introduced at once, focusing on mastery

of individual control structures before combining them.

• Alternative Assessments: Offer options for demonstrating understanding beyond traditional tests,

such as oral explanations or visual representations of code logic.

• Assistive Technologies: Allow the use of text-to-speech or speech-to-text tools to support students

with reading or writing difficulties.

English Language Learners (ELLs):

• Visuals and Realia: Use visual aids like flowcharts, diagrams, and real-world examples to reinforce

vocabulary and concepts related to control structures.

• Simplified Language: Provide instructions and explanations in clear, concise language, avoiding

jargon and idioms.

• Bilingual Dictionaries: Encourage the use of bilingual dictionaries or online translation tools to

support vocabulary acquisition.

• Peer Support: Pair ELLs with supportive peers to provide language scaffolding and collaboration

opportunities.

• Code Examples with Comments: Provide code examples with comments in both English and the

student's native language to aid comprehension.

• Scaffolding of Writing: Break down written assignments into smaller steps and provide sentence

frames or templates to support language production.

Gifted Students:

• Challenge Problems: Offer advanced problems that require the application of multiple control

structures in creative and complex ways.

• Open-Ended Projects: Allow for more autonomy and creativity in project design, encouraging

exploration of advanced control flow patterns or algorithms.

• Independent Research: Encourage independent research into topics like optimization techniques or

advanced control structures in other programming languages.

• Mentoring Opportunities: Pair gifted students with mentors in the field or provide opportunities to

participate in coding competitions or hackathons.

• Advanced Concepts: Introduce concepts like nested loops, recursion, or exception handling to extend

learning beyond the basic curriculum.

• Collaborative Projects: Encourage collaboration with other gifted students to tackle complex

problems or create innovative software solutions.

Suggested Technological Innovations/Use

• Students should use online resources to research topics covered

• Students will use java IDE to test and execute code

21

• Students will use Java API online resource

Cross Curricular/Career Readiness, Life Literacies and Key Skills Practice

9.1 21
st

 Century Life and Career Skills: All students will demonstrate the creative, critical thinking,

collaboration, and problem-solving skills needed to function successfully as both global citizens and

workers in diverse ethnic and organizational cultures.

9.3– Career and Technical Education Career Cluster: Information Technology (IT)

• 9.3.12.IT.11: Demonstrate knowledge of the hardware components associated with information systems.

• 9.3.12.IT-SUP.9: Employ technical writing and documentation skills in support of an information system.

Pathway: Programming & Software Development (IT-PRG)

• 9.3.12.IT-PRG.4: Demonstrate the effective use of software development tools to develop software

applications.

• 9.3.12.IT-PRG.5: Apply an appropriate software development process to design a software application.

• 9.3.12.IT-PRG.6: Program a computer application using the appropriate programming language.

• 9.3.12.IT-PRG.7: Demonstrate software testing procedures to ensure quality products.

English Language Arts

• Journal writing • Close reading of industry-related content • Create a brochure for a specific industry •

Keep a running word wall of industry vocabulary Social Studies • Research the history of a given

industry/profession • Research prominent historical individuals in a given industry/profession • Use

historical references to solve problems

World Language • Translate industry-content • Create a translated index of industry vocabulary • Generate a

translated list of words and phrases related to information technology

Math • Compare and contrast use of equations and variables in algebra and programming. • Program

graphics and use the properties of geometric shapes • Compare the computer graphic coordinate system with

the Cartesian coordinate plane in math • Compare probability and the use of random numbers in computer

programming. • Track and track various data, such as industry’s impact on the GDP, career opportunities or

among of individuals currently occupying careers

Fine & Performing Arts • Create a poster recruiting young people to focus their studies on a career in

Information Technology

Science • Research the environmental impact of a given career or industry • Research latest developments in

Information technology • Investigate applicable-careers in STEM fields

22

Unit 03: Functions
Content Area: Sample Content Area

Course(s):
Time Period: 1st Semester
Length: 17 days
Status: Not Published

Summary of the Unit

This unit delves into the power of functions, essential building blocks for organizing and modularizing code.

Students will learn how to define their own functions, which are reusable blocks of code that perform

specific tasks. They will discover the benefits of functions, such as improving code readability, promoting

reusability, and simplifying complex programs. Students will explore different types of functions, including

those that return values, those that operate on parameters, and those with default arguments. Through hands-

on practice, students will apply their knowledge to design and implement functions that encapsulate specific

functionality within their programs. By the end of this unit, students will have honed their ability to write

clean, efficient, and reusable code, a crucial skill for tackling larger and more intricate programming

projects.

Enduring Understandings

• Code Modularity: Functions enable the breakdown of complex tasks into smaller, manageable units,

making code easier to read, understand, and maintain.

• Reusability: Functions can be reused throughout a program or across multiple programs, saving time

and effort by avoiding redundant code writing.

• Abstraction: Functions allow programmers to focus on the higher-level purpose of a piece of code

without getting bogged down in the specific details of its implementation.

• Parameters and Arguments: Functions can accept input (parameters) and produce output (return

values), enabling them to be customized and used in different scenarios.

• Scope and Encapsulation: Variables defined within a function have local scope, which helps prevent

unintended side effects and improves code organization.

Essential Questions

• When and why are functions necessary when creating a computer program?

• What are the different components to creating a Python function?

• How do we manage variable and data structure parameters?

• What are local and global variables?

23

Summative Assessment and/or Summative Criteria

Option 1: Project-Based Assessment

Students will create a Python program that demonstrates their understanding of functions. The project

should incorporate the following elements:

• Multiple Functions: The program should include at least three custom-defined functions, each with a

clear purpose and well-defined inputs and outputs.

• Parameter Passing: Functions should demonstrate the use of parameters to receive input and tailor

their behavior accordingly.

• Return Values: At least one function should return a value that is then used by the main program or

another function.

• Code Organization: The code should be well-organized, with functions clearly defined and

appropriately named.

Project Examples:

• Text Analyzer: A program that uses functions to analyze text input, calculating statistics like word

count, average word length, and frequency of specific words.

• Data Conversion: A program that uses functions to convert data between different units of

measurement (e.g., temperature, currency) or formats (e.g., decimal to binary).

• Game with Functions: A simple game (like a quiz or number guessing game) that utilizes functions

to handle tasks like displaying the game menu, generating questions or numbers, and evaluating user

input.

• Calculator with Functions: A calculator program that uses functions to perform different

mathematical operations (addition, subtraction, multiplication, division, etc.).

Students will complete test#3 reviewing the topics covered in the unit.

Resources

• Replit online ID

• Project STEM curriculum Python curriculumE

• Python API (https://docs.python.org/3.12/)

Unit Plan

Topic/Selectio

n

Timeframe

General Objectives Instructional

Activities

Benchmarks/Assessment

s

Standard

s

https://docs.python.org/3.12/

24

Functions

(2 days)

 SWBAT

• Be able to

explain the

purpose of a

function in

programmin

g

• Be able to

define your

subprograms

and call

them in a

program

o The teacher

will introduce

the concept of

a method. The

teacher will

discuss its

parts and role

in designing

and

developing a

complex Java

program.

o The teacher

will

demonstrate a

basic void

method.

o Students will

complete

Project Stem

coding

activities

Project Stem Coding

Activities Section 7.2

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

25

Parameters

(3 days)

 SWBAT

o Be able to

define a

parameter

and create a

call for your

subprograms

with

parameters.

o Be able to

define a

subprogram

that uses

optional

parameters

o The teacher

discusses the

concept of

parameters.

o The teacher

will demo

how

parameters are

used to send

information

from the

calling

method to the

called

method.

o Students will

complete

Project Stem

coding

activities

Project Stem Coding

Activities Section 7.3

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

26

Return

Methods

(3 days)

 SWBAT

o Be able to

code

functions

that return

values and

use the

returned

values in

your code.

o The teacher

discusses the

concept of

return

methods

o The teacher

demo how

return values

allow users to

o Students will

alter the

currency

conversion

program to

use return

values to

communicate

to the calling

method.

o Students will

complete

Project Stem

coding

activities

Project Stem Coding

Activities Section 7.4

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

27

Lab: calender

conversion

(3 days)

SWBAT

o Demonstrate

the ability to

design and

implement

methods of

varying

complexity

o The teacher

will discuss

project

descriptions

o Students will

work to

complete

Methods

Sampler

Assignment

o Students will

be encouraged

to create plans

before starting

projects and

to add full

documentatio

n to code.

Project Stem: Calender

Conversion Lab:

In this assignment, you

will create a calendar

program that allows the

user to enter a day, month,

and year in three separate

variables, as shown below.

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

28

Lab: Escape

room project

(5 days)

Students will

demonstrate mastery

of the creation and

use of methods

Students will

o work on

program that

will use

functions to

simulate a

escape room-

themed game

o Extension:

Students will

be asked to

create a

method to

"crack" a

message when

no key is

provided.

Escape room project:

SW work to create an

escape room project using

functions (resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Unit Exam

(1 day)

 Students will

o Demonstrate

knowledge

of loops and

condtitional

statements

by

completing

written

assessments

o Teacher will

administer

written unit

exam

covering

topics from

Unit 4

 Unit Exam

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

29

Standards

12.9.3.IT-PRG Programming & Software Development

CS.9-12.8.1.12.AP.1 Design algorithms to solve computational problems using a combination of original

and existing algorithms.

CS.9-12.8.1.12.AP.5 Decompose problems into smaller components through systematic analysis, using

constructs such as procedures, modules, and/or objects.

CS.9-12.8.1.12.AP.6 Create artifacts by using procedures within a program, combinations of data and

procedures, or independent but interrelated programs.

CS.9-12.8.1.12.CS.2 Model interactions between application software, system software, and hardware.

CS.9-12.8.1.12.CS.3 Compare the functions of application software, system software, and hardware.

CS.9-12.8.1.12.CS.4 Develop guidelines that convey systematic troubleshooting strategies that others can

use to identify and fix errors.

CS.9-12.8.1.12.DA.2 Describe the trade-offs in how and where data is organized and stored.

CS.9-12.8.1.12.DA.3 Translate between decimal numbers and binary numbers.

CS.9-12.8.1.12.DA.4 Explain the relationship between binary numbers and the storage and use of data in a

computing device.

CS.9-12.8.1.12.DA.5 Create data visualizations from large data sets to summarize, communicate, and

support different interpretations of real-world phenomena.

CS.9-12.8.1.12.IC.2 Test and refine computational artifacts to reduce bias and equity deficits.

CS.9-12.8.2.12.ED.1 Use research to design and create a product or system that addresses a problem and

make modifications based on input from potential consumers.

CS.9-12.8.2.12.ED.5 Evaluate the effectiveness of a product or system based on factors that are related to its

requirements, specifications, and constraints (e.g., safety, reliability, economic considerations, quality

control, environmental concerns, manufacturability, maintenance and repair, ergonomics).

CS.9-12.8.2.12.ITH.3 Analyze the impact that globalization, social media, and access to open source

technologies has had on innovation and on a society’s economy, politics, and culture.

CS.9-12.DA Data & Analysis

Successful troubleshooting of complex problems involves multiple approaches including research, analysis,

reflection, interaction with peers, and drawing on past experiences.

Trade-offs related to implementation, readability, and program performance are considered when selecting

and combining control structures.

Suggested Modifications for Special Education, ELL and Gifted Students

Special Education Students:

o Visual Representations: Use flowcharts or diagrams to illustrate the flow of data in and out of

functions, highlighting the concept of input parameters and return values.

o Hands-on Activities: Incorporate hands-on activities like building function "machines" with physical

objects to manipulate and visualize the input/output process.

o Chunking: Break down complex functions into smaller, more manageable parts, focusing on one

concept at a time.

30

o Simplified Syntax: Start with simpler function examples using fewer parameters and more

straightforward operations.

o Repetition and Practice: Provide ample opportunities for repetition and practice with guided

exercises and immediate feedback.

o Assistive Technologies: Utilize text-to-speech or speech-to-text tools to assist with reading or

writing code.

English Language Learners (ELLs):

o Visual Aids: Use visual aids like diagrams, infographics, and real-world examples to reinforce

vocabulary and concepts related to functions.

o Simplified Language: Explain concepts in simple, clear language, avoiding technical jargon and

idioms.

o Multilingual Resources: Provide bilingual dictionaries or translation tools to support vocabulary

acquisition.

o Peer Support: Pair ELLs with supportive peers for collaborative learning and language scaffolding.

o Code Examples with Comments: Provide code examples with comments in both English and the

student's native language to aid comprehension.

o Scaffolding of Writing: Break down written assignments into smaller steps and provide sentence

frames or templates to support language production.

Gifted Students:

o Challenging Problems: Offer complex problems that require the design of multiple interconnected

functions with varying inputs and outputs.

o Advanced Concepts: Introduce concepts like recursive functions, lambda functions, or higher-order

functions to extend learning beyond the basics.

o Independent Research: Encourage independent research into topics like functional programming

paradigms or how functions are used in different programming languages.

o Mentorship Opportunities: Connect gifted students with mentors who can provide guidance and

support in their advanced explorations.

o Creative Projects: Allow for more open-ended projects that encourage creativity and experimentation

with different ways of using functions.

o Collaboration: Encourage collaboration with other gifted students to tackle more ambitious projects

that require teamwork and the integration of diverse functions.

Suggested Technological Innovations/Use

o Students should use online resources to research topics covered

o Students will use java IDE to test and execute code

o Students will use Java API online resource

Cross Curricular/Career Readiness, Life Literacies and Key Skills Practice

31

9.1 21
st

 Century Life and Career Skills: All students will demonstrate the creative, critical thinking,

collaboration, and problem-solving skills needed to function successfully as both global citizens and

workers in diverse ethnic and organizational cultures.

9.3– Career and Technical Education Career Cluster: Information Technology (IT)

• 9.3.12.IT.11: Demonstrate knowledge of the hardware components associated with information systems.

• 9.3.12.IT-SUP.9: Employ technical writing and documentation skills in support of an information system.

Pathway: Programming & Software Development (IT-PRG)

• 9.3.12.IT-PRG.4: Demonstrate the effective use of software development tools to develop software

applications.

• 9.3.12.IT-PRG.5: Apply an appropriate software development process to design a software application.

• 9.3.12.IT-PRG.6: Program a computer application using the appropriate programming language.

• 9.3.12.IT-PRG.7: Demonstrate software testing procedures to ensure quality products.

English Language Arts

• Journal writing • Close reading of industry-related content • Create a brochure for a specific industry •

Keep a running word wall of industry vocabulary Social Studies • Research the history of a given

industry/profession • Research prominent historical individuals in a given industry/profession • Use

historical references to solve problems

World Language • Translate industry-content • Create a translated index of industry vocabulary • Generate a

translated list of words and phrases related to information technology

Math • Compare and contrast use of equations and variables in algebra and programming. • Program

graphics and use the properties of geometric shapes • Compare the computer graphic coordinate system with

the Cartesian coordinate plane in math • Compare probability and the use of random numbers in computer

programming. • Track and track various data, such as industry’s impact on the GDP, career opportunities or

among of individuals currently occupying careers

Fine & Performing Arts • Create a poster recruiting young people to focus their studies on a career in

Information Technology

Science • Research the environmental impact of a given career or industry • Research latest developments in

Information technology • Investigate applicable-careers in STEM fields

32

Unit 04: Data Structures
Content Area: Sample Content Area

Course(s):
Time Period: 1st Marking Period
Length: 22 days
Status: Published

Summary of the Unit

This unit delves into the world of data structures, the fundamental tools for organizing and storing data

efficiently in Python. Students will explore a variety of built-in data structures like lists, tuples, dictionaries,

and sets. They will learn how to create, manipulate, and access elements within these structures,

understanding the unique characteristics and use cases for each. Through hands-on exercises and projects,

students will gain proficiency in working with data structures to solve real-world problems. They will learn

to choose the appropriate data structure for a given task, manipulate data efficiently, and leverage the power

of Python's built-in functions and methods to streamline their code. By the end of the unit, students will

have a solid foundation in data structures, enabling them to build more complex and data-driven

applications in their future programming endeavors.

Enduring Understandings

• Organized Data: Data structures provide efficient and organized ways to store and manipulate

collections of related data in a program.

• Choice of Structure: Different data structures (lists, tuples, dictionaries, sets) are suited for different

types of data and use cases, impacting how the data can be accessed and modified.

• Data Manipulation: Understanding the methods and operations specific to each data structure is

crucial for effectively manipulating and retrieving data within a program.

• Data Relationships: Data structures enable the representation of relationships between data elements,

such as ordering, key-value pairs, or membership.

• Real-World Applications: Data structures are fundamental to various real-world applications, from

simple lists and dictionaries to complex databases and algorithms.

Essential Questions

• Why do we need different data structures to organize and store information in Python?

• What are the key differences between lists, tuples, dictionaries, and sets, and when should we use

each one?

• How can we create, access, modify, and delete elements within different data structures in Python?

• How do data structures help us model relationships between data elements, such as ordering, key-

value pairs, or membership?

• What are the common operations and methods we can perform on different data structures, and how

do they affect the data?

33

• How can we use data structures to solve real-world problems involving organizing, searching,

sorting, or filtering data?

• What are some examples of how data structures are used in various applications, such as web

development, data analysis, or game development?

• How can we choose the most appropriate data structure for a given task to optimize our code for

efficiency and readability?

Summative Assessment and/or Summative Criteria

Option 1: Project-Based Assessment

Students will create a Python program that demonstrates their understanding of data structures. The project

should incorporate the following elements:

• Multiple Data Structures: The program should use at least two different data structures (lists, tuples,

dictionaries, sets) in a meaningful way.

• Data Manipulation: The program should demonstrate the ability to create, access, modify, and/or

delete elements within the data structures.

• Problem Solving: The program should solve a real-world problem or simulate a scenario where data

structures are essential for organizing and manipulating information.

• Code Organization: The code should be well-organized, with clear comments explaining the purpose

of each section and appropriate variable names.

Project Examples:

• Inventory Management System: A program that tracks inventory items, their quantities, and prices

using lists or dictionaries.

• Contact Book: A program that stores contact information (name, phone number, email) using

dictionaries or lists of dictionaries.

• Flashcard App: A program that uses dictionaries to store vocabulary words and their definitions,

allowing users to practice and test themselves.

• Data Analysis Tool: A program that reads data from a file (e.g., CSV) and uses lists or dictionaries to

store and analyze the data.

Resources

• Replit online ID

• Project STEM curriculum Python curriculumE

• Python API (https://docs.python.org/3.12/)

https://docs.python.org/3.12/

34

Unit Plan

•

Topic/Select
ion

Timeframe

General
Objectives

Instructional
Activities

Benchmarks/Assess
ments

Standar
ds

Lists

(2 days)

 SWBAT

o Be able to

define lists

and explain

their

usefulness in

programming

o Be able to

declare and

add data to

lists in Python

o Be able to

define the

terms

“element”, “i

ndex”, and

"initializer

list" as they

relate to lists

o Work out

which index

relates to

which item in

a list

o Write code to

access

elements at

given indices

in a list

o Teacher

will

introduce

data

structures

and how

they are

used

program

ming

structures

o TW

introduce

lists as an

ordered

data

structure

o TW

introduce

the

concept

of index

numbers

and

square

brackets

[].

o SW work

through

list

practice

activities

Project Stem Coding

Activities Section 8.2

and 8.3

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

35

List functions

(2 days)

 SWBAT

o Be able to

define a

parameter and

create a call

your own

subprograms

with

parameters

o Be able to

define a

subprogram

that uses

optional

parameters

o Teacher

will

introduce

methods

built into

the list

object

o Students

will be

able to

use the

built list

methods

to

compute

common

list

operation

s

o Students

will

complete

Project

Stem

Activities

Project Stem Coding

Activities Section 8.5

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

36

Lab: Data

Analyzer

(2 days)

 SWBAT

o demonstrate

knowledge of

list and their

functions by

completing

assignment

o Students

will

complete

data

analyzer

assignme

nt

Data Analyzer:

Students will write a

program that will

analyze of list of random

numbers (resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

37

Tuples

(2 days)

SWBAT

o Demonstate

the ability to

design and

implement

methods of

varying

complexity

o Teacher

will

introduce

second

data

structure:

Tuple

o Teacher

will

explain

Tuple as

an

ordered

list the is

immutabl

e

o SW

complete

tuple

practice

assignme

nts

(resource

s)

Tuple practice

assignment (resourcess)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

38

Lab: Secret

code generator

(3 days)

SWBAT

o Demonstrate

knowledge of

tuples by

creating a

secret code

generator

assignment

o Students

will

complete

secret

code

generator

assignme

nt

Students will complete

assignment that will use

a tuple to change a string

input into a numeric

sequence (resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Dictionary (2

day)

 SWBAT

o Create and

manipulate the

dictionary

data structrue

o define key,

value pairs in

a dictionary

o Use built in

methods to

add, remove

and alter data

stored in a

dictionary

o Teacher

will

introduce

dictionari

es as

unordere

d list

o Teacher

will

discuss

the key

value

pair and

how its

used

access

elements

of the

Project Stem Coding

Activities Section 12.1

and 12.2

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

39

dictionar

y

o Teacher

will

discuss

dictionar

y

methods

o Students

will

complete

project

stem

activities

Sets (1 day) SWBAT

o Create and use

sets in a

Python project

o Differentiate

between all 4

data structures

o Use the

appropriate

structure

based on

needs of the

Python

o Teacher

will

introduce

a set as a

immutabl

e

unindexe

d data

structure

o Teacher

will

discuss

how to

create a

set

o Teacher

will

discuss

methods

to

manipula

te sets

o Students

will

complete

set

practice

assignme

nt

Set practice assignment

(resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Using for

loops with

data structures

(3 days)

 SWBAT

o Create for

loops to

access

elements of

the different

• Teacher

will

discuss

for loops

and

demonstr

ate how

Project Stem Coding

Activities Section 12.3

and 8.4

CS.9-

12.AP

CS.9-

12.DA

40

data structure

elements

the work

with the

3

different

data

structures

• Students

will

complete

project

stem

activities

CS.9-

12.IC

Lab: Trivia

Game (4 days)

 Students will

• Demonstrate

knowledge of

data structures

by completing

the trivia

game

Students will

• complete

trivia

game

assignme

nt using

lists,

tuples

and

dictionari

es

 Trivia Game:

 Develop a trivia game

of a chosen theme using

the diffeen data

structures to represent

answer key and reward

choices(resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Unit Exam

(1 day)

 SWBAT

• Demonstrate

knowledge of

loops and

condtitional

statements by

completing

written

assessememts

• Teacher

will

administe

r written

unit

examcov

ering

topics

from

Unit 4

 Unit Exam

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Standards

12.9.3.IT-PRG Programming & Software Development

41

CS.9-12.8.1.12.AP.1 Design algorithms to solve computational problems using a combination of original

and existing algorithms.

CS.9-12.8.1.12.AP.5 Decompose problems into smaller components through systematic analysis, using

constructs such as procedures, modules, and/or objects.

CS.9-12.8.1.12.AP.6 Create artifacts by using procedures within a program, combinations of data and

procedures, or independent but interrelated programs.

CS.9-12.8.1.12.CS.2 Model interactions between application software, system software, and hardware.

CS.9-12.8.1.12.CS.3 Compare the functions of application software, system software, and hardware.

CS.9-12.8.1.12.CS.4 Develop guidelines that convey systematic troubleshooting strategies that others can

use to identify and fix errors.

CS.9-12.8.1.12.DA.2 Describe the trade-offs in how and where data is organized and stored.

CS.9-12.8.1.12.DA.3 Translate between decimal numbers and binary numbers.

CS.9-12.8.1.12.DA.4 Explain the relationship between binary numbers and the storage and use of data in a

computing device.

CS.9-12.8.1.12.DA.5 Create data visualizations from large data sets to summarize, communicate, and

support different interpretations of real-world phenomena.

CS.9-12.8.1.12.IC.2 Test and refine computational artifacts to reduce bias and equity deficits.

CS.9-12.8.2.12.ED.1 Use research to design and create a product or system that addresses a problem and

make modifications based on input from potential consumers.

CS.9-12.8.2.12.ED.5 Evaluate the effectiveness of a product or system based on factors that are related to its

requirements, specifications, and constraints (e.g., safety, reliability, economic considerations, quality

control, environmental concerns, manufacturability, maintenance and repair, ergonomics).

CS.9-12.8.2.12.ITH.3 Analyze the impact that globalization, social media, and access to open source

technologies has had on innovation and on a society’s economy, politics, and culture.

CS.9-12.DA Data & Analysis

Successful troubleshooting of complex problems involves multiple approaches including research, analysis,

reflection, interaction with peers, and drawing on past experiences.

Trade-offs related to implementation, readability, and program performance are considered when selecting

and combining control structures.

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Suggested Technological Innovations/Use

• Students should use online resources to research topics covered

• Students will use java IDE to test and execute code

• Students will use Java API online resource

42

Cross Curricular/Career Readiness, Life Literacies and Key Skills Practice

9.1 21
st

 Century Life and Career Skills: All students will demonstrate the creative, critical thinking,

collaboration, and problem-solving skills needed to function successfully as both global citizens and

workers in diverse ethnic and organizational cultures.

9.3– Career and Technical Education Career Cluster: Information Technology (IT)

• 9.3.12.IT.11: Demonstrate knowledge of the hardware components associated with information systems.

• 9.3.12.IT-SUP.9: Employ technical writing and documentation skills in support of an information system.

Pathway: Programming & Software Development (IT-PRG)

• 9.3.12.IT-PRG.4: Demonstrate the effective use of software development tools to develop software

applications.

• 9.3.12.IT-PRG.5: Apply an appropriate software development process to design a software application.

• 9.3.12.IT-PRG.6: Program a computer application using the appropriate programming language.

• 9.3.12.IT-PRG.7: Demonstrate software testing procedures to ensure quality products.

English Language Arts

• Journal writing • Close reading of industry-related content • Create a brochure for a specific industry •

Keep a running word wall of industry vocabulary Social Studies • Research the history of a given

industry/profession • Research prominent historical individuals in a given industry/profession • Use

historical references to solve problems

World Language • Translate industry-content • Create a translated index of industry vocabulary • Generate a

translated list of words and phrases related to information technology

Math • Compare and contrast use of equations and variables in algebra and programming. • Program

graphics and use the properties of geometric shapes • Compare the computer graphic coordinate system with

the Cartesian coordinate plane in math • Compare probability and the use of random numbers in computer

programming. • Track and track various data, such as industry’s impact on the GDP, career opportunities or

among of individuals currently occupying careers

Fine & Performing Arts • Create a poster recruiting young people to focus their studies on a career in

Information Technology

Science • Research the environmental impact of a given career or industry • Research latest developments in

Information technology • Investigate applicable-careers in STEM fields

43

Unit 05: File I/O
Content Area: Sample Content Area

Course(s):
Time Period: 1st Marking Period
Length: 19 days
Status: Published

Summary of the Unit

This unit introduces the essential concept of file input/output (I/O) in Python, empowering students to

interact with external data stored in files. Students will learn how to open, read, write, and close files in

different modes, enabling them to both load data into their programs and save results for later use. They will

explore techniques for working with various file formats, such as text files (.txt) and comma-separated

value files (.csv), and learn how to handle errors that may arise during file operations. Through practical

exercises and projects, students will gain hands-on experience in reading data from files to perform analysis,

manipulating file contents, and writing data to files for persistent storage. By the end of the unit, students

will have mastered the fundamentals of file I/O, equipping them with a valuable skill for working with real-

world data and building more robust and data-driven applications.

Enduring Understandings

• Persistent Data: Files provide a way to store data persistently, allowing programs to access and

manipulate information beyond the duration of a single execution.

• Data Interaction: Programs can interact with data stored in files, enabling them to read input, process

it, and write output in a structured manner.

• File Formats: Different file formats (e.g., .txt, .csv) dictate how data is organized and require specific

techniques for reading and writing.

• Error Handling: File operations can fail due to various reasons (e.g., file not found, permission

errors), and robust programs must include error handling mechanisms to gracefully manage such

situations.

• Data-Driven Applications: File I/O is essential for building data-driven applications that analyze,

process, and transform information from external sources.

Essential Questions

• How can we use Python to read data from external files and store it in variables for further

processing?

• What are the different modes for opening files (e.g., read, write, append), and when should we use

each mode?

• How do we handle different file formats (e.g., .txt, .csv) in Python, and what are the best practices

for reading and writing structured data?

• Why is error handling important in file I/O operations, and how can we use try-except blocks to

gracefully handle exceptions?

44

• What are some common file-related errors (e.g., FileNotFoundError, PermissionError), and how can

we address them in our code?

• How can we leverage file I/O to build applications that interact with external data sources, such as

analyzing data from log files or generating reports?

• What are the ethical considerations of working with potentially sensitive or private data stored in

files?

Summative Assessment and/or Summative Criteria

Students will complete project to generate ticketing system using all concepts learned in the course

Resources

Online Tutorials and Guides:

• Python File Handling (Programiz): A comprehensive guide covering file opening, reading, writing,

closing, and error handling.

o URL: https://www.programiz.com/python-programming/file-operation

• Python File I/O (W3Schools): A beginner-friendly tutorial with examples and exercises on file

operations.

o URL: https://www.w3schools.com/python/python_file_handling.asp

• Working with CSV Files in Python (Real Python): A detailed tutorial on reading and writing CSV

files using Python's csv module.

o URL: https://realpython.com/python-csv/

• Python Examples (Programiz): A collection of Python examples, including file I/O operations, that

students can practice with.

o URL: https://www.programiz.com/python-programming/examples

Books:

• "Automate the Boring Stuff with Python" by Al Sweigart: A popular book that covers file I/O and

automation tasks in a practical way.

• "Python Crash Course" by Eric Matthes: A beginner-friendly book with a chapter on file I/O and

projects that use file data.

Videos and Courses:

• Python Tutorial for Beginners (Codecademy): An interactive online course that covers file I/O

basics.

o URL: https://www.codecademy.com/learn/learn-python-3

• Python File Handling Tutorial (YouTube - freeCodeCamp): A video tutorial explaining file

operations in Python.

https://www.programiz.com/python-programming/file-operation
https://www.w3schools.com/python/python_file_handling.asp
https://realpython.com/python-csv/
https://www.programiz.com/python-programming/examples
https://www.codecademy.com/learn/learn-python-3

45

o URL: Search "Python File Handling Tutorial freeCodeCamp" on YouTube.

Additional Resources:

• Python Documentation on File I/O: The official Python documentation provides in-depth reference

on file operations and the io module.

o URL: https://docs.python.org/3/library/io.html

Project Ideas and Datasets:

o Analyze Log Files: Provide log files and have students extract specific information or identify

patterns.

o Process CSV Data: Give students CSV files containing weather data, stock market data, or other

relevant datasets for analysis.

o Create a Simple Database: Students can create a program to store and retrieve data from a text file,

mimicking a basic database.

Unit Plan

o

Topic/Selec
tion

Timeframe

General Objectives Instructional
Activities

Benchmarks/Assess
ments

Standar
ds

What is file i/o

(1 day)

SWBAT

o Define and

explain file I/O.

o Differentiate

file types (e.g.,

text, binary).

o Identify input

sources and

output

destinations in

computing.

o Understand the

purpose and

significance of

file input.

o Understand the

purpose and

significance of

file output.

o Discuss real-

world

applications of

file I/O.

o Teacher

will

discuss

console

i/o and

how

much of

daa fed

to

program

s do not

come

from

console

but from

files.

o Class

will

discuss

example

s of

where

this is

evident

Dataset discussion and

search results

(resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

https://docs.python.org/3/library/io.html

46

o Students

will

research

data sets

in the

real

world

and how

they can

be used

to create

feed

program

s that

can

solve

real

issues

47

Reading a

character

from a file

(2 days)

 SWBAT

o Understand the

importance of

reading files

and the role it

plays in file

handling tasks.

o Use

the open() funct

ion to open a

file in read

mode and

the close() meth

od to close the

file properly.

o Read the entire

contents of a

file using

the read() meth

od and store

them in a

variable

o Handle

common file

exceptions,

such

as FileNotFoun

dError, when

attempting to

read a file.

o Understand the

purpose and

usage of

the readline() m

ethod in Python

for reading

lines from a

file.

o Demonstrate

how to open a

file and

use readline() to

read a single

line at a time.

o Teacher

will

introduc

e the

concept

of

getting

data

from

files

o Teacher

will

introodu

ce the

readlines

method

and how

txt files

can be

accessed

from a

python

program

o Teacher

will

demonst

rate file

input

o Students

will

complete

assignm

ents

File Practice assignment

1 (resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

48

Reading all

lines from a

file (3 day)

SWBAT:

o Understand the

purpose and

usage of

the readlines()

method in

Python.

o Read and

retrieve

multiple lines

from a file

using readlines(

).

o Iterate through

the lines

obtained

from readlines()

 and perform

operations on

each line.

o Apply different

manipulations

and processing

techniques to

the lines read

from a file.

o Recognize the

advantages and

use cases of

using readlines(

) in file

handling

scenarios.

o Teacher

will

demonst

rate how

Python

handles

white

space

o Teacher

will

demo

how to

use

loops to

read the

complete

file

based on

the

content

o Students

will

work on

practice

assignm

ents

 File Practice

Assignment 2

(resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

49

Writing to a

file(2 days)

SWBAT

o Understand the

purpose and

importance of

writing to files

in

programming.

o Use the “w”

mode to

overwrite the

contents of a

file.

o Use the “a”

mode to append

new data to the

end of a file.

o Demonstrate

the ability to

write text and

data to a file

using

appropriate file

handling

techniques.

o Be able to

generate

random

numbers with

the random

function

o Teacher

will

demo

writing

files and

the

different

specifica

tions that

come

with

creating

the link

to the

output

file.

o SW

complete

practice

assignm

ents

 File practice assignment

3 (resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

File Practice

Project

(3 days)

SWBAT

o Demonstrate

knowledge of

File i/o by

updating

previous

project

o Students

will

update

past

project

to read

and

write to

file

instead

of

previous

console

i/o

File i/o: update past

project to include file i/o

elements (resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Unit 5 Exam

(1 day)

Students will

demonstrate

knowledge of python

input, output and

mathematical

operations by

Students will

take unit 1

Exam

 Unit Exam CS.9-

12.AP

CS.9-

12.DA

50

completing Unit 1

Exam

CS.9-

12.IC

Final Project

(7 days)

 Students will

demonstrate

knowledge of python

by completing final

project based on

description

 Students will

complete project

 Final Project

(resources)

CS.9-

12.AP

CS.9-

12.DA

CS.9-

12.IC

Standards

12.9.3.IT-PRG Programming & Software Development

CS.9-12.8.1.12.AP.1 Design algorithms to solve computational problems using a combination of original

and existing algorithms.

CS.9-12.8.1.12.AP.5 Decompose problems into smaller components through systematic analysis, using

constructs such as procedures, modules, and/or objects.

CS.9-12.8.1.12.AP.6 Create artifacts by using procedures within a program, combinations of data and

procedures, or independent but interrelated programs.

CS.9-12.8.1.12.CS.2 Model interactions between application software, system software, and hardware.

CS.9-12.8.1.12.CS.3 Compare the functions of application software, system software, and hardware.

CS.9-12.8.1.12.CS.4 Develop guidelines that convey systematic troubleshooting strategies that others can

use to identify and fix errors.

CS.9-12.8.1.12.DA.2 Describe the trade-offs in how and where data is organized and stored.

CS.9-12.8.1.12.DA.3 Translate between decimal numbers and binary numbers.

CS.9-12.8.1.12.DA.4 Explain the relationship between binary numbers and the storage and use of data in a

computing device.

CS.9-12.8.1.12.DA.5 Create data visualizations from large data sets to summarize, communicate, and

support different interpretations of real-world phenomena.

CS.9-12.8.1.12.IC.2 Test and refine computational artifacts to reduce bias and equity deficits.

CS.9-12.8.2.12.ED.1 Use research to design and create a product or system that addresses a problem and

make modifications based on input from potential consumers.

CS.9-12.8.2.12.ED.5 Evaluate the effectiveness of a product or system based on factors that are related to its

requirements, specifications, and constraints (e.g., safety, reliability, economic considerations, quality

control, environmental concerns, manufacturability, maintenance and repair, ergonomics).

CS.9-12.8.2.12.ITH.3 Analyze the impact that globalization, social media, and access to open source

technologies has had on innovation and on a society’s economy, politics, and culture.

CS.9-12.DA Data & Analysis

51

Successful troubleshooting of complex problems involves multiple approaches including research, analysis,

reflection, interaction with peers, and drawing on past experiences.

Trade-offs related to implementation, readability, and program performance are considered when selecting

and combining control structures.

Suggested Modifications for Special Education, ELL and Gifted Students

Special Education Students:

o Visual Supports: Use diagrams and flowcharts to illustrate the process of file I/O, including opening,

reading, writing, and closing files.

o Simplified Instructions: Break down tasks into smaller, manageable steps with clear and concise

instructions.

o Hands-on Activities: Provide opportunities for hands-on practice, such as creating and manipulating

files with different types of data.

o Alternative Assessment: Allow students to demonstrate understanding through alternative formats

like oral presentations, visual representations, or simplified coding tasks.

o Assistive Technologies: Utilize text-to-speech or speech-to-text tools to support students with

reading or writing difficulties.

o Differentiated Content: Modify or reduce the complexity of file formats or tasks based on individual

student needs.

English Language Learners (ELLs):

o Visual Aids: Incorporate visual aids like pictures, diagrams, and real-world examples to reinforce

vocabulary and concepts related to file I/O.

o Simplified Language: Provide instructions and explanations in clear, concise language, avoiding

jargon and technical terms.

o Multilingual Resources: Offer bilingual dictionaries or translation tools to support vocabulary

acquisition.

o Scaffolding of Writing: Provide sentence frames or templates to guide students in writing code or

explanations.

o Peer Support: Pair ELLs with native English speakers for collaborative learning and language

support.

o Code Examples with Comments: Provide code examples with comments in both English and the

student's native language.

Gifted Students:

o Challenging Tasks: Offer more complex file formats (e.g., JSON, XML) or data manipulation tasks.

o Advanced Topics: Introduce advanced topics like file compression, encryption, or working with

binary files.

o Independent Research: Encourage independent research on file I/O concepts or related topics like

data parsing and analysis.

o Real-World Applications: Explore real-world applications of file I/O, such as data analysis,

automation, or web scraping.

o Mentoring Opportunities: Connect gifted students with mentors who can provide guidance and

support in their advanced explorations.

52

o Open-Ended Projects: Allow for more creativity and exploration in project design, encouraging

students to apply file I/O to their own areas of interest.

Suggested Technological Innovations/Use

• Students should use online resources to research topics covered

• Students will use java IDE to test and execute code

• Students will use Java API online resource

Cross Curricular/Career Readiness, Life Literacies and Key Skills Practice

9.1 21
st

 Century Life and Career Skills: All students will demonstrate the creative, critical thinking,

collaboration, and problem-solving skills needed to function successfully as both global citizens and

workers in diverse ethnic and organizational cultures.

9.3– Career and Technical Education Career Cluster: Information Technology (IT)

• 9.3.12.IT.11: Demonstrate knowledge of the hardware components associated with information systems.

• 9.3.12.IT-SUP.9: Employ technical writing and documentation skills in support of an information system.

Pathway: Programming & Software Development (IT-PRG)

• 9.3.12.IT-PRG.4: Demonstrate the effective use of software development tools to develop software

applications.

• 9.3.12.IT-PRG.5: Apply an appropriate software development process to design a software application.

• 9.3.12.IT-PRG.6: Program a computer application using the appropriate programming language.

• 9.3.12.IT-PRG.7: Demonstrate software testing procedures to ensure quality products.

English Language Arts

• Journal writing • Close reading of industry-related content • Create a brochure for a specific industry •

Keep a running word wall of industry vocabulary Social Studies • Research the history of a given

industry/profession • Research prominent historical individuals in a given industry/profession • Use

historical references to solve problems

World Language • Translate industry-content • Create a translated index of industry vocabulary • Generate a

translated list of words and phrases related to information technology

Math • Compare and contrast use of equations and variables in algebra and programming. • Program

graphics and use the properties of geometric shapes • Compare the computer graphic coordinate system with

the Cartesian coordinate plane in math • Compare probability and the use of random numbers in computer

programming. • Track and track various data, such as industry’s impact on the GDP, career opportunities or

among of individuals currently occupying careers

Fine & Performing Arts • Create a poster recruiting young people to focus their studies on a career in

Information Technology

53

Science • Research the environmental impact of a given career or industry • Research latest developments in

Information technology • Investigate applicable-careers in STEM fields

