Micro800 Programming Basics

For Classroom Use Only!

LISTEN.
Dl Rockwell
: @ Allen-Bradley - Rockwell Software AAUITOMation

Important User Information

This documentation, whether, illustrative, printed, “online” or electronic (hereinafter “Documentation”) is intended for use only as
a learning aid when using Rockwell Automation approved demonstration hardware, software and firmware. The Documentation
should only be used as a learning tool by qualified professionals.

The variety of uses for the hardware, software and firmware (hereinafter “Products”) described in this Documentation, mandates
that those responsible for the application and use of those Products must satisfy themselves that all necessary steps have been
taken to ensure that each application and actual use meets all performance and safety requirements, including any applicable
laws, regulations, codes and standards in addition to any applicable technical documents.

In no event will Rockwell Automation, Inc., or any of its affiliate or subsidiary companies (hereinafter “Rockwell Automation”) be
responsible or liable for any indirect or consequential damages resulting from the use or application of the Products described in
this Documentation. Rockwell Automation does not assume responsibility or liability for damages of any kind based on the
alleged use of, or reliance on, this Documentation.

No patent liability is assumed by Rockwell Automation with respect to use of information, circuits, equipment, or software
described in the Documentation.

Except as specifically agreed in writing as part of a maintenance or support contract, equipment users are responsible for:
« properly using, calibrating, operating, monitoring and maintaining all Products consistent with all Rockwell Automation
or third-party provided instructions, warnings, recommendations and documentation;
« ensuring that only properly trained personnel use, operate and maintain the Products at all times;
+ staying informed of all Product updates and alerts and implementing all updates and fixes; and
« all other factors affecting the Products that are outside of the direct control of Rockwell Automation.

Reproduction of the contents of the Documentation, in whole or in part, without written permission of Rockwell Automation is
prohibited.

Throughout this manual we use the following notes to make you aware of safety considerations:

Identifies information about practices or circumstances
that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property damage, or economic loss.

>

IEOLAF:L A |dentifies information that is critical for successful application and understanding of the product.

ATTENTION Identifies information about practices or circumstances that can lead to personal injury or death, property
damage, or economic loss. Attentions help you:

+ identify a hazard

+ avoid a hazard

* recognize the consequence

g ll

SHOCK HAZARD RPN may be located on or inside the drive to alert people that dangerous voltage may be present.

e — Labels may be located on or inside the drive to alert people that surfaces may be dangerous temperatures.

> | P

Micro800 Programming Basics

Contents

2T (o (Yo 10 [oT=To [o OO PO UT PP PPPPP PP 4
ADOUL RIS T8I ... 4
TOOIS & PrEIEGUISIEESvuviieieceetete ittt bbb bbbttt b et b s e e s bbb b s et ettt et b s s e b ettt b s s 4
Get familiar with the Connected Components Workbench design environmentcccccevviieeiiiiieeeee 5
Create a CCW project and program a Micro850 CONrOllEr..........ccooieie e e 8
Build and Download your MiCro850 APPIICALION.........uuuuurieieiuiuieiuieinraieinrarernrnrnrarnrererrrerererererererernrerrrrrnrarnnn 15
(1Y o]0 To Yo 10T g\, ot £} 150 I o) e o | > o S 18
Learn about VariablesS and Data TYPESuuuuuuuuuuuruiuiuiuiuieieinrnrnrnrnrnrnrnrererereree.—————————————————————————.———.———. 23
DAL Y PES .ttt bbbt 24
Learn NOW tO Create VariabIESoii ittt e e 27
Learn how to Implement an INStruction BIOCKcoiiiiiiiiiiii e 25
Learn how to add a plug-in MOAUIE...........oiiiiii et 38
Learn about User Defined FUNCLION BIOCKScoouiiiiiiiiiii e 42

30f 49

Before you begin

About this lab

Connected Components Workbench (CCW) is the integrated design environment software package that is used to
program, design, and configure your Rockwell Automation Connected Components devices such as, Micro800
programmable logic controllers, PowerFlex drives, SMC soft-starters, and PanelView Component operator interface
terminals.

This lab will demonstrate and help guide you on how to use and program a Micro850 controller using the CCW
software.

This lab takes approximately 60 minutes to complete.

Tools & prerequisites
e Software: Connected Components Workbench v9.00.00
e Hardware: Micro850 Programmable Logic Controller, Catalog 2080-LC50-24QBB

Please note:

CCW is an all-encompassing software package for component class controllers (or- small / micro controllers). It
contains the application programming environment for the Micro800 Programmable Controllers (PLC), Drives
(Variable Frequency Drives or VFD’s which use AC voltage, converted to DC, generate a Pulse Width Modulated
(PWM) signal to control AC induction Motors) Human-Machine Interface (HMI) displays for control, feedback to an
operators panel and some Safety PLC's.

With that- all User Manuals are included in CCW as well as a very extensive Help menus.
At any time that you need help or reference to any item, component or object, simply click on the help pulldown

4 0f 49

Get familiar with the Connected Components Workbench design environment

This section will help get you familiar with the Connected Components Workbench design environment. As our goal
to help simplify your engineering efforts, we've developed CCW using the Microsoft Visual Studio Shell. This
common and popular software shell provides you the benefits of a common look, feel, and design environment when
transitioning from other similar software packages.

Let's take a couple minutes to get familiar with the CCW design environment.

1. Start the Connected Components Workbench software.

Double-click the Connected Components Workbench shortcut icon on your desktop.

o

W) ¥ (=Laln=1a
i minf s =]

e O ROE

You can also launch the program from your Windows Start Menu by going to: Start > All Programs
> Rockwell Automation > CCW > Connected Components Workbench

2. Get familiar with the CCW design environment.

This is the default splash screen.

@, Connected Companents Warkbench Developer Edition - 7
File Edit View Tools Communications Window Help
e - » -l e

Project Organizer Rl tart Page = x - Toolbox -ix| g
Name: ! »- B

4 General
Creste new project from File
There are no usable controls in this group.

Menu. Apgication Toalbar ar sable .
Stert Poge Drag an item onto this text to add itto the i)

Project Getting Started toalbax

7] Show page on startup

5 of 49

Below are descriptions of each of the panels’ contents and the general task the pane is used for.

@, Connected Components Workbench Developer Edition -

File Edit View Tools Communications Window Help

Creste new project from File
Menu, Application Toolbar or
Stan Page

Getting Started

] Show page on startup

Project Organizer

The Project Organizer displays the contents of your project in an organized tree view, providing access to each of the
devices and project elements. From the Project Organizer, you can add, move, or delete devices and project
elements, as well as double-click them to display their contents.

If your project contains a Micro800 controller, the Project Organizer also displays the logic programs, variables,
and user-defined function blocks associated with that Micro800 controller.
More on this later in the Lab.

Project

Create new or open an existing project, or discover (connect) to a Processor on a network
+ Discover - discovers devices that are connected to your computer and recognized by Connected

Components Workbench.

Getting Started

This will launch your web browser to review instructional videos on various aspects of CCW. Take a moment to
review the following videos:

Connected Components Accelerator Toolkit
This is for an overall System design which builds an entire system, Bill of Material and sample code. This is for more
advanced system generation and will not be covered in this Lab.

Toolbox

The Toolbox displays icons for items that you can add to programs. From the Toolbox, you can drag and drop
individual Toolbox elements onto a design view surface or copy and paste these into a code editor. Each of
these actions adds the fundamental code to create an instance of the Toolbox item in the active project file

The Toolbox displays all of the devices that you can add to your Connected Components Workbench™ project. On
the right side of this box- there are (3) tabs on the side:

Click on Device Toolbox
From the Device Toolbox, you can select devices for your project from the following two tabs:

6 0f 49

+ Discover - discovers devices that are connected to your computer and recognized by Connected
Components Workbench.

+ Catalog - browses a catalog of devices that are included with Connected Components Workbench.
The Properties tool box will display the properties and attributes of objects selected while programming

Device Toolbox ~

Discover

[=| Catalog

Controllers|

Drives

Device Toolbox

Safety

Mator Control

&
=
=
(1]
—
o
=3
53
<]
=4
X
5]
©
1}
=3
[1]
&
—
o
=3
53
5]
%

Graphic Terminals

The Toolbox displays icons for items that you can add to programs. From the Toolbox, you can drag and drop
individual Toolbox elements onto a design view surface or copy and paste these into a code editor. Each of
these actions adds the fundamental code to create an instance of the Toolbox item in the active project file

7 of 49

Create a CCW project and program a Micro850 controller

In this section, you will create a CCW project and learn how to create a program for a Micro850 programmable logic
controller.

You will learn how to:
= Create a CCW project
= Add a Micro850 controller to your project

= Program a simple motor control seal-in circuit

1. If not already open-start the Connected Components Workbench software.

Double-click the Connected Components Workbench shortcut icon on your desktop.

o

W) ¥ (=Laln=1a
i minf s =]
e O ROE

Add a Micro850 to your project. Locate the Device Toolbox (upper right-hand corner). Expand Catalog and locate the
Controllers folder. Expand the Controllers folder and locate the Micro850 controller catalog 2080-LC50-24QBB.

Or
Select New > Pop menu will appear with devices to choose from. Choose Controllers > 2080-LC50-24QBB > Add to

Project
Double click this Micro850 controller catalog. This will add a Micro850 controller to your Project.
IDe\ficeToolbox v B X
Discover
= Catalog
B Controllers
[~ Microg10
[e2] Micro820
B Micro830
B Micro850
17| 2080-LC50-24AWB
| 2080-LC50-24QVE
1| 2080-LCS0-24QWB
{1 2080-LC50-48AWB
1| 2080-LC50-48QBE
11| 2080-LC50-48QVE
1| 2080-LC50-48QWB
- Expansion Modules
(=2 Plug-in Modules
2288 Drives

8 0f49

-You will see a pop-up asking what FirmWare (fw) your system will be at.
Fw levels re-flach the processor to various levels of capability, features or corrections to anomalies.

Select Major revision 9

ﬁ Connected Components Workbench l&l

Select Micro800 revision to add to project

Catalog 1D: 2080-LC50-24QBB

Major revision:

[] Aways use the latest revision

| ok || cancel || Help |

2. Notice that the Micro850 shows up in your Project Organizer on the left-hand side.

file Edit View Device Tools Communications Window Help

we R 5 »

Project Organizer B Mico8s0 = X Start Page
Name R Micro850
wa o

&¥ Programs 3 *+
iZ Global Variables Download Upload
&1 User-Defined Function BlocH
& DataTypes

2080-1.C50-24Q88

General

Memory

Startup

Serial Port

USB Port

Ethernet

Interrupts

Modbus Mapping

Embedded /O
Motion

< New Axis >

< New Axis >
Plug-in Modules

< Empty >

‘

- | # & - ® Disconnected ~ iy &, L - [2 RunMode Change =

® Connect

Connection path#

a o
Secure Help

“ Controller - General

Name: Micro850
Description:

Vendor Name: Allen-8radley
Catalog ID: 2080-LC50-24QB8

Controller Project 9
Version:

On the left of your screen is the Project Orginizer

In the middle are the properties and configuration of the Processor

Alternatively, you can drag and drop the controller from the Device Toolbox into the Project

Organizer.

~ Toolbox

9 of 49

3. Add a Ladder Diagram program.

Right-click Programs under the Micro850 in your Project Organizer, and select Add > New LD : Ladder
Diagram.

Project Organizer MR Micro850 +# X Start Page
Name: Project3s* Micro850
-I-i H
£ Micro850*
...... gl w L T]
.-2Z Globa Add » | Bl New ST: Structured Text
"""" &l User-[Paste Ctrl+V ™ New LD : Ladder Diagram
------- &9 DataT + ; ;
Properties Alt+Enter i MNew FBD : Function Block Diagram
20380-LC50-240QBB |

4. Notice a new Ladder Diagram program called Prog1 will be added under Programs.

Project Organizer v 0 X
MName: Project35*
LB

EZT Micro850*

él---éi Programs

-IZ Local Variables
Global Variables

@l User-Defined Function Block

------- &8 DataTypes

Micro850 controllers allow you to create multiple programs as well as use multiple types of
programs (such as Structured Text or Function Block Diagram) in the same controller application.

10 of 49

Since we'll be creating a Motor Circuit in this program, let's rename it Motor_Circuit.

5. Right-click the UntitledLD program and select Rename, and name the Program Motor_Circuit

Project Organizer * 0 X
MName: Project35#
k| -
EZ Micro850*
Ié---‘g:il Programs
: -IZ Local Variables
32 Global Variables
------ @l User-Defined Function Block

....... ﬁ DataTypes

6. Create a motor seal-in circuit in your Motor_Circuit Ladder Diagram program.

This circuit will use the DIO switch on the Demo as your Start button, and the DI1 switch as your Stop button.
The pilot light wired to DO8 will simulate your motor coil.

In many applications, a ‘seal-in circuit not only starts a process or function, but ‘seals’ it in that ON or OFF state.
Many times, per missives are required to turn ON or OFF the output or- to hold it in the required state.

7. Double-click the Motor_Circuit program. A ladder diagram editor will appear in the main project workspace with
one empty rung. On the right side is the Toolbox of objects. If your screen does not show these- click on the tab
to the right called ‘Toolbox’

- & x

)
|
=
g

Project Organizer ~ B X Motor Circuit-POU # X Micro850 Start Page

Mame: Project3s* Search p-
W L a
£ Micro850* Pointer
=g Programs (1} Rung
DR Instruction Block
iZ Local Variables Retum

iZ Glabal Variables Jomp

& User-Defined Function Bloch B

&9 DataTypes

Direct Coil

Reverse Coil

Set Coil

Reset Coil

Pulse Rising Edge Coil
Puise Falling Edge Coil

Direct Contact

329 00T >E

Reverse Contact

Pulse Rising Edge Contact

I Pulse Falling Edge Contact

4 General

There are no usable controls in this group. Drag an
item onto this text to add it to the toolbox.

11 0f 49

8. Locate the Direct Contact instruction in the Toolbox pane (right-hand side), and drag-and-drop it onto the left
side of the rung.

Project Organizer ~ I X | Motor _Circuit-POU* + X
Name: Project3s* Toolbox
-
i u Search Toolbox
L. Micro850% L 41D
B & Programs 1 1 k Pointer
i B Motor_Circuit H Run
-iZ Local Variables N .
L 2% Global Voriabl T Instruction Block
#iZ Global Variables
i@ User-Defined Function Bloch © Rewm
“-& DataTypes » Jump
T Branch
{> Direct Coil
& Reverse Coil
£ SetCoil
® Reset Coil

{€r Pulse Rising Edge Coil

{r Pulse Falling Edge Coil

¥t Reverse Contact

Pk Pulse Rising Edge Contact

i Pulse Falling Edge Contact
4 General

After inserting the Direct Contact instruction, the Variable Selector will automatically pop-up, allowing you to
select the variable or I/O point to assign to this instruction.

We will be assigning an embedded I/0 point to this instruction; therefore we want to select the 1/0 - Micro850
tab to show the available embedded I/O points. Then select _|O_EM_DI_00, and click OK.

Ik
MHame Type Global Scope ——— | [Local Scope ————————
ﬂ_m_w_m_uo ﬁBDDL | ﬁMicroasu | ﬁwm |

_I0_EM_DO_00 BOOL =

_I0_EM_DO_D1 BOOL =

_I0_EM_DO_02 BOOL v

_|0_EM_DO_03 BOOL =

_I0_EM_DO_D4 BOOL =

_I0_EM_DO_05 BOOL ¥

_|0_EM_DO_0& BOOL ¥ =
_I0_EM_DO_07 BOOL =

_I0_EM_DO_08 BOOL =

|0 EM DO 09 EOOL v

_I0_EM_DI_00 EOOL 2 I D
_I0_EM_DI_02 BOOL ¥

_l0_EM_DI_03 BOOL =

_|0_EM_DI_04 BOOL =

_I0_EM_DI_05 BOOL =

_I0_EM_DI_06 BOOL v

_l0_EM_DI_07 BOOL =

_I0_EM_DI_08 BOOL =

I Ly
ok || caneet |
_h SrCe 4

12 of 49

9. Your rung should look like the following.

~ Motor_Circuit-POU* - X

_10_EM_DI_00

— |

10. Locate the Reverse Contact instruction in the Toolbox and drag-and-drop it onto your rung, just to
the right of the Direct Contact you inserted in the previous step. Assign it to the embedded I/O point,
_10_EM_DI_01. Your rung should look like the following.

Motor_Circuit-POU* - X

_IO_EM_DI_00 _I0_EM_DI_01

— | /1

11. Locate the Direct Coil instruction in the Toolbox, and drag-and-drop it onto the far right side of the
rung, and assign it to the embedded 1/O point, _10_EM_DO_08. Your rung should look like the
following.

Motor_Circuit-POU* v X

_1O_EM_DI_00 _10_EM_DI_01 _10_EM_DO_08

— | /1 O

12. Locate the Branch instruction in the Toolbox and drag-and-drop it on top of the Direct Contact on the
far left of the rung. Your rung should look like the following.

Motor_Circuit-POU* v X

_I0_EM_DI_00 _10_EM_DI_01 _10_EM_DO_03

i | /1 O

13 of 49

13. Drag-and-drop a Direct Contact in to the Branch that you just added, and assign it to the embedded I/0 point,
_l0_EM_DO_08. Your rung should look like the following.

~ Motor_Circuit-POU* - X
_I0_EM_DI_00 _I0_EM_DI_01 _I0_EM_DO_08
] L 1 7L 7y
| I | l/l L
_10_EM_DO_08
] L
| I |

14. You've completed creating your motor seal-in circuit. Save your project and proceed to the next section to build
and download your application to the Micro850 controller.

14 of 49

1.

Build and Download your Micro850 Application

In this section, you will learn how to build and download your Micro850 application to the controller.

Before you can download an application to the controller, you must build it to verify that there are no errors with the
programming.

Build your application by right-clicking the Micro850 in your Project Organizer, and selecting Build, or via the

icons at the top of your screen
Communications Window

P |

Help
- | & & d~ ik
Bui

8,
| A | ML

®, Disconnect i ; [# Run Mode Change

Al

4l

When the build is complete, you will see a message in the Output panel that the build has succeeded. If there were
errors in your programming, then they would be listed in the Output panel as well — and clicking on the error would
direct you to the error in your program.

Qutput - 0 x
Show output From: Build - _ﬂ J_.J _’l, =X |

—————— Build End ------ -
———————————————————— Post-build project: CONTROLLER ---———-——-----——————-

———————————————————— Post-build resource: MicroZE0 Configaraction: Microf850 -----—--——-————-

MicroB50: 0 erroris), 0 warningis)

—————— Build End ------

========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ========== |-
| -
A FI

Now that your build has completed, you can download the program to your controller.

2. Download your program to your Micro850 by right-clicking the Micro850 in your Project Organizer, and
selecting Download, or click on the download icon

Motor_Circuit-POU
_|0_EM_DI_00
] L
LI}
_I0_EM_DO_08
=] L
d bles 1 I
ﬁ Irnport »
Export »
......... = ks
)(Delete
Rename
Ty
3 5 Help
‘=7 Properties
- | # &= _: % Disconnected '|L KRN R

Or

| Download i

4l

Run

15 of 49

3. The Connection Browser will appear. Browse for your controller by expanding USB and selecting
16, Micro850, Micro850, then clicking OK.

SI=IE
v Autobrowse Fiefresh I

E‘E ‘Waorkstation, TEMPOI-CHIIDOIE
+-@5 Linx Gateways, Ethernet
M AB_WEBP-1, 1789-A17/4 virtual Chassis

Micro850 "Micro850" has no password.

(1] Ok I Cancel

16 of 49

4. If the Controller is in Run Mode, you will be prompted to change it to Remote Program mode. Click Yes.

i

The contraller is in Remake Run made,
I % Do you want ko change bo Rerote Prograrm mode?

5. The download will proceed. When the download is complete, you will be prompted to put the controller back
in to Run Mode. Click Yes.

Download Confirmation x|

Download is Complete, Do wou want ko
I %, change the controller back ko Remate Run?

6. Notice the messages in the Output panel that indicate the Download has completed successfully.

Cutput -~ 0 X

Show output From: General - _J ,JJ _1, =X =

—————— Start Dovmloading Pesource 1 ————-—-
—————— Dovmload: 1 succeeded, 0 fajiled, 0 up-to-date, 0 skipped --——---

7. You have completed downloading to your Micro850 controller. Proceed to the next section to test and debug
your application.

17 of 49

Debug your Micro850 program

In this section, we will demonstrate how to debug your Micro850 program. By debugging your program, you can view
your program visually in real-time and watch values change in the program, as well as visually debug your Ladder

Logic or Function Block Diagram.

1. Click the “Play” button in the Toolbar at the top of the workspace environment. This will put your program into
“Debug” mode.
Connected Components Workbench (Administrator)

File Edit ‘Wieww Build Debug Tools Communications window Help

NEE-H Ra9-0-8-B(5 -Fegimble > =%
: HMI Application Language: | v|iﬁ |2 S| i ik & of | s .:;. oL -' T | E &
] 3l B 7 ux|A|SEE=|i=
4 _— L LT - - - e i

Praject Organizer Motor_Circuit-POU

Marne: Projectl [

_IO_EM_DI_0D _I0_EM_DI_01
1 L 1 7L
LI | l!l
Makar _Circuit _|0_EM_DO_08
ﬁ Local e : :
ﬂ ~lakoal Waviklae
2. You should see the Ladder Diagram change color. The rung will turn blue, and any Boolean instructions that are

active will turn Red.

Motor_Circuit-POU B

_|O_EM_DI_00 _|O_EM_DI_01 _|O_EM_DO_08
i | i/} O
_|O_EM_DO_08

18 of 49

3. Turn and release the DI0 switch on the Demo hardware. Notice the _IO_EM_DI_00 Direct Contact instruction
turn red as you turn on the switch, and then turn blue as you release it (if you turn and release the switch too
fast, you may not see it update in the ladder diagram). Then notice the _IO_EM_DO_08 Direct Contact and

Direct Coil instructions turn red. You should also notice that the DO8 light on the Demo is now on.

Motor_Circuit-POU
_I0_EM_DI_00 _10_EM_D1_01 _10_EM_DO_08
] L] 71 '
L | |/ I v,
_|0_EM_DO_08

This is a typical motor seal-in circuit (and can also be applied in non-motor circuits as well). The
Output Coil is turned on using a Direct Contact and then the active state of the Output Coil seals in
the circuit. The circuit is unsealed when a Reverse Contact (normally closed) is opened. DI_01
would be the permissive to allow the circuit to work, such as a door that must be closed before
operation. If the door is closed- the system can start. If it opens- it stops

the corresponding changes in your Ladder Diagram.

Turn and release the DI1 switch on the Demo to turn off the output. Notice the light on your Demo turn off and

5. So far, you've debugged your program primarily by viewing real-time changes in the Ladder Diagram editor. In
some instances, you may just want to view the real-time changes in a list format. You can do this by looking at

them in the Variables list.

19 of 49

Since the variables we’re working with right now are embedded 1/0 points, we need to open the Global Variables
list.

Double-click Global Variables in your Project Organizer. The Global Variables pane will launch in a new tab in
the main project workspace.

Hame: Project]
Lock | Data Type | Dimension | Alias | Initial ¥alue | Attribute

- o

E Motaor_Circuit

ﬁ Local Variables

! % DataTypes

-4 EZzt User-Defined Function Blocks

]] g e)]]]]

The Global Variables pane is a list of all the Global Variables in your program. You will learn more about Global
Variables and other types of variables in the next section.

Locate the _I0O_EM_DO_08 embedded I/O variable in the Global Variable list, and notice that the logical value.
checkbox is empty.

Logical ¥alue

3

20 0f 49

8. Turn and release the DIO switch on the Demo. Notice there is now a checkmark in the Logical Value for
_|O_EM_DQO_08, and the light on the Demo is on. You may have also noticed a checkmark appear in the
_|O_EM_DI_00 logical value as you turned on the switch and then noticed the checkmark go away as you
released the switch.

~ Micro850-YAR

|

Logical ¥alue | Physical ¥alue |

%

v o v ot

HIHIHIH

||_
I!l
-

21 0f49

9. Turn and release the DI1 switch on the Demo. Notice the checkmark go away in the logical value for
_IO_EM_DO_08, and the light turn off on the Demo.

10. You have completed debugging your program. To exit Debug mode, click the Stop button in the toolbar.

{Running) - Connected Components Workbench {Administrator)

File Edit View Buld Debug Tools Communications window — Help
DEFE-WH f2A9-0-E-B|B

HIMI Application Language: |

! @ﬂ "% W% 8

L Lh J||

o

=

] e zux|al==

vaf‘ vaf‘ vaf‘ vaf‘ v‘#‘ 'Cﬁ
_Io_EM_DO_00 BOOL =
Programs _Io_EM_Do 01 BOOL B4
I _Io_EM_DO_DZ BOOL =
|E| Mator_Circut _I0_EM_DO_03 BOOL -
) _Io_EM_DO_04 BOOL =
e Laocal Yariables
_I0_EM_DO_0S BOOL =
ﬁ Global Yariables _10_EM_DO_0& ol .
_Io_EM_DO_07 BOOL -
EI_Q DataTypes _I0_EM_DO_03 BOOL =

Being able to debug a program in real-time is a very valuable tool in the programming and trouble-shooting
process, and Connected Components Workbench makes this design step very simple and easy.

22 0f49

Learn about Variables and Data Types

In this section, we will discuss what a Variable is, and the different Data Types available.

A variable is a unique identifier of data. A basic example of a variable is what you've already been referencing in the
lab for Embedded /O points. The Embedded /O variables are Boolean data types that are direct references to the
embedded input and outputs on the controller. They are identified by variables that start with the prefix _IO_EM, and
are globally scoped. We will discuss variable scope a little later.

Micro800 controllers also have System Variables of varying data types that reference internal system values of the
controller that a user may want to use in their programming, or for troubleshooting purposes. System Variables start
with the prefix __SYSVA. An example of a system variable that is commonly used is the _ SYSVA_FIRST_SCAN
variable. This is a Boolean variable that is TRUE when the Micro800 controller is going through its first scan of the
program — typically used for programming startup routines.

_ SYSWA_CYCLECNT DINT -
__SYSWA_CYCLEDATE TIME -

__ SY¥SWA_KVEPERR BOOL -
__SYSWA_KVECERR BOOL -

_ S¥SWA_RESMAME STRING -

_ SYSWA_SCANCHT DINT -

_ SYSwA_TCYCYCTIME TIME -

_ SYSWA_TCYCURRENT TIME -
_SYSWA_TCYMARTMUM TIME -
_SYSWA_TCYOVERFLOW DINT -
__SYSWA_RESMODE SINT -

_ SYSWA_CCEREC BOOL -
__SYSwA_REMOTE BOOL -

__ SY¥S¥A_SUSPEND_ID UINT -

_ SYSWA_TCYWDG UDINT -
_SYSWA_MAT ERR_HALT BOOL -

| _ S¥SwA_ABORT_CYCLE BOOL -

[__SYSWA_FIRST_SCAN

—SvSvh USER_DATA_LOST BOGL =

__ S¥SwA_POWERLUP_EIT BOOL -

Variables can be created dynamically as you need them, and they can be named anything you want (as long as it's
not a reserved name). You can also create variables for local program use only, or you can create them for Global
use (for all programs to use) — this is what we refer to as variable scope. Global Variables are created in the Global
Variables list, and Local Variables are created in the Local Variables list of the specific program.

Being able to create variables dynamically and use custom names provides you, as a programmer, great flexibility
and customization that will help you create code and troubleshoot faster.

23 of 49

Data types

When you create a variable, you have to specify its data type. A data type defines the type of data that the variable
represents, such as an integer, real (floating point), Boolean, time, double integer, etc. Data types can also be data
structures of an Instruction Block.

CCW supports the 19 elementary IEC 61131-3 data types below.

+ BOOL

« SINT

+ USINT

+ BYTE

« INT

« UINT

+ WORD

+ DINT

* UDINT

+ DWORD
« LINT

« ULINT

+ LWORD
+ REAL

+ LREAL

+ TIME

+ DATE

+ STRING

24 0f 49

Learn how to create variables

In this section of the lab, you will learn how to create variables for use in your program. The variables you create in
this section of the lab will be used in the next section of the lab.

1. Double-click Local Variables in your Motor_Circuit program to launch the Variables panel.

Project Organizer

Marme: Projectl

2. Create a variable called Motor_On_Time of Data Type TIME.

Motor_Circuit-YAR | Mator Circuit-POL |

Dimension

Mokar_On_Time TIME - |

Initial ¥alue
- Gf‘
Motor_on_Time TIME - Read/'Write -
Moktor_On_Time_ms IMT - | 5000 fread/"irite -

250f 49

Create a variable called Motor_Timer of Data Type TON.

Motor_Circuit-¥AR | Mator Circuit-PoL |

Dimension

Mokor_On_Time TIME -
[Motor 20 Time ms IMT x
B & Motor_Timer TON -
- i -

A TON data type is actually the data structure of a Timer-on-Delay Instruction Block. We will
discuss Instruction Blocks in the next section.

You have completed creating variables to be used in the next section of the lab.

26 of 49

Learn how to Implement an Instruction Block

An Instruction Block is essentially a function block that has been predefined to perform a specific task or function.
Instruction Blocks include functions such as Timer-on-delay, Timer-off-delay, Math instructions, Data-type
conversions, Motion instructions, and so forth.

In this section of the lab, you will learn how to implement a Timer-On-Delay Instruction Block (TON). This instruction
block will be inserted into your motor circuit and will turn on the motor coil, and then automatically turn off the motor
coil after 5 seconds.

You will also learn how to implement an ANY_TO_TIME Data Conversion Instruction Block to convert an Integer to a
Time value.

1. Drag-and-drop a Branch instruction to right side of the rung, wrapping around the cail instruction.

Moto_Circuit-POU* - X
_IO_EM_DI_00 _I0_EM_DI_01 _I0_EM_DO_08
] L 1 /L £
LI | l/ L g
_|O_EM_DO_08
] L
LI |

2. Locate the Block instruction in the Toolbox.

Toolbox v B X
Search Toolbox e id
4D

k Pointer

H Rung

= Return

= Jump
T Branch
{> Direct Coil
& Reverse Coil
€ SetCoil
Reset Cail
¥ Pulse Rising Edge Coil
{#r Pulse Falling Edge Coil
{} Direct Contact
w

Reverse Contact

P} Pulse Rising Edge Contact

M Pulse Falling Edge Contact
4 General

27 of 49

3. Drag-and-drop this Block instruction into the branch that you just added.

Toolbox v B X
Search Toolbox P~
_|O_EM_DI_00 _I0_EM_DI_01 _I0_EM_DO_08 | 4D
1] L] /I Y k Pointer
1T 1/ S
_IO_EM_DO_08 H Rung
] L t—— Instruction Block
L] L]
— =0 Return

= Jump

T Branch

{» Direct Coil

£ Reverse Cail

£ SetCoil

€ Reset Coil

€ Pulse Rising Edge Coil
#+ Pulse Falling Edge Coil
{} Direct Contact

¥

Reverse Contact

-

Pt Pulse Rising Edge Contact

-

b Pulse Falling Edge Contact
4 General

4. The Instruction Block Selector will appear. This is where you can select the type of Instruction Block you would
like to use. As you can see, there is a long list of different types of instruction blocks that you can choose from.
Feel free to take a minute to scroll through this list to see what types of instruction blocks are available.

@, Instruction Block Selector (Motor_Circuit) u
S
Search Show Parameters
Name Type Category Comment =
I - I Arithmetic Subtraction of two integer or real variables. I
® ‘ Arithmetic Multiplication of two or more integer or real variables.
/ i Arithmetic Division of two integer or real variables.
+ i Arithmetic Addition of two or more integer or real variables
< ‘ Comparators Tests whether one value is LESS THAN another (on integer, real, time, or string data types).
<= ‘ Comparators Tests whether one value is LESS THAN or EQUAL TO another (on integer, real, time, or string
<> ‘ Comparators Test whether one value is NOT EQUAL to another (on integer, real, time, or string data types
= i Comparators Tests whether one value is EQUAL to another (on integer, real, time, or string data types).
> ‘ Comparators Tests whether one value is GREATER THAN another (on integer, real, time or string data type
>= ‘ Comparators Tests whether one value is GREATER THAN or EQUAL TO another (on integer, real, time, or s
MOV i Arithmetic Assignment of one variable to another
ABL ﬂ Communications Specify number of characters in buffer (including end of line).
ABS I Arithmetic Absolute value
ACB ﬂ Communications Determine total number of characters in buffer.
ACL ﬂ Communications Clear the receive and/or transmit buffers.
ACOS I Arithmetic Arc cosine
ACOS_LREAL ﬂ Arithmetic Perform 64-bit real arccosine calculation.
AHL ﬁ Communications Set or reset modem handshake lines.
AND ‘ Boolean operations Boolean AND between two or more terms
AMIR waacy - Dina Al bt o bt AN o) h
i} »
EN /ENO
oK Cancel

28 of 49

5. You can filter the instruction blocks by Name, Category, or Type. Since we want to use a Timer-On-Delay
instruction block, type TON in the Name filter box at the top of the Name column. This will filter the choices to
only Instruction Blocks that start with TON.

@3 Instruction Block Selector (Motor_Circuit) X

TON (Controller) A
Search [tod]

_.i—
TONOFF G Time Delay an output-on(true), then delay an output-offifalse).

6. Highlight the TON Instruction Block — this is the Timer-on-Delay. Then at the bottom select the Instance combo
box pull-down, and select your previously created Motor_Timer.click OK

g Instruction Block Selector (Motor_Circuit) “

TON (Controller) A
Search ton _l
I _.l—
TOMNOFF ﬂ Time Delay an output-on{true), then delay an output-off{false).
4 i] »
Instance : [Motor_Timer -]
EN /ENO
[*J - Cancel

29 of 49

7. Your ladder program should look like the following.

_10_EM_DI_00 _10_EM_DI_M _IO_EM_DO_08
1 1 1 /1 7y
1 | T {/1 @,
_I0_EM_DO 08 Maotor_Timer
: : IN TON Q
=tPT ET +

8. Next, hover the mouse cursor over the PT parameter of the Motor_Timer TON instruction. You will notice a light
blue highlighting the box..

Motar_ Fimer

TOM
I a

Bl ..

9. Click this box, and a pull down combo box will appear. Find and select the variable Motor_On_Time and then
press the Enter key.

-~

Motar_ Timer

TON

It aQ
Matar_On_Time I _
=l

—H e
_|0_EKM_D0O_05
_I0_EM_D0O_06

TJ0_EM_DO_07
TJ0_EM_DO_03
I0"EM DO 09

Moaotor O Time
batar_On_Time_mz j
batar_Tirner b

30 0f 49

10. Your ladder program should look like the following.

Matar Circuit-yaR -~ Motor_Circuit-pou* o 72

_I0_EM_DI_00 _I0_EM_DI_01 _I0_EM_DO_08
] L] /L
L] l/ I
_I0_EM_DO_08
] L
L]

11. Insert a Reverse Contactor after the _|O_EM_DI_01 Reverse Contactor, as shown below.

Mator Circuit-vaR -~ Motor_Circuit-POU* —

_I0_EM_DI_0D —I0_EM_DI_01 _10_EM_DD_08
] L 1
LI | l/ |- i
_I0_EM_DO_08 +
11
LI |

12. The Variable Selector will display. Select the Local Variables — Motor_Circuit tab, and then click the empty cell
shown below.

¥ variable Selector 10l x|
Mame Tupe Global Scope Local Scope
’7” ‘ ’]EDDL j ’VIMICIDE5U j ’VIMDIDI_EIICU\E j

Initial ¥ al

T

Ok Cancel
4

310f49

13. Expand the variable, Motor_Timer and select, Motor_Timer.Q. Then click OK.

[variable Selector - 101 x|
Mame Type Global Scope Local Scope
’]Motor_Timer.Q ’]BDD L =l || Miera850 =l || [Metar_Circut =]

Uszer Global Y ariables - MicroB50

Local ¥ anables - Motar_Circuit I

Ddid 1 ppe Dimension
- T == -l ~ ot G
Motor_Orn_Time TIME -
Motor_On_Time_mz IMT -
taotor_Timer TOM -
Maotor_Timer. 1M BOOL
Motor_Timer.PT TIME
I] Mator_TimerQ T I N
Mator_Timer.ET TIME
Mator_Timer.Pdate TIME
Maotor_Timer.Redge BOOL

ystem Wariables - MicroB50 | 140 - Micra50 | Defined wards - 4| #|

Cancel |

4

14. Your ladder program should look like the following.

Mokor_Circuit-vaR -~ Motor_Circuit-POU™

-

_I0_EM_DI_D0 _I0_EM_DI_O0T | Metor_Timer.Q _10_EM_DO_08
] L 1 /L 1 7L
110 l/ I l/ I
_ID_EM_DO_D2
1 L
)

320f49

15. Locate the rung instruction in the Toolbox.

k Foinker

[Fof Funs |
Feturn

=% Jump

TT Branch

+F Cirect Cail

4 Reverse Coil

8- Set Cail

=FF Reset Coil

+PF Pulse Rising Edge Coil

i Pulse Falling Edge Cail

4 F Direct Contact

4+ Reverse Contact

4P} Pulse Rising Edge Contack

ik Pulse Falling Edge Contact

1F Elock

16. Drag and drop the Rung instruction below Rung 1.

Motor_Circuf VAR Motar_Circuit-POU* x TR ES
P

& FPoinker
L jl}o{ Rung |

~I0_EM_DI_0D TIO_EM_DI0T Motor_Timer.Q I0_EM_DO_08 / Tk
11 171 171 e 2 Jump
10 l/l l/l S - TT Branch

10_EM_DD_08

- T Taﬁ'm =0F Direct Cail

: : - IN Q & Reverse Cail
- On_Time - -8 5t Coail
~& Reset Cail
| WG,
—_— =B Pulse Rising Edge Cail
k -H- Pulse Faling Edge Cail

{3 4 b Direct Contact
4+ Reverse Contact

330f49

17. Your program should look like the following.

Motor_circuit-vaR, - Motor_Circuit-POLF |

I0_EM_DI00 TI0_EM_DI01 Mator_Timer.Q _I0_EM_DO_0B
] L 1 /L] 7L F
L | l/l l/l S
_I0_EM_DO_08 (" Motor_Timer ")
a TON
| | In Q
. e
[1.

18. Insert a Block instruction into the rung you just created, and select the ANY_TO_TIME Instruction Block. Then
click OK.

&S instruction Block Selector: ANY_TO_TIME ol x|

— Contraller : 2080LC50240BBE

[Wome S Coewy L[iwe|
- -

ANY TO TIME |+ b#s
[.|ANY_T O_TIME | Dt sameran

al |]

— Parameters

Data Type Direction

- {#‘ - :#' - :#' - {#‘
il = Warlnput -
ol TIME = Warlutput w
* - =
I I
Instarce: I j W' Show Parameters
Inputs: 51 ¥ EN JEND

Scope: tator_Circuit

—l}DK | Cahcel |

4

34 0f 49

19. Your program should look like the following.

Mator_Circuit-¥aR, -~ Moter_Circuit-POU

_IO_EM_DI_0Q _IO_EM_DI_O1 Motor_Timer.Q _I0_EM_DO_08
] L 171 171
L) l/l l/l

_I0_EM_DO_08
] L

20. Select the variable Motor_On_Time_ms for the i1 parameter.

s ANT_TD_‘
EN E

b otor_On_Time_ms3

|

_I0_EM_D0O_04
10 EW_DO_0&
_I0_EM_D0O_0&
_I0_EM_D0O_07
_I0_EKM_D0O_03
_I0_EM_D0O_09
batar On_Time

Matar On Time_mz

aly

kdabar_Timmer

350f49

21.

22.

23.

24.

25.

26.

Select the variable Motor_On_Time for the 01 parameter.

[ﬁ.N‘(_TG_Tﬁ
EN ENO

Maotor On Tim

: I0_EM_DO_04 n
J I0_EM_DO_05 B
I0_EM_DO_05
TI0_EM_DO_07
10 EM_DO_03

|0 EM DO 09

Mator O Time
Motor_0On_Time_msz j
Mator_Timer il

The ANY_TO_TIME instruction block is being used to convert an integer value into a time value that is used as
the preset time for the Motor_Timer. The integer value represents time in milliseconds.

Your program should look like the following.

Motor_Circult-VaR, -~ Motor_Circuit-POL*

_IO_EM_DI_0D _I0_EM_DI_01 Motor_Timer.Q _I0_EM_DO_oe

] L] /L] /L
LI] l/l l/l
_I0_EM_DO_02

Build your program, and download it to the Micro850 (if you forgot how to do this, go back and reference the
section Build and Download your Micro850 Application).

After completing the download, put the program into Debug mode by clicking the play button (or pressing the F5
key).

Now test your program. Turn the DI0 switch on, and watch the DO8 light turn on. After 5 seconds, the light
should turn off.

36 of 49

27. Change the value of the variable, Motor_On_Time_ms, to change the amount of time the light stays on to 10
seconds (remember we enter the value in milliseconds). Make sure to press enter after changing the value.

Motor_Circuit-¥AR | Mator Circuit-PoU |

Logical ¥alue | Physical ¥alue Data Type
- ﬂtl‘ - ‘#"“ - c#"" - #"" - #""
Mokor On-Time T#5s AffS TIME -
7 Bl otor_on_Time_ms 10000 _.E. INT -]]
TioM -

+ Matar_Timer

28. Now test your program again. Turn the DIO switch on. The DO8 light should now stay on for 10 seconds, before
turning off.

29. Click the Stop button to exit Debug Mode (or press Shift+F5).

30. You have completed this section of the lab.

37 of 49

Learn how to add a plug-in module
In this section of the lab, you will learn how to add an Analog Input plug-in module. A plug-in module is a module that

you can plug into the Micro800 chassis to allow you to add additional I/O or Communications Options to your
controller.

1. Double-click your Micro850 controller in the Project Organizer.

Project Crganizer

Mame: Projectl

ﬁ Local variables

@ Global Yariables
EE DataTypes

E =zl User-Defined Function Elacks

This will bring up the General Controller Properties in the main project window.

2. Right-click the second plug-in module slot, and select 2080-IF4.

_~Micro850 |
Micro850 Remote " Program Major Fault: Mot |
Micro850 Mode: & Run Controller Mode: Run

* 1
Download Upload Secure Axis Monitor

2080-LC50-24QBB

20380-IF2

=) 2080-1F4 |
= | eeRs
| J o) 2080-RTD2
@ 2080-SERTALISOL
: 2080-TC2

2080-TRIMPOTE

38 0f 49

3. Notice that the 2080-IF4 module is now added to your chassis. The configuration properties should also
show up in the pane below it.

Micro850 X

. g .
Micro250 Remote rogram Major Faule: Mot Faulked o cornacted
Micro850 Mode: @& Run Controller Made: Run {Remote) Disconnect
? B . (] ©
Dowrload Upload Secure Axis Monitor Manuals Help
2080-LC50-240BB
« | |
i Plug-In Modules - 2080-IF4
[=- Cantraller 1= ugh " UI Hes
- General annes 2080-IF4
e
-~ Memory Channel 0 ™
- Serial Pork Iﬁ
. -
- USE Port Input Type: Current
= El;hernet Frequency: ISD Hz ‘l
- Inkernet Protocol
- Port: Settings Input State: IEnahIed ‘l
- Part Diagnostics
- Date and Time: Channel 1
- Interrupts Input T Iﬁ
- SkartupfFaults I Ttz urren E
- Madbus Mapping Frequency: ISD Hz 'l
Embedded 1/ |
=] :Dtiﬂﬂ Input State: IEnabIed ‘l
P e Mew Axis =
(= Plug-In Modules channel 2
< Empty = \ I—vl -
2080174 ﬂ Input Type: |Current _I

4. Configure the Input Type for Channel 0 to Voltage.

—Plug-In Modules - 2050-1F4
—Channels

Chapnel 0

Input Type: I'u'u:ultage

Frequency: |5I:I Hz

L L [L

Input Skate: IEnaI:nIed

39 of 49

5. Configure the input State for Channel 1, 2, and 3 to Disabled.

—Plug-In Modules - 2080-1F4
—Channels

Channel 0

Input Type: I'l.l'l:ull:age

Frequency: ISIII Hz

L L L

Input Stake; IEnaI:uIeu:I

Channel 1

Inpuk Tvpe: ICurrent

Frequency: ISIII Hz

Ldfled L

Input State; IDisaI:uIe-:I

Channel 2

Input Type: ICurrent

L L

Frequency: IEIII Hz

Input State: IDisaI:uIe-:I - I

Channel 3

Input Type: ICurrent

Frequency: ISI:I Hz

LedfLed Lol

Inpuk Stake: IDisaI:uIed

6. Build and download your program to the Micro850.

7. Start debugging by clicking Play, or by pressing the F5 key.

40 of 49

8. Double-click Global Variables in the Project Organizer.

Project Qrganizer

MName: Projectl

|E| E:T-I Makar_Circuik

o @ Local Wariables

-;53- User-Defined Function Blacks

9. Locate the variable _10_P2_Al_00. This is the raw data value in relation to the voltage that is wired to
Channel 0. The value should range from 0 to 65535 in relation to a 0 to 10 volt input.

I EM_L_1U

_I0_EM_DI_11

_I0_EM_DI_12 v s

_I0_EM_DI_13

_10_Pz_Al_00

0Pz AL 01 0 Z0
I0_P2_Al 02 20 20

10. On your demo hardware, turn the potentiometer labeled Speed Command and notice the value of
_l0_P2_AIl_00 change.

11. Stop debugging by clicking the Stop button, or by pressing Shift+F5.

12. You have completed this section of the lab.

41 0f 49

Learn about User Defined Function Blocks

In this section of the lab, you will learn about a User Defined Function Block (UDFB), and how to create one using
Structured Text.

A User-Defined Function Block is a user defined program that can be packaged into an Instruction Block and reused
within your Micro800 project. A UDFB can be written in Ladder, Function Block, or Structured Text.

You will be creating a UDFB to calculate the volume of a cyclinder based on an inputted radius and height value.

1. Inyour current project, right click User-Defined Function Blocks and select Add > New ST: Structured
Text.

Project Organizer

Mare: Projectl I

|E| |::T~| Mokar_Circuit

ﬁ Local Variables
ﬂ Glabal Yariables

Mew 5T ¢ Structured Text

Mew LD ; Ladder Diagram

Properties Mew FBD 1 Function Block Diagram

42 of 49

2. Aprogram called UntitledST will be created under User-Defined Function Blocks.

Project Crganizer

Mame: Projectl

|E| Makar_Circuik
........ @ Local Wariables

........ @ Global Yariables
........ D% CakaTypes

IUser-Defined Function Blocks

UntitledST

- ﬁ Local Wariables

3. Rename this UDFB, Calc_Volume.

4. Double-click Local Variables under Calc_Volume.

43 of 49

5. Create the following variables. Take careful note to properly configure the Direction property. This property
defines whether the variable is an Input, Output, or standard Variable.

Eall:_'lul'ulume—'lul'AR]

- gt - gf] - gl
Radius REAL + MarInput -
Height REAL ~ YarInput -
Yolume REAL = WarDukpuk -
* - =

7. Add the following line of code to the program.

Volume := 3.14 * Radius * Radius * Height;

8. You have completed creating your UDFB.

9. Save your program.

44 of 49

10. Next, create a new ladder diagram program called Tank_Volume.

Praoject Organizer

Mame: Projectl

IE' Mokor_Circuit

Local Variables

w Local Yariables

ﬂ Glabal Yariables
........ % DataTypes

IUser-Defined Function Blocks

Eg Calc_Yolurme
- ﬂ Local Yariables

11. Open the Local Variables for the Tank_Volume program, and create the following variables. Notice the Data
Type for the variable Calc_Tank_Volume is the Calc_Volume UDFB you created.

Tank_¥olume-¥AR]

Data Type
T gt T gt
+! Calc_Tank_volume Calc_Molume -
Radius REAL -
Height: REAL -
Walurne REAL -

45 of 49

12. Next, open the Tank_Volume program, and add a Block Instruction to the first rung.

Tank_Yolume-POU* |~ Tank_volume-wap

13. Select the Calc_Volume UDFB, and specify the Instance Calc_Tank_Volume. Then click OK.

ﬂlnstructiun Block Selector: Calc_Yolume =10 x|

— Contraller : 2080LC50240BEBE

[Neme L[Coeoow L iwe|
| calc bt Eﬂ bt
B[Calc_olume Il defined)
4| | i
— Parameters

Data Type Direction

- ‘#“ - :#“ - ‘#" - 4
Radiuz REAL = Warlnput -
Height REAL = Marlnput -
Wolume REAL = Warlutput -
i Ty
Instance: Il:all:_Tank_"#'DIume || ¥ Show Parameters
Inputs: =E ¥ EN/END

Scope; T ank_*aolume

ak. | Cancel |
+ Y

46 of 49

14. Next, specify the following variables for each parameter of the Block.

g
Calc_Volume
EN ENO

| vome |
s Radius Volume »

» Height

15. Save your project.

16. Build and download your program to your Micro850 controller.

17. Once your download is complete, press the F5 key to enter Debug Mode.

18. Open the Local Variables of your Tank_Volume program, and set the value of Radius to 5, and Height to 10.

Tank_'lr'ulume—'dAR}’ Tank Valume-PoL]

+ Calc Tank Yolume

|

’_
Height 10.0
Yolume 7E5.0

19. The value of Volume should read 785.0.

Tank_'lr'ulume-'dAR]f Tank_Volume-PoU |

Logical ¥alue I
- e - e

+ Calc_Tank_Yaolume
3
Height: 10.0
Yalurme 7a5.0

47 of 49

20. Change the value of Radius to 7.

Tank_'lr'ulume-'dAR]f Tank_Volume-PoU |

Logical Yalue |
- g - g
+ Calc_Tank Wolume
| R
Height 0.0
Yolume 15386

21. The value of Volume should read 1538.6.

TrElI'Ik_'!'DII.IITIE-'!'AR]/- Tank_Valume-POU |

Logical ¥alue |
- gt - gt
+ Calc_Tank_volume
) Er TR
Height 10,0
Yalurne 1535.6

22. Press Shift+F5 to exit Debug Mode.

23. You have completed this section of the lab.

48 of 49

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters
Publication CE-DM246A-EN-P — November 2012 Copyright® 2012 Rockwell Automation, Inc. Al rights reserved.

49 of 49

