

Marietta City Schools

2024–2025 District Unit Planner

Grade & Course: 9-12 Chemistry	Topic: Atoms and Periodicity	Duration: 6 weeks
Georgia Standards and Content: SC1. Obtain, evaluate, and communicate in the characteristics of atoms and elements. a. Evaluate merits and limitations of different neutrons, and electrons in the atom. b. Construct an argument to support the cla c. Construct an explanation based on scienti d. Construct an explanation that relates the element. e. Construct an explanation of light emission f. Use the periodic table as a model to predii outermost energy level of atoms (i.e. including g. Develop and use models, including electron	formation about the use of the modern at in models of the atom in relation to relative im that the proton (and not the neutron or ific evidence of the production of elements relative abundance of isotopes of a particu in and the movement of electrons to identify ct the relative properties of elements based ing atomic radii, ionization energy, and electon con configuration of atoms and ions, to pred	omic theory and periodic law to explain size, charge, and position of protons, electron) defined the element's identity. heavier than hydrogen by nuclear fusion. lar element to the atomic mass of the y elements. d on the patterns of electrons in the tronegativity). ict an element's chemical properties.
Narrative / Background Information		
Prior Student Knowledge: (REFLECTION – PRI S8P1. Obtain, evaluate, and communicate i d. Develop models (e.g., atomic-level model periodic table that illustrate the structure, c molecules.	OR TO TEACHING THE UNIT) nformation about the structure and prope s, including drawings, and computer repres omposition, and characteristics of atoms (p	erties of matter. Sentations) by analyzing patterns within the rotons, neutrons, and electrons) and simple
Year-Long Anchoring Phenomena: (LEARNI Changes to the measurement of chemicals a contamination in the drinking water.	NG PROCESS) added to Flint Michigan's water supply crea	ted dangerous levels of lead
Unit Phenomena (LEARNING PROCESS) Option 1: Semiconductors are vital components systems such as microprocessors, Wi-Fi routers, Option 2: Nanotechnology involves manipulatin applications.	s in modern technology, playing crucial roles i , and mobile phones ng matter at the atomic and molecular levels t	n a wide array of electronic devices and to create materials with novel properties and
MYP Inquiry Statement: All substances are composed of tiny, discrete pa us.	articles that interact to shape the properties a	nd behavior of materials in the world around
MYP Global Context: Globalization and Sustainability		
 Approaches to Learning Skills: Communication skills Social skills Self Management skills Research skills Thinking skills 	Disciplinary Core Ideas: (KNOWLEDGE & SKILLS) • Element Formation • Nuclear Fusion • Models of the Atom • Billiard Ball • Plum Pudding • Nuclear • Bohr • Quantum • Element Identity • Subatomic Particles • Proton	Crosscutting Concepts: (KNOWLEDGE & SKILLS) • Systems and System Models • Structure and Function • Patterns MYP Key and Related Concepts: • Systems • Relationships • Models • Evidence • Patterns

Published: 8,2024 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

	 Neutron Electron Isotopes Isotopic Abundance Ions Electron Arrangement Orbital Notation Electron Configuration Full and Abbreviated Lewis Dot Diagram Light Emission Periodicity / Properties Atomic Mass Atomic Radii Ionization Energy Electronegativity Reactivity 	
--	---	--

Possible Preconceptions/Misconceptions: (REFLECTION – PRIOR TO TEACHING THE UNIT)

- Students should have a basic understanding that:
- atoms are the building blocks of matter
- atoms contain protons, neutrons, and electrons
- protons and neutrons are located in the nucleus
- electrons are located in the electron cloud
- protons are positive
- electrons are negative
- neutrons are neutral

Students might have misconceptions involving:

- the existence of multiple models of the atom with varying merits and limitations
- identifying the location of varying subatomic particles within the atom
- the varying sizes of subatomic particles within the atom and the subsequent implications of that size
- the number of each subatomic particle is always equal
- determining the charge of an ion (changing protons instead of electron)

Key Vocabulary: (KNOWLEDGE & SKILLS)

Atom **Billiard Ball Model Plum Pudding Model** Nuclear Model Bohr Model Nucleus **Electron Cloud** Subatomic Particle Proton Neutron Electron Mass Number Isotope **Relative Abundance** Atomic Mass lon **Nuclear Charge** Particles **Nuclear Fusion Light Emission Isotopic Abundance** Periodic Table Atomic Radii

Ionization Energy Electronegativity Electron Configuration Chemical Property

Inquiry Questions:

Factual -

- What are the three subatomic particles in an atom?
- What changes to the subatomic particles lead to the formation of an isotope?
- What changes to the subatomic particles lead to the formation of an ion?
- How can we determine the atomic mass of an element from the relative abundance of its isotopes?
- How can we determine the percent composition using the mole and Avogadro's number?
- How can we determine the empirical/molecular formula using the mole and Avogadro's number?
- How can we convert between mass, moles, and particles using the mole and Avogadro's number?
- What occurs when two nuclei undergo nuclear fusion?
- How can we model nuclear fusion with an equation?
- What occurs when an atom absorbs energy from a flame or electricity? How does this result in the emission of light?
- What did the Bohr Model add to our understanding of electrons?
- What did the Quantum Model add to our understanding of electrons?
- How can we use the Periodic Table to determine the energy levels and sublevels that an atom's electrons occupy?
- How can we use the Periodic Table to construct models (Bohr, electron configuration, orbital notation) for atoms and ions?

Conceptual -

- How did each new model of the atom contribute to our current understanding of the relative charge, size, and position of the subatomic particles?
- What evidence supports the claim that the proton (and not the neutron or the electron) defines the element's identity?
- How might the presence of different isotopes impact the resulting atomic mass value?
- How do the mole and Avogadro's number interrelate?
- How do the spectra of stars provide scientific evidence of nuclear fusion?
- How can we use observations of light emission to make predictions about the energy of electron transitions occurring within the atom?
- How can models (Bohr, electron configuration, orbital notation) be used to predict chemical properties of atoms and ions?

Debatable -

- Which model of the atom is the best representation based upon its merits and limitations?
- Should society have control/approval over nuclear fusion research?

MYP Objectives	Summative assessment		
Sciences	Criterion A: Knowing and Ur Common Formative Common Summative Criterion B: Inquiring and De Common Laboratory Criterion C: Processing and Common Laboratory	nderstanding Assessment e Assessment esigning / Experience Evaluating / Experience	Relationship between summative assessment task(s) and statement of inquiry: Students will perform tasks and respond to assessment items that will gauge their mastery of atoms and periodicity as required by the Georgia Standards of Excellence. Mastery of these concepts is necessary to move forward in our study of particulate properties and behavior.
Learning Activities and	Inquiry & Obtain: (LEARNING PROCESS)	Evaluate: (LEARNING PROCESS)	Communicate: (LEARNING PROCESS)

Published: 8,2024 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

Experiences				
Week 1: Georgia Standard(s) of Excellence: Construct an explanation based on scientific evidence of the production of elements heavier than hydrogen by nuclear fusion.				
Week 1: Week 2:	Engage: Phenomena introduction (semiconductors and nanotechnology) Explore: Modeling nuclear fusion and lab safety and procedures	Evaluate: Lab Safety Quiz Evaluate: CER nuclear fusion modeling	Explain: CER nuclear fusion modeling peer review and presentations Elaborate: Application to material science: Developing materials that can withstand the intense conditions inside a fusion reactor.	
Georgia Standard(s) of Excellence: Evaluate merits and limitations of different models of the atom in relation to relative size, charge, and position of protons, neutrons, and electrons in the atom.				
	Engage: Atomic modeling Explore: Atomic modeling experimental data analysis	Evaluate: Atomic Structure Formative Assessment	Explain: Atomic Modeling CER based on evidence from historical experimentation and scientists Elaborate: Application to nanotechnology using carbon Nanotubes (link to phenomena).	
Week 3-4: Georgia Standard(s) of Excellence: Construct an argument to support the claim that the proton (and not the neutron or electron) defines the element's identity. Construct an explanation that relates the relative abundance of isotopes of a particular element to the atomic mass of the element. Develop and use models, including electron configuration of atoms and ions, to predict an element's chemical properties.				
	Engage: Student discourse on average atomic mass Explore: Modeling, analyzing and summarizing ions vs isotopes vs atoms Lab: Isotope Lab, Flame Test	Evaluate: Lab Assessments Evaluate: CFA	Explain: Lab analysis and presentation Elaborate: Role of ions and isotopes in nanotech and semiconductors	
Week 5-6: Georgia Standard(s) of Excellence: Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms (i.e. including atomic radii, ionization energy, and electronegativity).				
	Engage: Compare and contrast discourse activity on periodic groups Explore: Research Periodicity Project	Evaluate: Periodicity Project Presentation	Explain: Periodicity Project Elaborate: Periodicity Project (MYP D)	

Resources (hyperlink to model lessons and/or resources):

Discovery Education Science Techbook

Reflection: Considering the planning, process and impact of the inquiry

Prior to teaching the unit	During teaching	After teaching the unit