You should complete all of your work neatly on a separate sheet of paper. Make sure to label each problem and box in your answers.

- 1. Find the line that passes through the point (-1,3) and the point of interecetion of the lines x+3y=1 and 2x-y=-5. Write your answer in point slope from $(y-y_1=m(x-x_1))$.
- 2. Determine the slope, length and midpoint of the line segment with endpoints (1, -2) and (3, 2).
- 3. Simplify each of the following expressions.

a)
$$\left(\frac{2}{3}x^{-3}\right)(15x^7)$$

b)
$$x^3(2yz^2)^3$$

c)
$$\frac{(3x^3)(4x^5)}{(x^2)^3}$$

d)
$$\frac{(2y^4)(3y^2)^2}{(y^3)^4}$$

e)
$$(3a^{-2}b^3)^{-3}$$

4. Simplify the following by removing all possible factors from the radical.

a)
$$\sqrt{9z^8b}$$

b)
$$\sqrt{24a^4b^8}$$

c)
$$\sqrt{\frac{75}{a^6}}$$

5. Factor each of the following completely.

a)
$$6x^3y^2 + 15x^2y^5 - 30x^7y^4z$$

b)
$$16y^2 - 9$$

c)
$$4x^{16} - 9y^6$$

d)
$$6x^2 + 7x - 20$$

e)
$$3x^2 - 5x + 2$$

f)
$$x^3 - x^2 + 3x - 3$$

g)
$$3a^3 + 3a^2 - 27a - 27$$

h)
$$x^2 + 4x + 4 - 9y^2$$

6. For each function, evaluate f(2), f(a), and f(2 + h).

a)
$$f(x) = x^2 - x + 1$$

b)
$$f(x) = 5x - x^2$$

7. Solve each equation.

a)
$$2(x+5)-7=3(x-2)$$

b)
$$y - 3(2y + 3) = 8 - 5y$$

c)
$$6x^2 + 3x = 0$$

d)
$$9x^2 - 1 = 0$$

e)
$$x^2 + 10x + 25 = 0$$

f)
$$3 + 5x - 2x^2 = 0$$

You should know the Unit Circle, basic shapes of the sine, cosine, and tangent functions, their domains and ranges and the following trig identities:

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin 2x = 2 \sin x \cos x$$

8. You MUST be able to evaluate he following WITHOUT a calculator. We always use radians, not degrees.

a) $\sin \pi$

- b) $\cos \frac{3\pi}{2}$
- c) $\tan \frac{5\pi}{4}$
- d) $\sin \frac{4\pi}{3}$

- e) $\cos \frac{7\pi}{4}$
- f) $\sin \frac{2\pi}{3}$
- g) $\tan \frac{5\pi}{6}$
- h) $\sin \frac{11\pi}{6}$

9. Solve each of the following on the interval $[0, 2\pi)$.

a)
$$2\sin x - \sqrt{3} = 0$$

b)
$$\cos^2 x = 2 \sin x - 2$$