	01	- .
Name	Class	Date

8-1

Practice

Form G

Monomial:

2 -4x² 2.5x²y³ 3 Degree of a Monomial: the sum of the exponents of the variable degree 2 1st degree -4x² 2nd degree 2.5x²y³ 5th $\frac{a}{3}$ 1st

Example 1: Finding the degree of a Monomial

What is the degree of each monomial?

- a.

Example 2: Adding and Subtracting Monomials

What is the sum or difference?

- $3x^2 + 5x^2$

Polynomial: $3 \times 4 + 5 \times 2 - 7 \times + 1$ (Standard Form)

The gradient of the monomial from greatest to least degree of a Polynomial (in one variable):

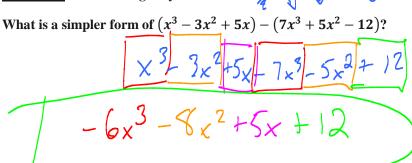
Polynomial	Degree	Name by degree	# of terms	Name by # of terms
6	B	Constant		Monamin
5x + 9		linear		Binomial
$4x^2 + 7x + 3$	7	anodratic	3	Trinomia
2x ³ 6	3	Cubic		Mononia
$8x^4 - 2x^3 + 3x$	4	Fourth degree	3	Trinomial

Example 3: Classifying Polynomials

Write each polynomial in standard form. What is the name of the polynomial based on its rewrite in Standard form b. $4x-1+5x^3+7x$ degree and number of terms?

a.
$$3x + 4x^2$$

Example 4: Adding Polynomials


The revenue generated by a company and the cost of producing x units can be modeled by the polynomials below.

Revenue:
$$2x^2 + 120x$$

Cost:
$$-0.5x^2 - 300x - 8000$$

Add the functions to determine the net profit or loss polynomial.

Example 5: Subtracting Polynomials

