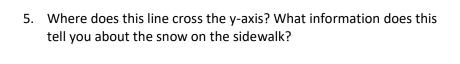
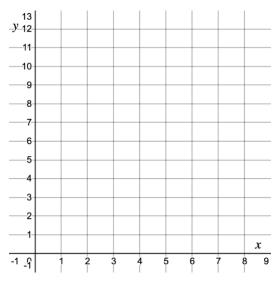
Papillion La-Vista South High School

Honors Algebra 2 Summer Packet


Students should work on the following skills to prepare for Honors Algebra 2. A pretest over these skills may be given the first week of school. Attach all work if using separate sheets of paper.

Linear Functions


To be a quadratic function, the highest exponent for x must be 1. Slope-Intercept form of a linear function is y=mx+b. Important skills for working with linear functions if identifying slope, y-intercept, and graphing.

Picture this: It's second semester Honors Algebra 2 and a big snowstorm is passing through the Metro area. The height of snow on the sidewalk can be modeled by the equation $y = 5 + \frac{2}{3}x$, where y is the height in inches, and x is the hours after midnight.

- 1. How many inches of snow are on the ground at midnight? How do you know?
- 2. How many inches of snow are on the sidewalk at 3 AM?
- 3. Graph the relationship between the height of snow and the time on the coordinate plan provided.
- 4. What is the slope of the line? What does this have to do with the snow on the sidewalk?

- 6. How many inches of snow are there on the ground at 4 AM?
- 7. If there are 12 inches or more of snow on the ground at 6 AM, school will get canceled. Should you turn off your alarm? Explain.
- 8. At what time will there be exactly 8 inches of snow on the ground?

Quadratic Functions

To be a quadratic function, the highest exponent for x must be 2.

Standard form of a quadratic function is $y = ax^2 + bx + c$.

An important skill for working with quadratic functions if FACTORING and is explored in the activity below.

What's Missing?

For each of the following problems, find the missing pieces needed to make the equation true.

1. (x+3)(x+4) =_____

b.
$$(x + \underline{\hspace{1cm}})(x + 7) = x^2 + 9x + 14$$

c.
$$(x + \underline{\hspace{1cm}})(x + \underline{\hspace{1cm}}) = x^2 + 15x + 14$$

d.
$$(x + \underline{\hspace{1cm}})(x + 5) = x^2 + 6x + \underline{\hspace{1cm}}$$

e.
$$(x+3)($$
 $) = x^2 + ___ + 18$

f.
$$(x-4)(x+7) =$$

g. ()() =
$$x^2 - 3x - 28$$

h.
$$(x+6)($$
) = $x^2 - \underline{\hspace{1cm}} -54$

i. ()() =
$$x^2 - 15x + 54$$

$$(x+3)(x-3) =$$

k. ()() =
$$x^2 - 64$$

1.
$$(x-7)(x-7) =$$

m. ()() =
$$x^2 + 24x + 144$$

n.
$$2($$
 $)($ $) = 2x^2 + 48x + 288$

o. __()() =
$$3x^2 + 15x + 18$$

2. If the product (the right side) was missing, what strategies did you use?

3. If the factors were missing, what strategies did you use?

Factoring Practice

Factor each of the quadratics completely.

1.
$$x^2 + 7x + 10$$

2.
$$x^2 - 10x - 24$$

3.
$$x^2 - 81$$

4.
$$x^2 + 2x$$

5.
$$4x^2 - 48x + 108$$

What's Missing? Part 2

For each of the following problems, find the missing pieces needed to make the equation true.

1.

a. ()() =
$$x^2 + 7x + 12$$

$$(2x-1)(3x+4) =$$

c.
$$(2x + 3)$$

$$(2x + 3)$$
 () = $2x^2 + \underline{\qquad} x + 12$

$$(x + 6)($$

$$(x+6)($$
 $) = 3x^2 + \underline{\qquad} x - 12$

)() =
$$3x^2 + 8x + 5$$

$$(_{--}-3)($$

$$(\underline{\hspace{1cm}} -3)(\hspace{1cm}) = 5x^2 - 21x + 18$$

$$() = 4x^2 + 24x + 11$$

- 2. Compare these problems to the ones you did yesterday. What is different about them?
- 3. How did you adjust your strategies to solve today's problems?

4. If $(rx + s)(px + q) = ax^2 + bx + c$, what relationships can you find between the factors and the coefficients a, b, and c?

Factoring Part 2 Practice

Factor each of the quadratics completely.

1.
$$x^2 + 5x - 36$$

2.
$$7x^2 + 15x + 2$$

3.
$$-2x^2 + 4x + 70$$

4.
$$6x^2 + 11x - 10$$

5.
$$6x^2 - 11x - 21$$

6.
$$4x^2 + 32x + 15$$

Resources

Linear Functions

Intro to Slope-Intercept Form Video & Practice

<u>Linear Equations Word Problems Video & Practice</u>

Quadratic Functions

PLSHS Algebra 1 Flow Chart for Factoring Polynomials

Intro to Factors & Divisibility Video & Practice

Factoring Quadratics as (x + a)(x + b) Video & Practice & Practice 2

Factoring Quadratics by Grouping (trinomials when a ≠1) Video & Practice <u>Difference of Perfect Squares Intro & Practice</u> 解禁禁回 回频凝热禁息 <u>Difference of Perfect Squares leading coefficient</u> ≠ 1 Video & <u>Practice 2</u> Strategy in Factoring Quadratics in any form Video Part 1 Strategy in Factoring Quadratics in any form Video Part 2 **Practice**