
TCBOE K-12 CT Progression
K-2 3-5 6-8 9-12

Key Words if/then, start/end, forward/backward, left/right, loop/repeat, sequence variable, run series, algorithm, debugging, sensors, functions, iterations, operators, logic, parameters

Computational 
Thinking

Create algorithms, or series of ordered steps, to solve problems.

Decompose a problem, into smaller, more manageable parts.

Collect, analyze, and represent data effectively.

Demonstrate an understanding of how information is represented, stored, and processed by a computer.

Optimize an algorithm for execution by a computer.

Create simulations / models to understand natural phenomena and test hypotheses.

Engineer software and/or hardware solutions for real-world problems.

Evaluate algorithms by their efficiency, correctness, and clarity.

Computing 
Practice and 
Programming

Use hands-on learning and the physical environment to explore computing concepts.

Write programs using visual (block-based) programming languages.

Write programs using text-based programming languages.

Locate and debug errors in a program.

Read a program and translate it into English. Explain how a particular program functions.

Design, code, test, and execute a program that corresponds to a set of specifications.

Modify and create animations,
and present work to teammates.

Design, develop, publish, and present products (e.g., web pages, mobile apps, animations) 
to demonstrate and communicate curriculum concepts.

Create web pages with a practical, personal, and/or societal purpose.

Identify strengths and limitations of different 
programming languages.

Examples of 
Suggested 
Languages & 
Platforms

Scratch Jr. Scratch/ScratchED Snap!

Dash and Dot JavaScript

Ozobot/Ozoblocky HTML/CSS

Daisy the Dinosaur Sphero/Ollie/Sphero Edu

Bee-Bots/Blue-Bots VEX/BEST Robotics

Move the Turtle Hummingbird/Create Lab 

Lego WeDo Lego Mindstorm

Cubelets Drones

Coding Curricula

Code.org Course 1 Code.org Course 2 Code.org Course 3 Code.org Course 4 Code.org CS Principles

Code.org CS Discoveries

Google CS First

CodeHS

Project Lead the Way

Kodable Code Combat

Exemplary 
Learning Activities

Determine and 
input a series of six 
sequential 
directions into a 
Bee-Bot to follow 
the pictures of a 
story (e.g., 
Goldilocks and the 
three bears) from 
beginning to end.

Determine and 
input a series of 
10+ sequential 
directions into a 
Bee-Bot to 
navigate a maze or 
accomplish a basic 
task (e.g., find the 
sight word, avoid 
the opposite, find 
the sum of 2+3).

Use basic loops to 
repeat a sequence 
of commands, in 
order to guide fuzz 
balls through a 
maze in Kodable.

Create and present 
a Scratch, Jr. 
interactive collage 
involving multiple, 
animated 
characters.

Create and share an 
animated, 
interactive story 
using sequence, 
loops, and event-
handlers in Code.
org's PlayLab.

Remix a Scratch 
project to add and 
customize features. 
Debug a project to 
correct errors and 
achieve a given 
objective.

Draw complex 
shapes and 
patterns by 
decomposing and 
combining smaller 
shapes, using 
nested loops and 
randomization.

Create web pages 
with a practical, 
personal, and/or 
societal purpose. 

Read the code 
behind a Flappy 
Bird-like game and 
translate it into 
English.

Develop a model of 
a local ecosystem 
using StarLogo 
Nova, to simulate 
predator-prey 
relationships and 
population 
dynamics.

Use algebraic 
concepts to design 
a game that 
detects collisions, 
handles keystrokes, 
and determines 
how characters 
move and interact.

Build, code, and 
test a robot that 
solves a stated 
problem.

Create a chase, 
escape, or platform 
game, and use 
variables to keep 
score.

Create an Ants vs. 
SomeBees action 
game (inspired by 
Plants vs. Zombies) 
with complicated 
interaction using 
object-oriented 
programming.

Evaluate U.S. and 
world trends by 
develop a 
geographic 
visualization of 
Twitter data using 
lists, and data 
abstraction 
techniques to 
create a modular 
program.

Design and develop 
an an app, game, 
website, or 
program to solve a 
real-world, 
community- based 
problem.


