

STEAM Formation

Expect great things.

Acceleration is new

Digital

Exponential

Combinatorial

Expect great things.

A. K. (n.d.). 2016 Schools of the Future Conference

21st Century Survival Skills by Tony Wagner

- Critical Thinking and Problem Solving
- Collaboration and Leadership
- Agility and Adaptability
- Initiative and Entrepreneurialism
- Effective and Oral Communication
- Accessing and Analyzing Information
- Curiosity and Imagination

STUDENT A

STUDENT B

CONTENT MASTERY
CRITICAL THINKING
COMMUNICATION
COLLABORATION
CREATIVITY
GLOBAL COMPETENCE
SELF-DIRECTION

National Academy of Engineering

The Grand Engineering Challenges

Advance health informatics

Advance personalized learning

Develop carbon sequestration methods

Engineer better medicines

Engineer the tools of scientific discovery

Enhance virtual reality

Make solar energy economical

Manage the nitrogen cycle

Prevent nuclear terror

Provide access to clean water

Provide energy from fusion

Restore and improve urban infrastructure

Reverse-engineer the brain

Secure cyberspace

CAREERS

US Department of Labor estimates

8.6 million NEW STEAM jobs

were unfilled in 2018

65% OF JOBS OUR STUDENTS WILL HAVE DON'T EXIST TODAY

Big Data Architect

IOS Developer

Cloud Services Specialist

Data Scientist

CAREERS in Pennsylvania

- By 2024, there will be 1 million STEM related job opportunities in Pennsylvania
- In 2016 there were approx. 17,000 unfilled computer science
 & software jobs in PA
- In 2014, PA had only 2,820 computer science graduates and only 1 in 5 were women
- In 2015, 40% of PA Students displayed college/career readiness. Only 10% of African-American students displayed college/career readiness.

Expect great things.

STEAM in Pittsburgh

- Pittsburgh is ranked as the 3rd best US city for STEM jobs
- Apple, Google, Uber and other leaders in STEM have opened offices with thousands of STEM jobs in Pittsburgh
- African American men ages 18-64 in Pittsburgh are underrepresented in 13 of the region's 20 major industries, including areas like financial services and utilities
- Pittsburgh has seen a rise in high-tech business services, with
 2,400 new jobs in engineering and 3,900 in systems design

"However, many students do not have access to the resources to develop their interest in STEM and STEM careers."

- Pennsylvania Department of Education: Policy Office and Special Consultant to Secretary for STEM Education. (2016). Opportunities for PA to lead in computer science education.

What is STEAM?

STEAM is a **culture**, not a class.

Achievement Gap

Impoverished Background
ADD and ADHD

English Language Learner Needs

Reading Difficulties

504 Plans

Absences

Boredom - Lack of Engagement Gender Bias

.

Stop asking your children what they want to be when they grow up...

Start asking them what problems they want to solve!

It depends who you ask.

at things.

STEAM Learning

In a STEM learning environment, powerful critical thinking and exploration practices commonly used in science, technology, engineering and math classrooms will be drawn across disciplines and connected by a common or transdisciplinary theme, allowing students to:

STEM Learners:

- Ask deep real world questions
- Collaborate with their peers
- Arrive at meaningful conclusions
- Explore STEM careers

1

Shared Leadership Model Continuous Improvement Cycle Multiple Learning Opportunities Over Time

Job Embedded Instructional Support Learning Labs

Transforming practice. Transforming culture.

"Educators need more than 80 hours of high quality professional development over a two-year period to change their *practice*. They need 160 hours of focused professional development over a three-year period to change the *culture*."

Supovitz & Turner

A three-year system for professional learning and leadership designed to build and sustain a culture of STEAM teaching and learning.

56 Schools

56 Campus Administrative Teams

224 STEAM Teacher Leaders

STEAM Learning Lab Classrooms

1 PPS Exec Leadership Team

Expect great things.

Year One Outcomes

- Move from teacherdirected to studentdriven
- Drive students engagement through the use of interdisciplinary learning
 - Strengthen teacher leadership strategies

- Make Real World content ties
- Become content creators, not consumers

ADMINISTRATORS

- Empower Teacher Leaders
- Begin to engage community
- Create an atmosphere for collaboration through a school-wide learning lab approach

Year Two Outcomes

- Build rigorous standards-based STEAM learning activities
- Deliver instructional strategies tying content to STEAM careers and the real world
 - Measure Creativity, Critical Thinking, Collaboration and Communication
- Offer learning lab environment and culture into practice

STUDENTS

- Investigate of STEAM problems in the local community
- Productively communicate understanding through STEAM-based assessments

ADMINISTRATORS

- Communicate STEAM vision to community
- Support teacher leadership with learning lab access for all
 - Establish a STEAM leadership group
- Support implementation of inquiry-based instructional strategies

Year Three Outcomes

TEACHERS

- Increase opportunities for learning lab access and peer coaching
 - Standards-based
 STEAM experiences

 through a
 transdisciplinary
 Approach
- Connect STEAM skills to future careers possibilities
- Increase student discourse and the development of student led inquiries

STUDENTS

- Greater confidence, hard work and perseverance when faced with challenging STEAM tasks
- Increase ability to explain thinking through critical discourse

ADMINISTRATORS

- Establish STEAM metrics to determine growth
- Develop communication strategies and a STEAM "Story" to share
- Develop structures to support data-driven, crosscurricular collaboration and Transdisciplinary professional learning

STEM CONNECT

REAL CHALLENGES. REAL POSSIBILITIES

A cutting-edge interdisciplinary K-8 STEM resource.

Relatable, Real World Challenges Across
Subjects
& Grades

4Cs STEM Skills Framework CriticalThinking
& Literacy
Focus

Career Connections

A supplemental K-8 resource designed to enhance core curriculum and bring STEAM solution seeking skills to life in your classrooms.

Expect great things.

nout the WORLD

STEM Instructional Progression

Transformation Built On The 4 C's

Questions

Thank you

Minika Jenkins

Chief Academic Officer

A Plan to Address Instructional Gaps in Mathematics

Expect great things.

Developing Instructional Leaders in Mathematics at "Scale"

Supporting Mathematics Instruction Beyond the Classroom

- Building capacity and content knowledge with
 - School-based staff
 - School-based leaders
 - School-based administrators
 - District support staff

CARNEGIE

LONG + LIVE + MATH

Partnership with CARNEGIE LEARNING

- Focused, Sustained Professional Learning
 - Improve student learning outcomes
 - Work with school-based leadership teams
 - Build and strengthen district leadership teams around evidenced-based best practices
 - Building capacity through content and pedagogical training

The Research Behind CARNEGIE LEARNING

- Research-Proven by a RAND Corporation "Gold Standard"
- Top-Rated by EdReports.org
- ESSA-approved

Questions

Thank you

Minika Jenkins

Chief Academic Officer

