Things to Know for Calculus

TRIGONOMETRY

Trig Functions

$$\sin\theta = \frac{\text{opp}}{\text{hyp}}$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

Reciprocal Functions

$$\csc \theta = \frac{1}{\sin \theta} = \frac{\text{hyp}}{\text{opp}}$$

$$csc \theta = \frac{1}{\sin \theta} = \frac{\text{hyp}}{\text{opp}}$$
 $sec \theta = \frac{1}{\cos \theta} = \frac{\text{hyp}}{\text{adj}}$
 $cot \theta = \frac{1}{\tan \theta} = \frac{\text{adj}}{\text{opp}}$

$$\cot \theta = \frac{1}{\tan \theta} = \frac{\text{adj}}{\text{opp}}$$

TEST ONLY USES RADIANS!

Must know trig values of special angles 0π , $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π using Unit Circle or Special Right Triangles.

UNIT CIRCLE

To help remember the signs in each quadrant

All Students Take Calculus

SPECIAL RIGHT TRIANGLES

$$30^{\circ} - 60^{\circ} - 90^{\circ}$$
 Triangles Which are $\frac{\pi}{6} - \frac{\pi}{3} - \frac{\pi}{2}$ Triangles

$$\tan\left(\frac{\pi}{6}\right) = \frac{\text{opp}}{\text{adj}} = \frac{1}{\sqrt{3}} \text{ simplify to } \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$45^{\circ} - 45^{\circ} - 90^{\circ}$$
 Triangles Which are $\frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{2}$ Triangles

Find
$$\sin\left(\frac{\pi}{4}\right)$$

$$\sin\left(\frac{\pi}{4}\right) = \frac{opp}{hyp} = \frac{1}{\sqrt{2}}$$
 simplify to $\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

Graphs of trig functions

Inverse Trig Function

 $\sin^{-1}\theta$ is the same as $\arcsin\theta$

 $\sin^{-1}\theta = \left(\frac{\sqrt{3}}{2}\right)$ means what angle has a sine value of $\frac{\sqrt{3}}{2}$ that means $\theta = \frac{\pi}{3} \pm 2\pi n$ or $\frac{2\pi}{3} \pm 2\pi n$

Since θ has infinite answers then it isn't a function. Bummer. To make it a function we define inverses like:

sin/csc and tan/cot use quadrant I and IV for inverses cos/sec use quadrant I and II for inverses

So... $\theta = \frac{\pi}{3}$ because it is in the first quadrant

Trig Identities

There are a bunch, but you really only need to know Pythagorean Identity. $\sin^2 x + \cos^2 x = 1$

Subtract $\sin^2 x$ to get $\cos^2 x = 1 - \sin^2 x$ or subtract $\cos^2 x$ to get $\sin^2 x = 1 - \cos^2 x$

Divide by $\sin^2 x$ to get $1 + \cot^2 x = \csc^2 x$ or divide by $\cos^2 x$ to get $\tan^2 x + 1 = \sec^2 x$

GEOMETRY

FORMULAS

Triangle = $\frac{1}{2}bh$

Circle = πr^2

Trapezoid = $\frac{1}{2}(b_1 + b_2)h$

SURFACE AREA

Sphere = $4\pi r^2$

LATERAL AREA

Cylinder = $2\pi rh$

VOLUME

Sphere = $\frac{4}{3}\pi r^3$

Cylinder = $\pi r^2 h$

 $Cone = \frac{1}{3}\pi r^2 h$

Prism = Bh

Pyramid = $\frac{1}{3}Bh$

B is the area of the base

CIRCUMFERENCE

Circle = $2\pi r$

DISTANCE FORMULA

The distance between two points (x_1, y_1) and (x_2, y_2) is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

ALGEBRA

Linear Functions

Slope
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

ope
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$
 y -intercept Form
$$y = mx + b$$
Point Slope Form
$$y - y_1 = m(x - x_1)$$

Point Slope Form
$$y - y_1 = m(x - x_1)$$

Parallel Lines Have the same slope

Perpendicular Lines Have the opposite reciprocal slopes

Functions

Quadratic Function

Cubic Function

Absolute Value

Square Root Function

Exponential Function

$$y = a(x-h)^2 + k$$
 $y = a(x-h)^3 + k$

y = a|x - h| + k

 $y = a\sqrt{x - h} + k$

 $y = a \cdot b^{(x-h)} + k$

Exponential Function

Logarithmic Function

Logarithmic Function

Greatest Integer

Translations

All functions move the same way!

Given the parent function $y = x^2$

Move up 4
$$y = x^2 + 4$$

we up 4 Move down 3
$$y = x^2 + 4$$
 $y = x^2 - 3$

Move left 2
$$y = (x+2)^2$$

Move right 1
$$v = (x - 1)^2$$

Move left 2 $y = (x+2)^2$ Move right 1 $y = (x-1)^2$ Move left 2 and down 3 $y = (x+2)^2 - 3$

To flip (reflect) the function vertically $y = -x^2$ To flip (reflect) the function horizontally $y = (-x)^2$ So $f(x) = -\sqrt{x-3} + 1$ is a square root function reflected vertically, shifted right 3 and up 1

Notation

Notice open parenthesis () versus closed []

Inequality		<u>Interval</u>
$-3 < x \le 5$	\longleftrightarrow	(-3,5]
$-3 \le x \le 5$	\longleftrightarrow	[-3,5]
-3 < x < 5	\longleftrightarrow	(-3,5)
-3 < x < 5	\longleftrightarrow	[-3.5)

Infinity is always open parenthesis

Even and Odd Functions

EVEN f(-x) = f(x)Symmetric about the *y*-axis f(x) = f(-x)**Even Function**

ODD f(-x) = -f(x)Symmetric about the origin f(-x) = -f(x)

MITERRAMENTAL COM

Domain and Range

Domain = all possible x values Range = all possible y values

Algebraically
You can't divide by zero
You can't square root a negative

$$y = \sqrt{2x + 5}$$

D: $\left[-\frac{5}{2}, \infty\right)$

$$y = \frac{x^2 - 1}{x^2 + 7x + 12}$$

D: $(-\infty, -4)(-4, -3)(-3, \infty)$

Graphically Just look at it

D:
$$(-\infty, -1)(-1, 5]$$

R:
$$(-\infty, 2.5]$$

 $\log_e x = \ln e$

 $\log_{10} x = \log x$

Finding zeros

Must be able to factor and use the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

KNOW! $\ln 1 = 0$

Vertical

asymptote at x = 0

Special products

Sum of cubes: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

Difference of cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Exponential and Logarithmic Properties

The exponential function b^x of base b is one-to-one which means it has an inverse which is called the logarithmic function of base b or logarithm of base b which is denoted $\log_b x$ which reads "the logarithm of base b of x" or "log base b of x". So...

$$y = \log_b x \longrightarrow x = b^y$$
Exponential
$$b^x b^y = b^{x+y} \quad \text{Product Rule} \quad \log_b xy = \log_b x + \log_b y$$

$$\frac{b^x}{b^y} = b^{x-y} \quad \text{Quotient Rule} \quad \log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$(b^x)^y = b^{xy} \quad \text{Power Rule} \quad \log_b x^y = y \log_b x$$

$$b^{-x} = \frac{1}{b^x} \quad \log_b \left(\frac{1}{x}\right) = -\log_b x$$

$$b^0 = 1 \quad \log_b 1 = 0$$

$$b^1 = b \quad \log_b x = \frac{\log_c x}{\log_c b}$$
Change of Base
$$\log_b x = \frac{\log_c x}{\log_c b}$$

Natural Log

Common Log

Mispersing Blacom

Calculus - SUMMER PACKET

NAME:_____

 $Summer + Math = (Best Summer Ever)^2$

NO CALCULATOR!!!

Given $f(x) = x^2 - 2x + 5$, find the following.

1.
$$f(-2) =$$

2.
$$f(x + 2) =$$

3.
$$f(x + h) =$$

Use the graph f(x) to answer the following.

4.
$$f(0) =$$

$$f(4) =$$

$$f(-1) =$$

$$f(-2) =$$

$$f(2) =$$

$$f(3) =$$

$$f(x) = 2$$
 when $x = ?$

$$f(x) = -3$$
 when $x = ?$

Write the equation of the line meets the following conditions. Use point-slope form.

$$y - y_1 = m(x - x_1)$$

5. slope = 3 and
$$(4, -2)$$

6.
$$m = -\frac{3}{2}$$
 and $f(-5) = 7$

7.
$$f(4) = -8$$
 and $f(-3) = 12$

Write the equation of the tangent line in point slope form. $y - y_1 = m(x - x_1)$

8. The line tangent to f(x) at x = 1

9. The line tangent to f(x) at x = -2

MULTIPLE CHOICE! Remember slope = $\frac{y_2 - y_1}{x_2 - x_1}$

- 10. Which choice represents the slope of the secant line shown?
- A) $\frac{7-2}{f(7)-f(2)}$ B) $\frac{f(7)-2}{7-f(2)}$ C) $\frac{7-f(2)}{f(7)-2}$ D) $\frac{f(7)-f(2)}{7-2}$

- 11. Which choice represents the slope of the secant line shown?
- A) $\frac{f(x)-f(x+2)}{x+2-x}$ B) $\frac{f(x+2)-f(x)}{x+2-x}$ C) $\frac{f(x+2)-f(x)}{x-(x+2)}$

D) $\frac{x+2-x}{f(x)-f(x+2)}$

Secant line

12. Which choice represents the slope of the secant line shown?

B)
$$\frac{x - (x+h)}{f(x+h) - f(x)}$$

C)
$$\frac{f(x+h)-f(x)}{x+h-x}$$

D)
$$\frac{f(x)-f(x+h)}{x+h-x}$$

13. Which of the following statements about the function f(x) is true?

I.
$$f(2) = 0$$

II.
$$(x + 4)$$
 is a factor of $f(x)$

III.
$$f(5) = f(-1)$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) II and III only

Find the domain and range (express in interval notation). Find all horizontal and vertical asymptotes.

14.

15.

16.

Domain:

Domain:

Domain:

Range:

Range:

Range:

Horizontal Asymptote(s):

Horizontal Asymptote(s):

Horizontal Asymptote(s):

Vertical Asymptotes(s):

Vertical Asymptotes(s):

Vertical Asymptotes(s):

MULTIPLE CHOICE!

- 17. Which of the following functions has a vertical asymptote at x = 4?
 - (A) $\frac{x+5}{x^2-4}$
 - (B) $\frac{x^2-16}{x-4}$
 - (C) $\frac{4x}{x+1}$
 - (D) $\frac{x+6}{x^2-7x+12}$
 - (E) None of the above
- 18. Consider the function: $(x) = \frac{x^2 5x + 6}{x^2 4}$. Which of the following statements is true?
 - I. f(x) has a vertical asymptote of x = 2
 - II. f(x) has a vertical asymptote of x = -2
 - III. f(x) has a horizontal asymptote of y = 1
 - (A) I only
 - (B) II only
 - (C) I and III only
 - (D) II and III only
 - (E) I, II and III

Rewrite the following using rational exponents	. Example:	$\frac{1}{\sqrt[3]{x^2}} = x^{-\frac{2}{3}}$
--	------------	--

19.
$$\sqrt[5]{x^3} + \sqrt[5]{2x}$$

20.
$$\sqrt{x+1}$$

21.
$$\frac{1}{\sqrt{x+1}}$$

22.
$$\frac{1}{\sqrt{x}} - \frac{2}{x}$$

23.
$$\frac{1}{4x^3} + \frac{1}{2} \sqrt[4]{x^3}$$

24.
$$\frac{1}{4\sqrt{x}} - 2\sqrt{x+1}$$

Write each expression in radical form and positive exponents. Example: $x^{-\frac{2}{3}} + x^{-2} = \frac{1}{\sqrt[3]{x^2}} + \frac{1}{x^2}$

25.
$$x^{-\frac{1}{2}} - x^{\frac{3}{2}}$$

26.
$$\frac{1}{2}x^{-\frac{1}{2}} + x^{-1}$$

27.
$$3x^{-\frac{1}{2}}$$

28.
$$(x+4)^{-\frac{1}{2}}$$

29.
$$x^{-2} + x^{\frac{1}{2}}$$

30.
$$2x^{-2} + \frac{3}{2}x^{-1}$$

Need to know basic trig functions in RADIANS! We never use degrees. You can either use the Unit Circle or Special Triangles to find the following.

31.
$$\sin\frac{\pi}{6}$$

32.
$$\cos \frac{\pi}{4}$$

33.
$$\sin 2\pi$$

34.
$$\tan \pi$$

35.
$$\sec \frac{\pi}{2}$$

36.
$$\cos \frac{\pi}{6}$$

37.
$$\sin \frac{\pi}{3}$$

38.
$$\sin \frac{3\pi}{2}$$

39.
$$\tan \frac{\pi}{4}$$

40.
$$\csc \frac{\pi}{2}$$

41.
$$\sin \pi$$

42.
$$\cos \frac{\pi}{3}$$

43. Find x where
$$0 \le x \le 2\pi$$
,

$$\sin x = \frac{1}{2}$$

44. Find x where
$$0 \le x \le 2\pi$$
,

$$\tan x = 0$$

45. Find x where
$$0 \le x \le 2\pi$$
,

$$\cos x = -1$$

Solve the following equations. Remember $e^0 = 1$ and $\ln 1 = 0$.

46.
$$e^x + 1 = 2$$

47.
$$3e^x + 5 = 8$$

48.
$$e^{2x} = 1$$

49.
$$\ln x = 0$$

50.
$$3 - \ln x = 3$$

51.
$$ln(3x) = 0$$

$$52. \ x^2 - 3x = 0$$

53.
$$e^x + xe^x = 0$$

$$54. \ e^{2x} - e^x = 0$$

Solve the following trig equations where $0 \le x \le 2\pi$.			
$55 \sin x - \frac{1}{2}$	56. $\cos x = -1$		

55.
$$\sin x = \frac{1}{2}$$
 56. $\cos x = -$

$$57. \cos x = \frac{\sqrt{3}}{2}$$

58.
$$2\sin x = -1$$

$$59. \cos x = \frac{\sqrt{2}}{2}$$

$$60. \cos\left(\frac{x}{2}\right) = \frac{\sqrt{3}}{2}$$

61.
$$\tan x = 0$$

62.
$$\sin(2x) = 1$$

$$63. \sin\left(\frac{x}{4}\right) = \frac{\sqrt{3}}{2}$$

For each function, determine its domain and range.			
<u>Function</u>	<u>Domain</u>	Range	
64. $y = \sqrt{x-4}$			
65. $y = (x - 3)^2$			
$66. \ y = \ln x$			
$67. y = e^x$			

68.	у	=	$\sqrt{4}$	_	χ^2
-----	---	---	------------	---	----------

$$69. \ \frac{\sqrt{x}}{x}$$

70.
$$e^{\ln x}$$

71.
$$e^{1+\ln x}$$

72. ln 1	73. ln e ⁷		74. $\log_3 \frac{1}{3}$
75. log _{1/2} 8	76. $\ln \frac{1}{2}$		77. $27^{\frac{2}{3}}$
$78. \ \left(5a^{2/3}\right)\left(4a^{3/2}\right)$	$79. \ \frac{4xy^{-2}}{12x^{-\frac{1}{3}}y^{-5}}$		80. $(4a^{5/3})^{3/2}$
If $f(x) = \{(3,5), (2,4), (1,7)\}\$ $h(x) = \{(3,2), (4,3), (1,6)\}\$ 81. $(f+h)(1)$	$g(x) = \sqrt{x} - k(x) = x^2 + 82. (k - g)(5)$	- 3 - 5 , then determ	nine each of the following. 83. $f(h(3))$
84. $g(k(7))$	85. h(3)		86. $g(g(9))$
87. $f^{-1}(4)$		88. $k^{-1}(x)$	
89. $k(g(x))$		90. <i>g</i> (<i>f</i> (2))	