

5 Main Topics to Review to Help You Thrive in 7th Grade Math

White Plains Middle School Summer Math Packet 2024

Grade 6 \longrightarrow Grade 7

Baker's Dozen Production

128 Grandview Avenue, White Plains, NY 10605

Main Office: 914.422.2092 https://hl.whiteplainspublicschools.org/

Michael Eaton, Principal michaeleaton@wpcsd.k12.ny.us

Albert Laporte, Coordinator of Mathematics (7-12) <u>albertlaporte@wpcsd.k12.ny.us</u>

June 2024

Dear WPMS Parents and Students,

We hope that you had a great school year and we look forward to working with each of you next year! The "Five to Thrive" summer work includes skills carefully selected by your future math teachers that are essential to success in the upcoming school year. The skills reviewed in the "Five to Thrive" are concepts that you have been taught and practiced throughout 6th grade. The purpose of the summer work is to help keep your skills sharp over the summer and prevent "summer fade."

An electronic copy of the "Five to Thrive" summer work can be found on the homepage of our Highlands Middle School website: <u>https://hl.whiteplainspublicschools.org/</u> as well on the Math Department's webpage: <u>https://www.whiteplainspublicschools.org/curriculum/mathematics/summer-assignments</u>. Although we encourage you to show your work on the paper copy, the electronic copy allows for easy access to the suggested IXL links for additional practice.

The total time it takes to complete the "Five to Thrive" will vary by student. It is not a race. You want to go at a pace that is comfortable for you with the goal of practicing and refreshing concepts to be prepared for the upcoming school year. A suggested relaxed timeline for completing the summer work can be found on the next page. Please note, only about half of the packet consists of the actual problems you will be completing, while the other half includes explanations and examples to review 6th grade concepts and assist you with completing the practice sets.

A few notes about summer work expectations:

- Although this summer work is not required, we highly encourage you to complete these problems to help maintain your skills.
- Please show all of your work.
- Refrain from using a calculator, except to check your answers.
- If you struggle answering any questions in this packet, review the example problems and use your skills to try the best you can to determine the correct answer. Also, an answer key is posted to both the Highlands homepage and the Math Department webpage for your reference.
- In addition to the summer work, it would be beneficial to continue to practice math facts. This can be accomplished by playing math fact fluency games online (such as Kakooma), using flash cards, IXL, or completing practice worksheets.

If you have any difficulty accessing the electronic version of the "Five to Thrive" summer work, please contact the main office of Highlands Middle School. Hard copies of the summer packet will be available at the front desk. Have a great summer! We look forward to welcoming you to Highlands in September.

The Highlands Math Department

Suggested Schedule for Completion (Relaxed)

SUNDAY	MON	IDAY TUESD	AY WEDNES	DAY THURSDA	Y FRID/	AY SATURDAY
	1	2	3	4	5	6
	Board of Education Reorganization Mee Education House, 7			Independence Day		
7	8	9	10	11	12	13
		Topic 1 : Integers				
14	15	16	17	18	19	20
	Topic 2 : Simplifying Expressions					
21	22	23	24	25	26	27
		Topic 2 : Simplify	ing Expressions			
28	29	30	31		JUNE S.M.T.W	2024 AUGUST 202 T F S S M T W T F
		Topic 3 : Formally	<pre>v Solving and Chec</pre>	king One-Step Equa	8 19	1 1 2 6 7 8 4 5 6 7 8 9 13 14 15 11 12 13 14 15 16 20 21 22 18 19 20 21 22 23 27 28 29 25 26 27 28 29 30
11.113	10004				30	
JULI	2024					

SUNDAY	MONE	YAC	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
ULY 2024 S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	SEPTEMBER 5 M T W 1 2 3 4 8 9 10 11 15 16 17 18 22 23 24 25 29 30	2024 T F S 5 6 7 12 13 14 10 20 21 26 27 28			1	2	3
4	5		6	7	8	9	10
		Торіс	3 : Formally So	lving and Checking	One-Step Equation	ons	
11	12		13	14	15	16	17
		Topic 4 : Ratios and Rates					
18	19		20	21	22	23	24
		Торіс	4 : Ratios and F	Rates			
25	26	L	27	28	29	30	31
		Topic 5 : Fractions, Decimals, and Percents					
AUGUS	5T 202	24					

"<u>Five to Thrive</u>"

5 Main Topics to Review to Help You Thrive in 7th Grade Math

Five to Thrive Topics:

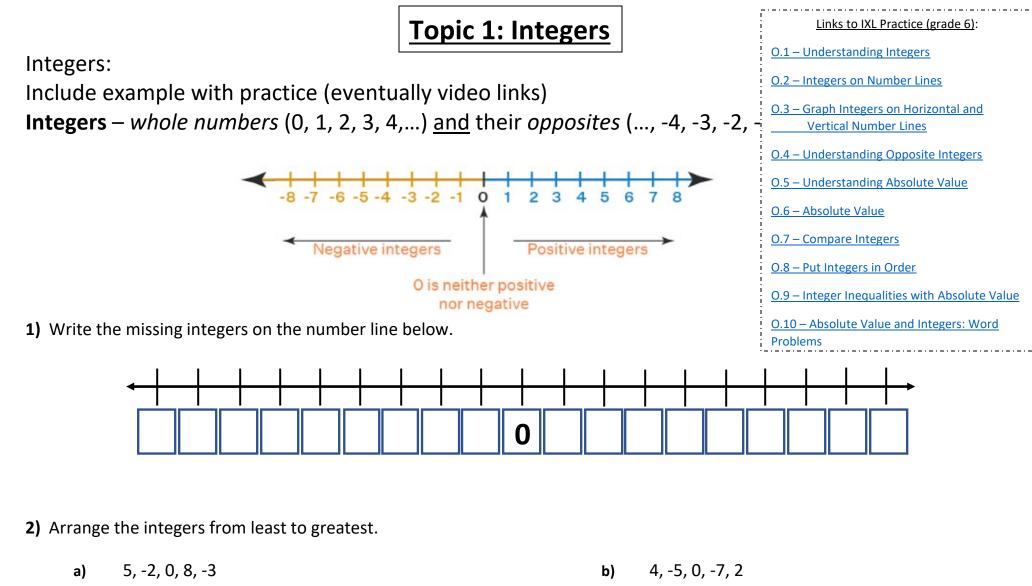
1) <u>Integers</u>

- placing on a number line
- ordering
- comparing
- absolute value

2) <u>Simplifying Expressions</u>

- numerical expressions
- algebraic expressions
 - combining like terms
 - distributive property

3) Formally Solving and Checking Equations


- one-Step Equations (undoing either addition, subtraction, multiplication or division)
- involving fractions or decimals

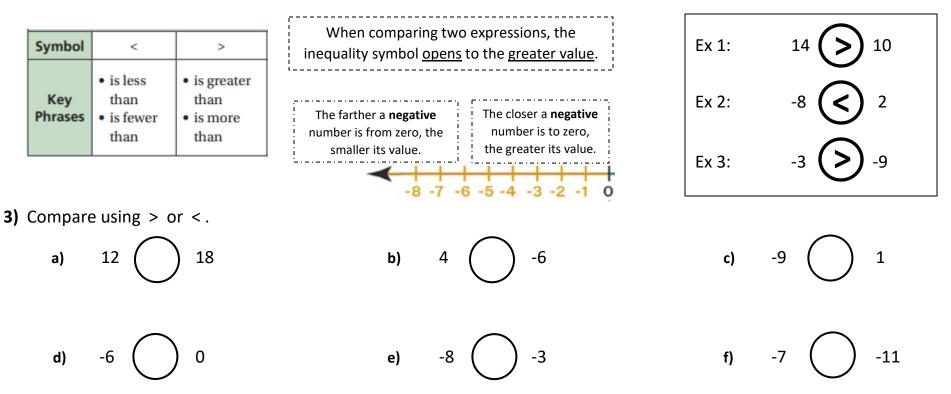
4) <u>Ratios and Rates</u>

- write a ratio (3 ways: colon, "to," fraction bar)
- find equivalent ratios
- use ratio tables to solve part-to-part and part-to-whole problems
- unit rate
- better buy

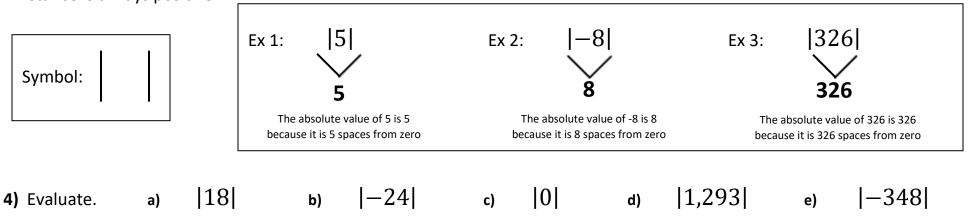
5) Fractions, Decimals, Percents

- convert values between the three forms

c) 7, -8, -3, 4, -1


____/

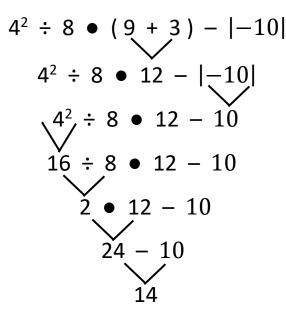
__ / _____


_____/ ____

d) -9, 0, -5, 2, 6

Inequality – a mathematical sentence that compares expressions.

Absolute Value – a number's distance from zero (the number of spaces away from zero on a number line). *Distance is always positive*


Topic 2: Expressions

Links to IXL Practice (grade 6):

P.17 – Evaluate Numerical Expressions Involving Integers

Numerical Expression: an expression that contains numbers and operations. To evaluate, or find the value of, a numerical expression, use a set of rules called the order of operations.

Example:

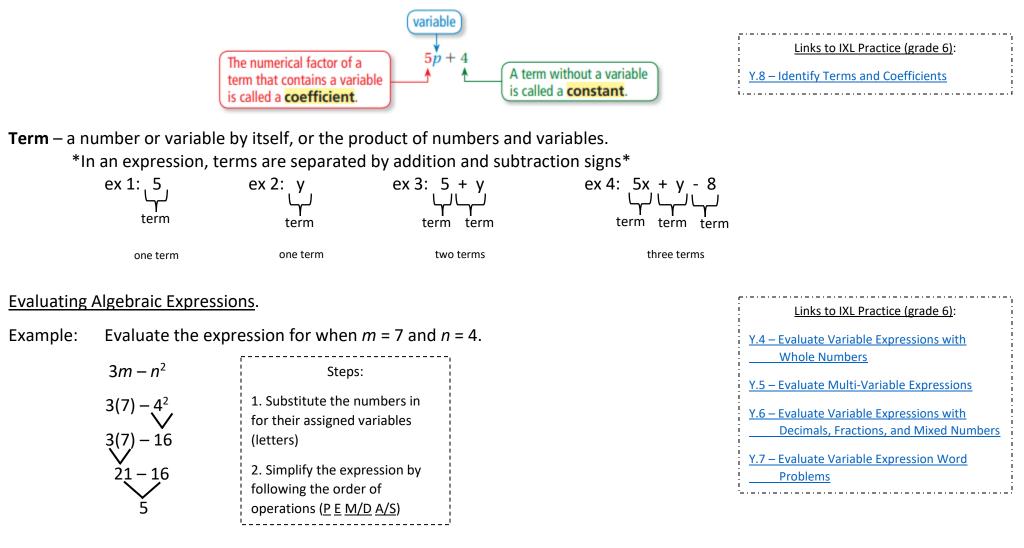
1)	Order of Operations: <u>P E M/D A/S</u> <u>P</u> arentheses (also including the following grouping symbols: absolute value, fraction bar)
	*If more than one exists in the expression,
	break the tie by focusing on the grouping
	symbol that appears first from <u>left</u> to <u>right</u>
2)	<u>E</u> xponents
3)	$\underline{\mathbf{M}}$ ultiplication and $\underline{\mathbf{D}}$ ivision (break tie from left to right)
4)	<u>A</u> ddition and <u>S</u> ubtraction (break tie from left to right)
-	
eme	ember: There are several ways to represent multiplication
	3×2 3●2 3(2)

5) Evaluate the following expressions:

 $3^2 + 12 \div (6 - 3) \times 8$ **b)** $4(3-1)^3 + 7 \bullet 6 - 5^2$ a)

 $\frac{7^2-3(6)+9}{2^3}$ c)

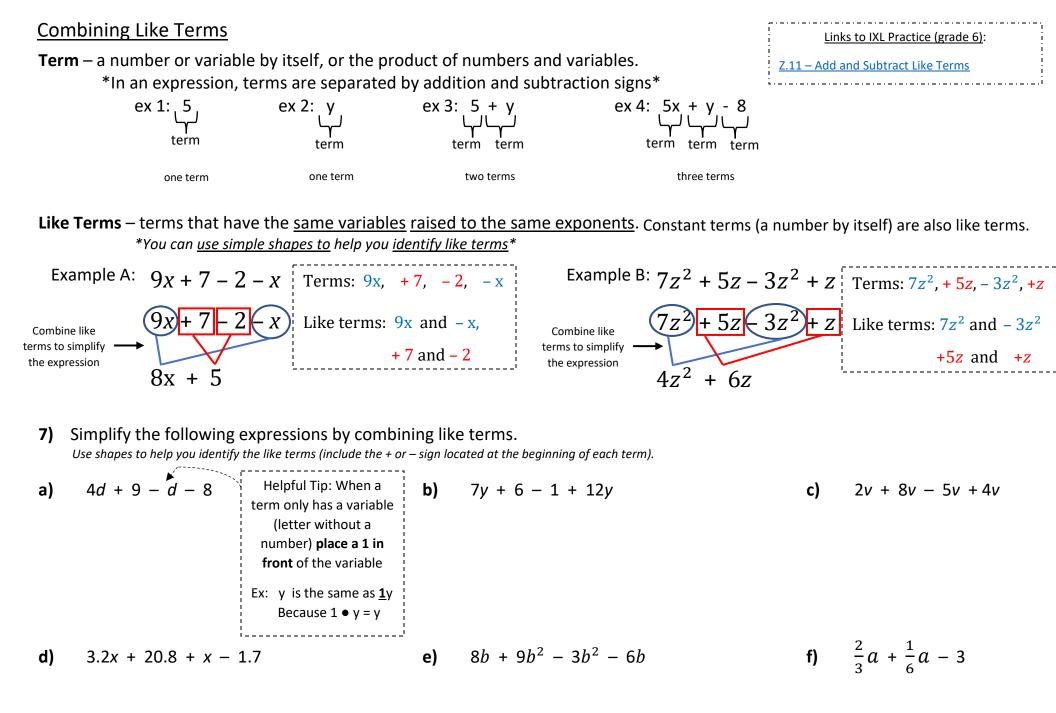
When dealing with a fraction bar, perform all of the operations on the top first (numerator), then all of the operations on the bottom (denominator), before finally dividing. (get 1 value on the top and 1 value on the bottom before you divide)


.....

d)
$$3 \times 7 - 2(3)$$
 e) $9(3+2) - 3(3-2)$ f) $\frac{54 \div 6 + 31}{4^2 + 4}$

g)
$$33 \div 11 \bullet 12 \div 2$$
 h) $4 \times (10.1 + 1.9) \div 2$ i) $\frac{2^4 \times 5 + 8}{7 - 3}$

j)
$$\left(\frac{1}{3} + 2\frac{2}{3}\right) \times 13$$
 k) $60 \div \left(6\frac{1}{7} - \frac{1}{7}\right) \times 4$ l) $\frac{8^2 - 4 + 4(7)}{(11)(2)}$


Algebraic Expression – an expression that may contain numbers, operations, and one or more variables.

6) Evaluate the expressions for when a = 4 and b = 3 and c = 10

a) 5 + ab) c - 2.5c) $a \bullet b \bullet c$

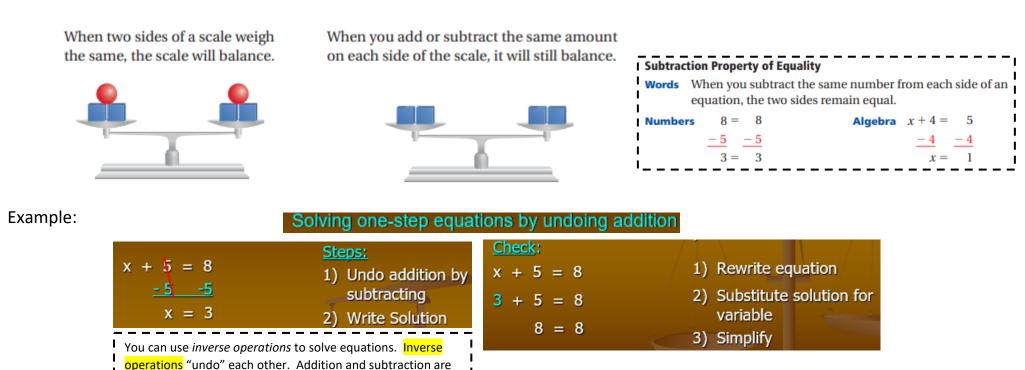
d)
$$\frac{21}{b} + c$$
 e) $c^2 - ab$

Links to IXL Practice (grade 6): Z.4 – Multiply Using the Distributive <u>Distributive Property</u> – allows you to multiply each term inside a set of parentheses Property: area models by a term outside the parentheses. Z.5 - Multiply Using the Distributive 9) Use the distributive property to simplify the following 8) Use the distributive property to simplify the following *numerical* expressions. algebraic expressions. Examples: Examples: \mathbf{A} 3(7 - 2) 3(7 + 2)3(y + 2) 3(4y - 2) $3 \cdot 7 - 3 \cdot 2$ $3 \bullet 7 + 3 \bullet 2$ $3 \cdot y + 3 \cdot 2$ $3 \cdot 4y - 3 \cdot 2$ 21 - 6 21 + 6 3y + 612y - 6 * Can't be simplified any further because they are unlike terms 27 15 b) 7(5 - 3) 4(6 + 1)2(x + 6)b) 3(y - 6)a) a) 9(1 + 10)d) 8(6 - 2)4(2a + 1)8(b - 3)c) d) c) 4(8 - 5) 5(4 + 3)f) 5(7 + 9c)6(2w - 4)e) **f**) e)

Topic 3: Solving Equations

Solving One-Step Addition Equations (Formally)

inverse operations.


v + 18 = 32

a)

How can you use addition or subtraction to solve an equation?

*Think of an equation as a balance scale.

The left side of the balance scale equals the right side, just as in an equation the left side the equal sign equals the right side*

54 = x + 23

b)

check:

10) Solve and check each of the following equations. Be sure to show all of your work.

check:

c)	r + 113 = 402	check:	d)	63 = n + 20	check:
e)	y + 23.4 = 54.1	check:	Similar Problem:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<u>Steps:</u> 1) Undo addition by subtracting 2) Write Solution

			2		5
f)	m	+	—	=	—
•,		-	3		6

no check required

Similar Problem:

Check:

12.1 = y + 4.8

12.1 = 7.3 + 4.8

12.1 = 12.1

$m + \underline{3} = \underline{7} \rightarrow \underline{7}$ $4 8 \rightarrow 8$ $-\underline{3} -\underline{3} \times 2 -\underline{6}$ $4 4 \times 2 8$ $m = \underline{1}$ 8	<u>Steps:</u> 1) Undo addition by subtracting 2) Write Solution
---	--

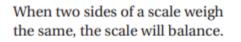
1) Rewrite equation

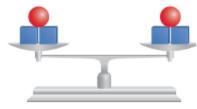
variable

3) Simplify

2) Substitute solution for

* When adding or subtracting fractions, they must have common denominators (same number on the bottom).


Solving One-Step Subtraction Equations (Formally)


	Links to IXL Practice (grade 6):
A	A.8 - Solve One-Step Addition and Subtraction Equations with Whole Numbers
A	A.11 - Solve One-Step Addition and Subtraction Equations with Decimals and Fractions
AA	A.13 - Solve One-Step Addition and Subtraction Equations: Word Problems

How can you use addition or subtraction to solve an equation?

*Think of an equation as a balance scale.

The left side of the balance scale equals the right side, just as in an equation the left side the equal sign equals the right side*

When you add or subtract the same amount on each side of the scale, it will still balance.

	d the same number to each side of an equation, remain equal.
8 = 8	Algebra $x - 4 = 5$
<u>+5</u> <u>+5</u>	+4 $+4$
13 = 13	x = 9

	Solving one-step equati	ons by undoing subtr	raction
X - 3 = 7 - + 3 + 3 X = 10	Steps: 1) Undo subtraction by adding 2) Write solution	Check: X - 3 = 7 10 - 3 = 7 7 = 7	 1) Rewrite equation 2) Substitute solution in for variable
	ations to solve equations. Inverse other. Addition and subtraction are		3) Simplify

11) Solve and check each of the following equations. Be sure to show all of your work.

a) a - 29 = 14check:b) 47 = b - 33check:

c)	b –	251	=	463
----	-----	-----	---	-----

check:

e)	y – 3.7 = 54.6	
----	----------------	--

check:

Similar Problem:

$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Steps: 1) Undo subtraction by adding 2) Write Solution
Check:	/ / /
16.4 = y - 9.3	1) Rewrite equation
16.4 = 25.7 - 9.3	2) Substitute solution in
16.4 = 16.4	for variable 3) Simplify

f) m $-\frac{1}{4} = \frac{5}{8}$

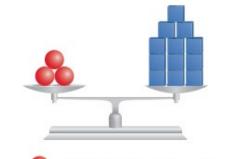
no check required

Similar Problem:

$m - \frac{2}{3} = \frac{1}{6} \rightarrow \frac{1}{6}$ $+ \frac{2}{3} + \frac{2}{3} \times \frac{2}{3} \times \frac{2}{6}$ $m = \frac{5}{6}$	Steps: 1) Undo subtraction by adding 2) Write Solution
---	---

* When adding or subtracting fractions, they must have common denominators (same number on the bottom).

Solving One-Step Multiplication Equations (Formally)


How can you use division to solve an equation?

*Think of an equation as a balance scale.

The left side of the balance scale equals the right side, just as in an equation the left side the equal sign equals the right side*

Use a model to solve the problem.

Three people go out to lunch. They decide to share the \$12 bill evenly. How much does each person pay?

Division	Property of Equality		·
	When you divide each si nonzero number, the tw		
Number	s 8 • 4 = 32	Algebra	4x = 32
 	$8 \cdot 4 \div 4 = 32 \div 4$		$\frac{4x}{4} = \frac{32}{4}$
I I	8 = 8		<i>x</i> = 8

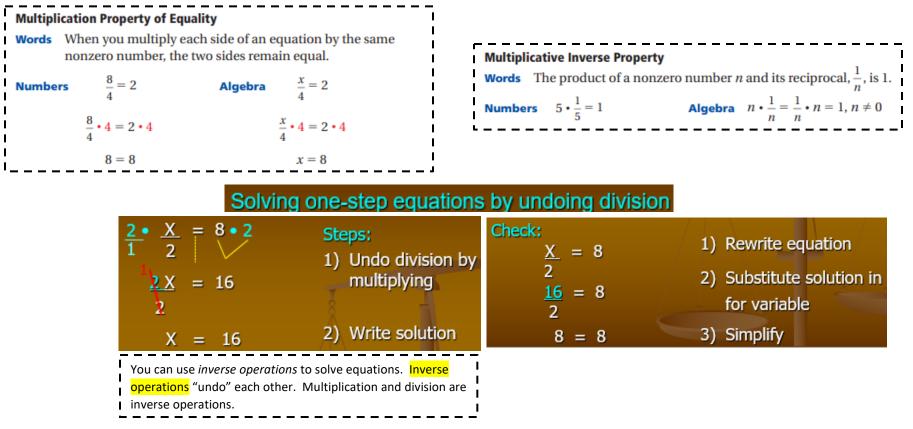
How much does one weigh? How do you know?

	Solving one-step equation	ons by undoing mult	iplication
$\frac{5y}{5} = \frac{10}{5}$ y = 2	Steps: 1) Undo multiplication by dividing 2) Write solution	Check: 5y = 10 5(2) = 10 10 = 10	 Rewrite equation Substitute solution in for variable
-	perations to solve equations. Inverse choice in the solve equation and division are choice in the solution are choice in the solution and division are choice in the solution are choice in the solutin are choice in the solution are choice in the solution are	10 - 10	3) simplify

12) Solve and check each of the following equations. Be sure to show all of your work.

 a) 10x = 60
 check:
 b) 56 = 8j
 check:

c)	7x = 35	check:	d)	88 = 11z	check:
e)	1.2a = 8.76	check:	Similar Problem:	$\frac{4.68}{1.2} = \frac{1.2m}{1.2}$	Steps: 1) Undo multiplication


1.2 1.2	 1) Undo multiplication
3.9 = m	by dividing 2) Write solution
Check:	
4.68 = 1.2m	1) Rewrite equation
4.68 = 1.2(3.9)	 Substitute solution in
4.68 = 4.68	for variable simplify

					<i>s)</i> simplify
f)	$\frac{3}{4}b = 9$	no check required	Similar Problem:	$\frac{3}{2} \cdot \frac{2}{3} n = \frac{6}{1} \cdot \frac{3}{2}$ $\frac{5}{1} n = \frac{18}{2}$ $n = 9$	Steps: 1) Undo multiplication by dividing (same as multiplying by <u>reciprocal</u>) 2) Write Solution

How can you use multiplication to solve an equation?

*Think of an equation as a balance scale.

The left side of the balance scale equals the right side, just as in an equation the left side the equal sign equals the right side*

13) Solve and check each of the following equations. Be sure to show all of your work.

a)
$$\frac{x}{8} = 60$$
 check: b) $21 = \frac{h}{2}$ check:

c)	$\frac{g}{12} = 3$	check:	d) $8 = \frac{y}{5}$ che	ck:
e)	$\frac{a}{0.3} = 8.6$	no check required	Similar Problem: $\frac{4.3}{1} \cdot \frac{W}{4.3} = 2.6 \cdot 4.3$ Step	s: Indo divisi

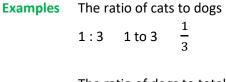
ilem:	$\frac{4.3}{1} \cdot \frac{W}{4.3} = 2.6 \cdot 4.3$ $\frac{4.3}{4.3} = 11.18$ 4.3 $W = 11.18$	 Steps: 1) Undo division by multiplying 2) Write solution
	Check: $\frac{W}{4.3} = 2.6$ $\frac{11.18}{4.3} = 2.6$ 4.3 2.6 = 2.6	 Rewrite equation Substitute solution in for variable Simplify

f)
$$4.1 = \frac{b}{.72}$$

check:

Topic 4: Ratios and Rates

Ratio – a comparison of two quantities.

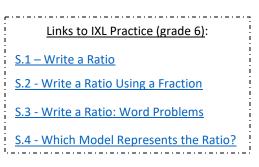

- * can be part-to-part, part-to-whole, or whole-to-part comparisons.
- * terms used to describe a ratio relationship
 - to
 - for every
 - out of every
 - out of
 - per (for one)
 - for each (for one)

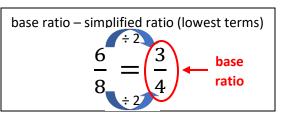
A ratio can be written in 3 different ways.

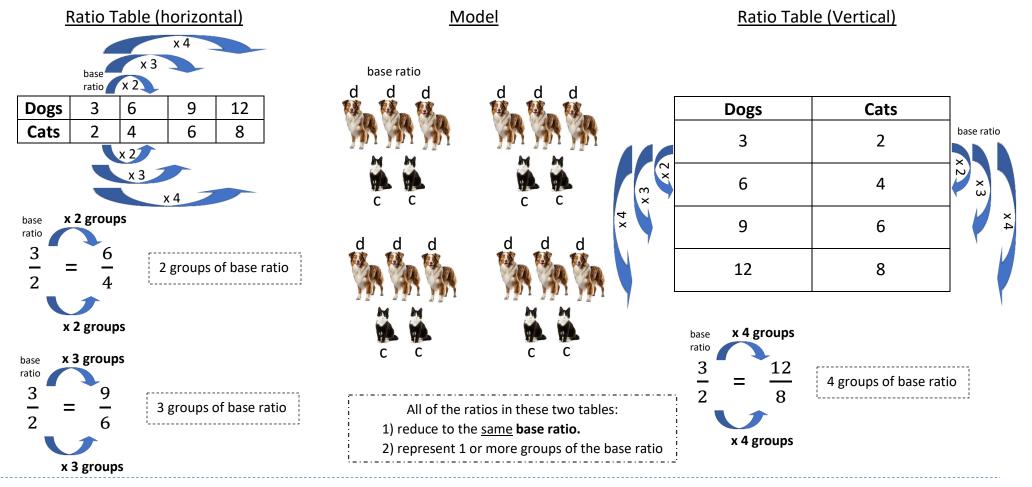
- Write each of the following ratios 3 ways.
 * The order matters*

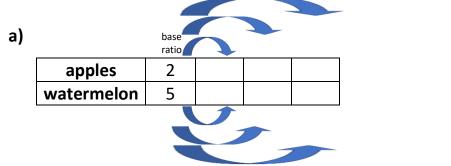
 (write the order of the numbers in the same order as the words)
- **a)** The number of cats to the number of birds.

Examples 1 cat <u>to</u> 3 dogs 1 cat <u>for every</u> 3 dogs 3 dogs <u>out of every</u> 4 pets 1 cat <u>out of</u> 4 pets 3 dogs <u>per</u> cat 3 dogs <u>for each</u> cat

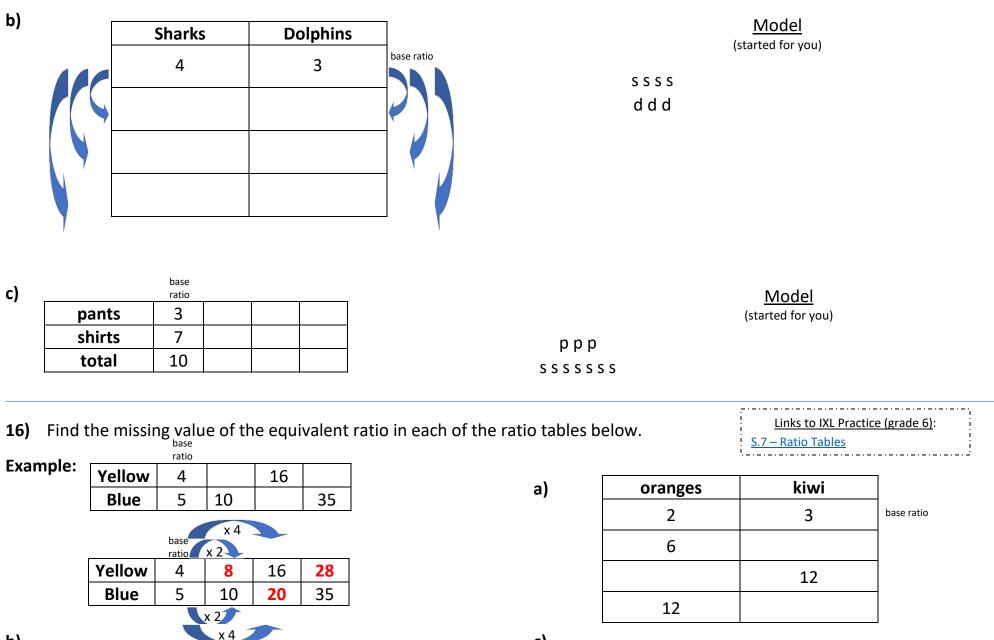

The ratio of dogs to total pets 3:4 3 to 4 $\frac{3}{4}$

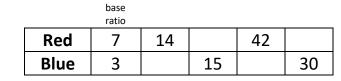

b) The number of dogs to the total pets.


c) the number of total pets to the number of cats.


Equivalent Ratios – two ratios that describe the same relationship.

- * Equivalent ratios have the same base ratio.
- * Ratios are equivalent when they represent one or more groups of the same base ratio.

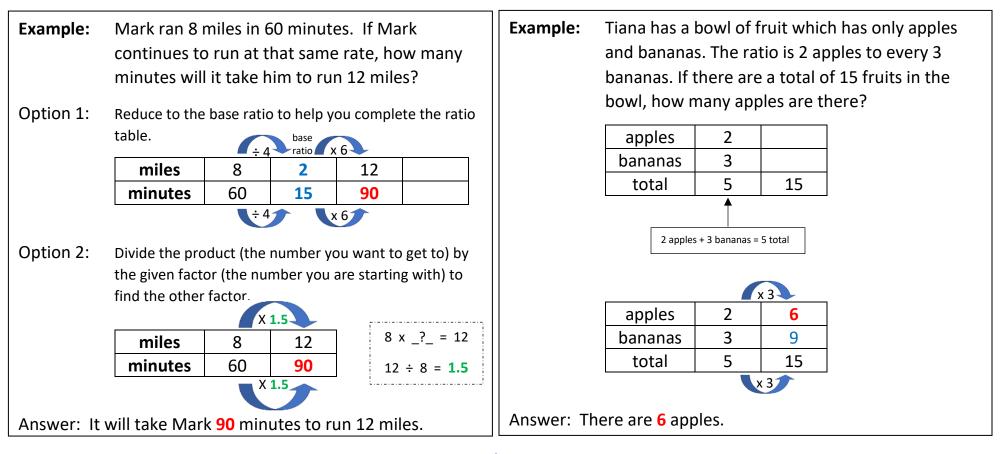



15) Fill out the given ratio tables with equivalent ratios. Also, draw a model (using letters) to represent the equivalent ratios.

Model (started for you)

a a wwwww

b)


c)

	base ratio				
pens		6	15		24
pencils	4	8		28	
	•	pens	pens 6	pens 6 15	pens 6 15

Ratio Table Word Problems

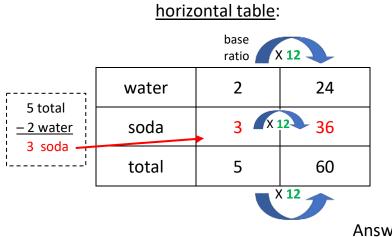
Given Part-to-Part Ratio.

17) a) There are 230 calories in 4 ounces of a type of ice cream. How many calories are in 6 ounces of that ice cream?

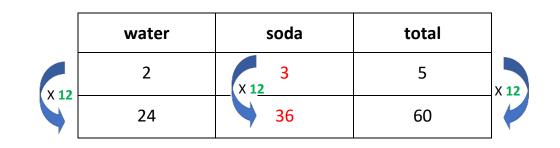
1:5. How many blue marbles are there?

green. The ratio of blue marbles to green marbles is

b) A bag contains 60 marbles, some blue and some

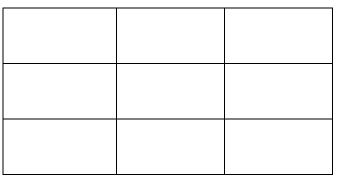

Answer: _____ calories

Answer: _____


blue marbles

Ratio Table Word Problems (continued) Given Part-to-Whole Ratio.

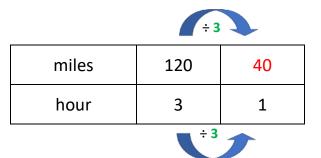
Example: A particular refrigerator contains bottles of soda and bottles of water. There are 2 bottles of water for every 5 total bottles in the refrigerator. If there are 24 bottles of water in the refrigerator, how many bottles of soda are there?


vertical table:

Answer: 36 bottles of soda

a) To make the perfect shade of green, Giancarlo mixes blue paint with yellow paint. He uses 5 teaspoons of blue paint for every 13 total teaspoons of paint. How many teaspoons of blue paint must he mix with 24 teaspoons of yellow paint to create the same shade of green?

 b) Colin's Donut Shop makes glazed donuts and jelly-filled donuts. The ratio of jelly-filled donuts to the total number of donuts is 4:15. If there are a total of 150 donuts, how many of them will be glazed?


Answer: ______ glazed donuts

Answer: ______ teaspoons of blue paint

Unit Rate – how much of the first unit corresponds to 1 of the second unit. "How much for 1?" or "How many for 1?" Links to IXL Practice (grade 6):

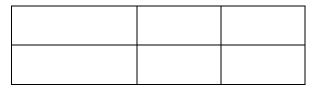
<u>S.9 – Unit Rates</u>

Example: Mario drives 120 miles in 3 hours. How many <u>miles</u> did he drive per <u>hour</u> (unit rate)?

Answer: Mario drove 40 miles per hour (40 miles in 1 hour)

- **19)** Set up a ratio table to help you find the unit rate for each of the scenarios below.
 - a) 150 calls in 6 hours. How many <u>calls</u> per <u>hour</u>?

Answer: _____ calls per hour


c) 3 t.v. episodes were 135 minutes long. How many <u>minutes</u> was each <u>episode</u>?

Answer: _____ minutes per episode

b) 63 peaches in 7 bowls. How many peaches in each bowl?

Answer: _____ peaches per bowl

d) 725 buttons on 5 keyboards.How many <u>buttons</u> on each <u>keyboard</u>?

Answer: ______ buttons per keyboard

Links to IXL Practice (grade 6): X.2 – Unit Prices

Better Buy

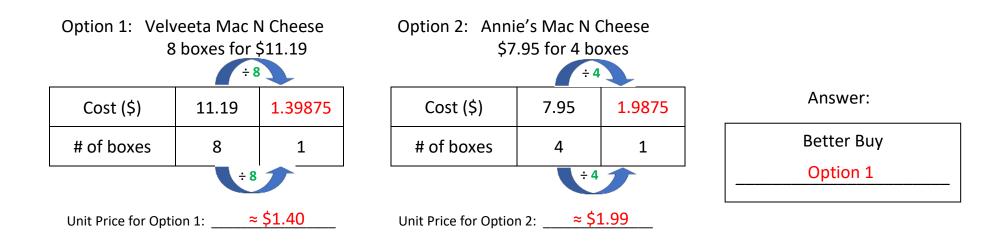
Unit Price – the cost (price) for 1 unit. "How much does it cost for 1?"

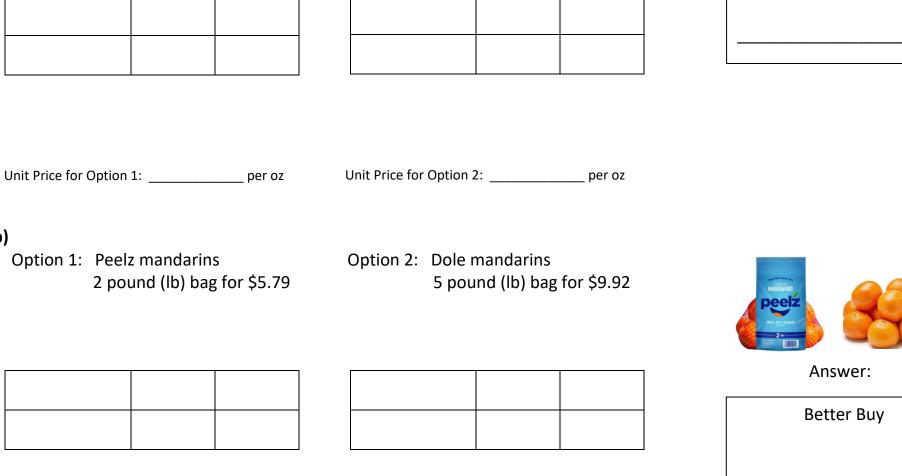
Example: Caraluzzi's Supermarket sells 12 ounces of fruit salad for \$8.40. What is the unit price of the fruit salad?

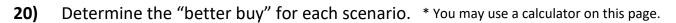
Start with the cost as the first unit		÷ 1	2
(money on top) and the	Cost (\$)	8.40	0.70
size/amount of the item as the second unit	ounces	12	1
(2 nd unit on the bottom)		÷1	2

Answer: The fruit salad costs \$0.70 per ounce (\$0.70 for 1 ounce)

Better Buy – finding the best value (better deal) between two or more products.


Question: How do we determine the better deal when the items being compared are different sizes?


Answer: We can use unit rates to help determine which item is cheaper by finding out the cost of 1 for each item.


- Allows us to compare the price for the same amount (1) for each item.

In other words, the better buy is the item with the lowest unit price when comparing the unit prices of two or more items.

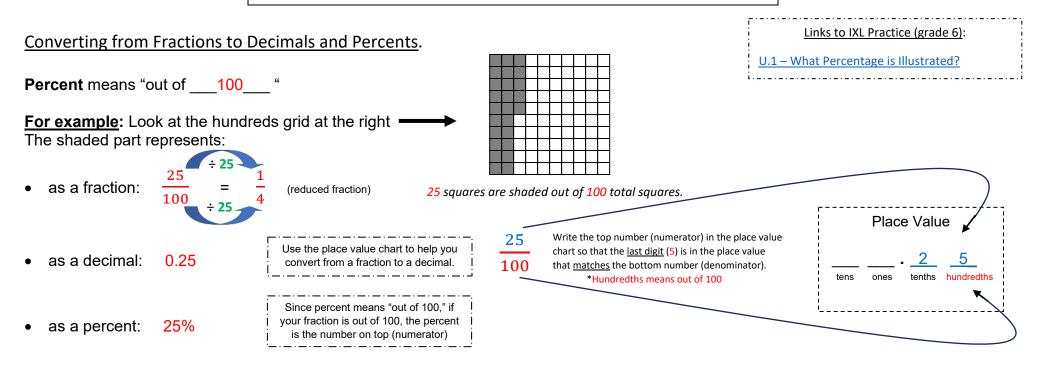
Example: Determine which of the two options below is the "better buy." Round your unit price to the nearest cent.

a)

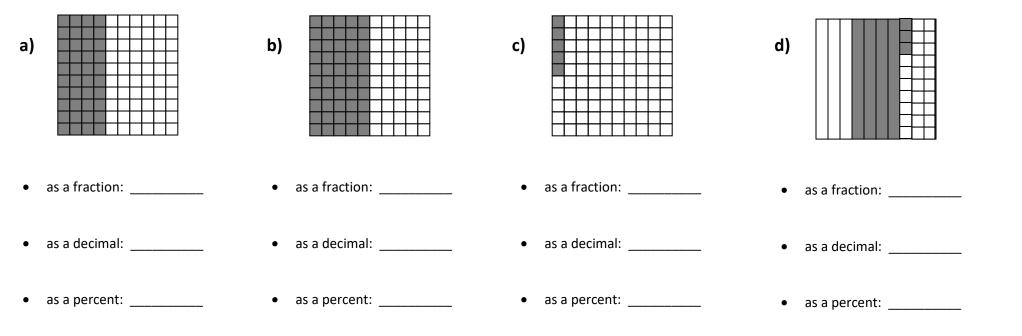
Option 1: Cape Cod potato chips Option 2: Cape Cod potato chips \$3.50 for a 7.5 ounce (oz) bag

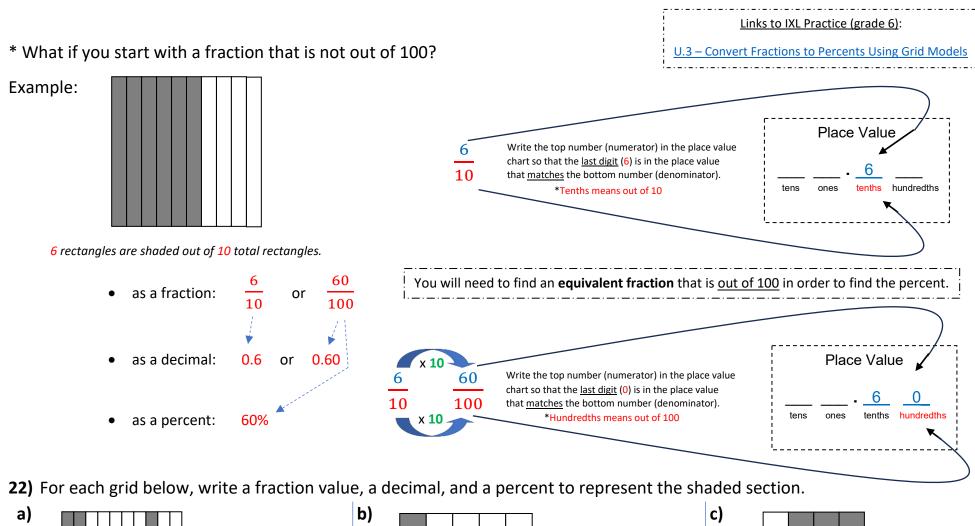
\$6.69 for a 13 ounce (oz) bag

5 OZ BA


Answer:

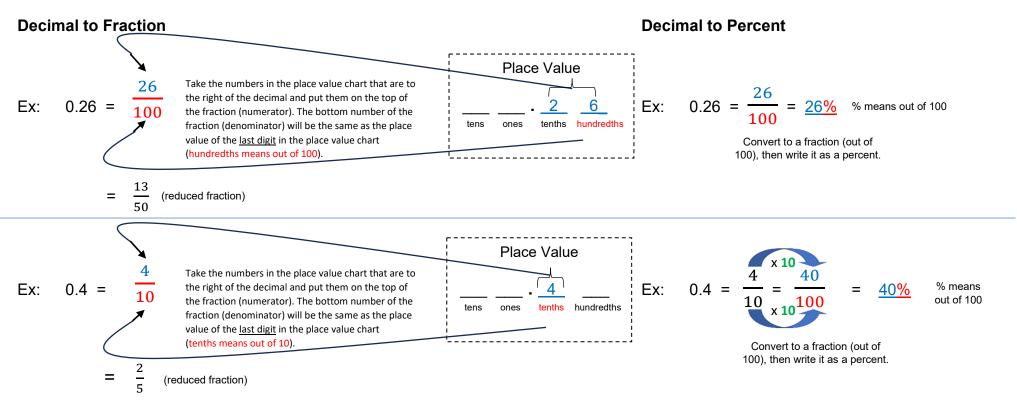
Better Buy


b)


Unit Price for Option 1: _____ per lb

Topic 5: Fractions, Decimals, and Percents

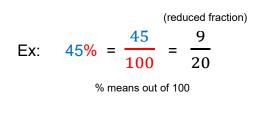
21) For each grid below, write a fraction value, a decimal, and a percent to represent the shaded section.

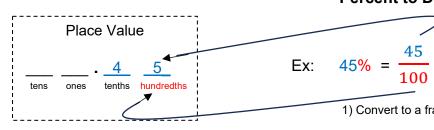


• as a fraction:	• as a fraction:
as a decimal:	• as a decimal:
• as a percent:	• as a percent:

c)	
•	as a fraction:as a decimal:
•	as a percent:

Converting a Decimal to a Fraction AND Converting a Decimal to a Percent.




23) Complete the table below.

	Fraction	Decimal	Percent		Fraction	Decimal	Percent
a)		0.03		d)		0.7	
b)		0.88		e)		0.09	
c)		0.65		f)		0.005 (challenge - think carefully)	

Converting a Percent to a Fraction AND Converting a Percent to a Decimal.

Percent to Fraction

Links to IXL Practice (grade 6):

U.4 – Convert Between Percents, Fractions, and Decimals

Percent to Decimal

Ex:
$$45\% = \frac{45}{100} = 0.45$$

1) Convert to a fraction (out of 100).

2) Then, write the top number (numerator) in the place value chart so that the last digit (5) is in the place value that matches the bottom number (denominator). *Hundredths means out of 100

24) Complete the table below.

	Fraction	Decimal	Percent
a)			18%
b)			8%
c)			90%
d)			39%
e)			1%
f)			100%

work space: