Honors Biology/Lab

Biology is the science that seeks to understand, explain & even control the living world by observing, asking questions & forming hypotheses that can be tested by experimentation. The course offers a focus on biological concepts through inquiry based investigations & weekly laboratory experiments reinforcing the content. Honors Biology is taught in a series of modules based on specific content: basic biological principles, biochemistry, bioenergetics, cell transport & homeostasis, cell division, genetics, evolution, & ecology. Other enrichment opportunities will include special laboratory investigations through a lab setting using the latest technology, video conferences, outside speakers and a research project. This course prepares students for the state mandated Keystone Biology Exam that must be taken as a graduation requirement & entrance into a four year college. **This is an advanced level 105 course**.

Course Information:

Frequency & Duration: Daily for 42 minutes; 6 periods per week (includes one lab period)

Text: Biology: Miller & Levine; Foundation Edition; Copy wright 2010

Module 1 Basic Biological Principles	Duration: Aug./ Sept. (3 weeks)
Big Idea	Basic Biological Principles are needed as an essential part of Biology
Essential	How do we know if something is alive? How is structure related to
Question	function at the various levels of cellular organization?
Eligible Content	 Describe and explain the characteristics of life common to all organisms. Compare and contrast the cellular structures and degrees of complexity Relate life processes to sub-cellular and cellular structures to their functions. Explain how organisms maintain homeostasis (e.g., thermoregulation, water regulation, oxygen regulation Compare cellular structures and their functions in prokaryotic and eukaryotic cells Identify the advantages of multi-cellularity in organisms. Describe and interpret relationships between structure and function at various levels of biological organization (i.e., organelles, cells, tissues, organs, organ systems, and multicellular organisms). Recognize that systems within cells and multicellular organisms interact to maintain homeostasis Explain how organisms maintain homeostasis (e.g., thermoregulation, water regulation, oxygen regulation).

	•Distinguish between the scientific terms: hypothesis, inference, law, theory,
	principle, fact, and observation
Instructional &	• Students will be able to describe and explain the common characteristics of life
Engagement	common to all organisms
	Given prokaryotic and eukaryotic Organisms compact and contrast the cellular
ACTIVITIES	structures and complexity.
	• Students will be able to determine structures in Eukaryotic cells that developed
	From From will be able to relate life processes to sub-cellular and cellular
	structures to their functions
	 Students will be able to explain how organisms maintain homeostasis (e.g.
	thermoreaulation, water regulation, oxygen regulation
	 Students will be able to compare cellular structures and their functions in
	prokaryotic and eukaryotic cells.
	• Students will be able to identify the advantages of multi-cellularity in
	organisms.
	• Students will be able to describe and interpret relationships between structure
	and function at various levels of biological organization (i.e., organelles, cells,
	tissues, organs, organ systems, and multicellular organisms).
	 Students will be able to recognize that systems within cells and multicellular
	organisms interact to maintain homeostasis
	 Students will be able to explain how organisms maintain homeostasis (e.g.,
	thermoregulation, water regulation, oxygen regulation
	Students will be able to distinguish between the scientific terms: hypothesis,
	interence, law, theory, principle, fact, and observation
ASSESMENTS	Module 1 workbooks with power points
	Word meanings worksheet
	Living/ honliving activity
	 Homeostasis worksneet Scientific mathed cimulations
	Cell parts quided notes & drawing
	 Endosymbiotic theory
	 Investigating organelle diseases
	Lab:
	Lab Fauipment Activity
	Microscope lab
	 Experimental Design lab
	Plant/animal cell lab
	Project
	Cellular organelle Resume
	WEEKLY QUIZES AND A COMMON ASSESSMENT
Standards	3.1.10.A1 Explain the characteristics of life common to all organisms.
	3.1.B.A1. Describe the common characteristics of life.
	Compare and contrast the cellular structures and degrees of complexity of
	prokaryotic and eukaryotic organisms
	3.1.10.A5. Relate life processes to sub-cellular and cellular structures to their
	functions.
	3.1.B.A8.CHANGE AND CONSTANCY Recognize that systems within cells and
	multicellular organisms interact to maintain homeostasis.

	 BIO.A.4.2.1 Explain how organisms maintain homeostasis (e.g., thermoregulation, water regulation, oxygen regulation). BIO.A.1.2.1. Compare cellular structures and their functions in prokaryotic and eukaryotic cells. 3.1.10.A6. Identify the advantages of multi-cellularity in organisms BIO.A.1.2.2. Describe and interpret relationships between structure and function at various levels of biological organization (i.e., organelles, cells, tissues, organs, organ systems, and multicellular organisms). BIO.A.4.1.4 Explain how organisms maintain homeostasis (e.g., thermoregulation, water regulation, oxygen regulation). BIO.B.3.3.1 Distinguish between the scientific terms: hypothesis, inference, law, theory, principle, fact, and observation.
Common Core	Writing: CC.3.6.9-10.B,CC.3.6.9-10.C,CC.3.6.9-10.D,CC.3.6.9-10.I,CC.3.6.9-10.A. Reading: CC.3.5.9-10.B, CC.3.5.9-10.D,CC.3.5.9-10.E,CC.3.5.9-10.H,CC.3.5.9-10.I, CC.3.5.9-10.J
Vocabulary	Cell- The basic unit of structure & function in all living organisms; Eukaryotic Cells- A cell with a nuclear membrane and organelles; Homeostasis- Regulation of an organism's internal conditions to maintain life: Homeostatic Mechanism - A regulatory mechanism that contributes to maintaining a state of equilibrium; Control - Part of an experiment that stays the same: Independent Variable (manipulative) - The part of the experiment that we change; Dependent Variable (responding) - The part of the experiment that we are measuring from what we manipulated; Scientific Method - The process that scientists use to solve a problem; Hypothesis- An educated guess; Law - A law that generalizes a body of observations, it explains but does not describe them. Prokaryotic Cells- a cell lacking a true membrane-bound nucleus; Theory- This has been proven by many experiments that have been performed over time. Characteristics of Life - Characteristics common to most life forms; Cell Wall - Supports & protects the cell & made from cellulose; Chloroplast - Organelle found in plant cells or other eukaryotic photosynthetic organisms where photosynthesis occurs; Extracellular - outside of cell; Intracellular - Inside of cell; Endoplasmic reticulum - Organelle, containing folded membranes, responsible for production, processing & transportation of materials inside & outside an eukaryotic cell. The two forms are Rough ER that has surface ribosomes & participates in protein synthesis & smooth ER that has no ribosomes & participates in the synthesis of proteins mostly for export by the cell as well as synthesis of lipids & steroids; Endosymbiosis - A theory that earlier eukaryotic cells were formed from simpler prokaryotes; Golgi apparatus - An organelle found in eukaryotic cells responsible for the final stages of processing proteins for release by the cell; Lysosomes - Breaks down cellular components that are no longer needed as well as unwanted molecules that are ingested by the cell; Mitochondrion - The membrane bound organelle in eu

cell; Nucleolus - Found in the nucleus & produces ribosomes; Tissue - composed of
cells; Organ - Composed of tissues; Organ system - composed of organs; Organelle
- Little organs of the cell; Plasma membrane (Cell membrane) - A thin, phospholipid
& protein molecule bilayer that covers the cell & controls movement of materials in
& out of the cell; Plastids - A group of organelles found in photosynthetic organisms
that is responsible for synthesis & storage of food; Ribosome - An organelle
composed of RNA & proteins that is the site of protein synthesis; Vacuoles – An
organelle mostly found in plant cells, but some animal & bacterial cells that stores
food, water or waste; Stomates - Tiny opening or pore that is used for gas
exchange on the underside of plant leaves.

Module 2:	Duration:
Biochemistry	September/October (5 weeks)
Big Idea	Chemistry is the basis of all living things
Essential Questions	How is life a product of the organization & interaction of matter?
Eligible Content	 Describe the unique properties of water. Explain how the unique properties of water make life on Earth possible. Describe the structure of a carbon atom. Explain how carbon atoms bond to form biological macromolecules. Describe how biological macromolecules form from monomers. Compare the structure and function of carbohydrates, lipids, proteins & nucleic acids in organisms. Explain how enzymes act as catalysts to regulate biochemical reactions. Explain how environmental factors affect the function & reaction rate of the enzyme. Interpret graphs to analyze enzyme catalyzed reactions.
Instructional/Eng agement Strategies	 The student will describe the unique properties of water. The student will explain how the unique properties of water make life on Earth possible. The student will describe the structure of a carbon atom. The student will explain how carbon atoms bond to form biological macromolecules. The student will describe how biological macromolecules form from monomers. The student will compare the structure and function of carbohydrates, lipids, proteins & nucleic acids in organisms. The student will explain how enzymes act as catalysts to regulate biochemical reactions. The student will explain how environmental factors affect the function & reaction rate of the enzyme. The student will interpret graphs to analyze enzyme catalyzed reactions
Assessments	Weekly quizzes and Biochemistry common assessment LABS

	 Bonding Water lab Temperature Effects on Enzymes Which detergent Works Best? The Need for Speed Macromolecule building Who took Jerrell's IPod?
Standards	 Bio.A.2.1.1: Describe the unique properties of water & how these properties support life on earth Bio.A.2.2.1: Explain how carbon is uniquely suited to form biological macromolecules. BIO.A.2.2.2: Describe how biological macromolecule for from monomers. Bio.A.2.2.3: Compare the structure & function of carbohydrates, lipids, proteins, & nucleic acids in organisms. BIO.A.2.3.1 Describe the role of an enzyme as a catalyst in regulating a specific biochemical reaction BIO.A.2.3.2: Explain how factors such as pH, temperature, & concentration levels can affect enzyme function.
Common Core	Writing: CC.3.6.9-10.B,CC.3.6.9-10.C,CC.3.6.9-10.D,CC.3.6.9-10.I,CC.3.6.9-10.A. Reading: CC.3.5.9-10.B, CC.3.5.9-10.D,CC.3.5.9-10.E,CC.3.5.9-10.H,CC.3.5.9-10.I, CC.3.5.9-10.J,CC.3.5.9-10.A,CC.3.5.9-10.C
Vocabulary	Adhesion - Attraction between difference substances - water and another substance; Atom - smallest unit of an element; Cohesion - The attraction between like molecules - water attracted to water; Carbohydrates - A macromolecule that contains the atoms of carbon, hydrogen & oxygen and serves as a major source of energy for organisms; Catalyst - A substance that speeds up a reaction; Enzyme - A protein that increase the rate of a chemical reaction; Freezing point - The temperature where a liquid changes to a solid; Lipids - A macromolecule made from carbon, hydrogen & oxygen that stores energy; Macromolecule - A polymer made from individual monomers. Examples are lipids, carbohydrates, proteins & nucleic acids; Molecule - The smallest particle of a substance; Monomer - A molecules of any compound that can react with other molecules of the same or different compound to form a polymer; Nucleic Acid - A biological macromolecule composed of the elements C, H, N, O, & P and carries genetic information (DNA & RNA); Organic molecule - Any molecule that has carbon in it; pH - Measure of acidity or alkalinity of an aqueous solution scaling from 1-14; Protein - A macromolecule that contains the principal components of organisms; carbon, hydrogen, oxygen & nitrogen & performs many important functions in an organism; Hydrophobic - water fearing; Hydrophilic - water loving; Hydrolysis - A chemical process in which a molecule of water is added to a substance which splits the molecule; Dehydration synthesis - A type of reaction, where a compound is formed at the cost of losing a water molecule; specific heat - The measure of heat energy required to increase the temperature of a unity quantity of a substance by a certain temperature interval; Temperature - A measure of the average kinetic energy of particles in a sample of matter.

Module 3:	Duration:
Bioenergetics	November (4 weeks)
Big Idea	All living organisms must obtain cellular energy to perform life functions.
Essential Questions	How do organisms obtain & use energy to carry out their life processes?
Eligible Content	 Describe the structure of mitochondria & chloroplasts in eukaryotic cells. Describe the fundamental roles of plastids (e.g., chloroplasts) and mitochondria in energy transformations. Compare the basic transformations of energy during photosynthesis and cellular respiration. Describe the structure of ATP Describe the role of ATP in biochemical reactions
Instructional/Engagement Strategies	 The student will describe the structure of mitochondria & chloroplasts in eukaryotic cells. The student will describe the fundamental roles of plastids (e.g., chloroplasts) and mitochondria in energy transformations. Student will compare the basic transformations of energy during photosynthesis and cellular respiration. The student will describe the structure of ATP The student will describe the role of ATP in biochemical reactions
Assessments	Weekly quizzes and Bioenergetics common assessment LABS: • Running Man • Photosynthesis
Standards	 BIO.A.3.1.1 Describe the fundamental roles of plastids (e.g., chloroplasts) and mitochondria in energy transformations. BIO.A.3.2.1 Compare the basic transformation of energy during photosynthesis and cellular respiration. BIO.A.3.2.2 Describe the role of ATP in biochemical reactions. BIO.A.3.2.1 Compare the basic transformation of energy during photosynthesis and cellular respiration.
Common Core	Writing: CC.3.6.9-10.A. Reading: CC.3.5.9-10.B, CC.3.5.9-10.D, CC.3.5.9-10.E, CC.3.5.9-10.H, CC.3.5.9- 10.I, CC.3.5.9-10.J
Vocabulary	Calvin Cycle - A biochemical pathway of photosynthesis in which CO2 is converted into carbohydrates; Adenosine Triphosphate (ATP) = A molecule of particles from an area of low concentration to an area of high concentration that uses energy provided by ATP or a difference in electrical charges across a cell membrane. Cellular Respiration = A complex set of chemical reactions involving an energy transformation where potential chemical energy in the bonds of

"food" molecules is released & partially captured in the bonds of adenosine
triphosphate (ATP) molecules.
Photosynthesis = A process in which solar radiation is chemically captured
by chlorophyll molecules & through a set of controlled chemical reactions
resulting in the potential chemical energy in the bonds of carbohydrate
molecules.
Bioenergetics = The study of energy flow (energy transformations) into &
within living systems.

Module 4	Duration:
Cell Transport &	December (3 weeks)
Homeostasis	
Big Idea	All living cells maintain are made up of complex structures that require
	homeostasis
Essential Questions	How do organisms maintain a biological balance between their internal and
	external environments?
Eligible Content	 Describe how the structure of the plasma membrane allows it to function as a regulatory structure and/or protective barrier for a cell. Compare & contrast active vs. passive transport mechanisms Describe how membrane-bound cellular organelles facilitate intracellular transport of materials.
Instructional/Engagement Strategies	 Explain mechanisms organisms use to maintain homeostasis. Students will be about to explain the role of ATP in cell metabolism Students will be able to explain how the cell membrane functions as a regulatory structure and protective barrier for the cell Students will be able describe transport mechanisms across the plasma membrane Students will be able to Compare the mechanisms that transport materials across the plasma membrane (i.e., passive transport—diffusion, osmosis, facilitated diffusion; and active transport—pumps, endocytosis, exocytosis).
Assessments	Weekly quizzes & a cell transport common assessment LABS: • Osmosis/Diffusion • Building the cell membrane • Egg activity
Standards	BIO.A.4.1.1 Describe how the structure of the plasma membrane allows it to function as a regulatory structure and/or protective barrier for a cell. BIO.A.4.1.2 Compare the mechanisms that transport materials across the plasma membrane (i.e., passive transport—diffusion, osmosis, facilitated diffusion; and active transport—pumps, endocytosis, exocytosis). BIO.A.4.1.3 Describe how membrane-bound cellular organelles (e.g., endoplasmic reticulum, Golgi apparatus) facilitate the transport of materials within a cell.

	BIO.A.4.2.1 Explain how organisms maintain homeostasis (e.g.,
	thermoregulation, water regulation, oxygen regulation).
Common Core	Writing: CC.3.6.9-10.A.
	Reading: CC.3.5.9-10.B, CC.3.5.9-10.D, CC.3.5.9-10.E, CC.3.5.9-10.H, CC.3.5.9-
	10.I,
	CC.3.5.9-10.J
Vocabulary	Active Transport the movement of ions or molecules across a cellular
	membrane from a lower to a higher concentration, requiring the consumption
	of energy; Diffusion the movement of molecules from an area of higher
	concentration to lower concentration; Endocytosis A process in which a cell
	engulfs extracellular material through an inward folding of its plasma
	membrane. Two types are phagocytosis & pinocytosis; Exocytosis the
	transport of material out of a cell by means of a sac or vesicle that first
	engulfs the material and then is extruded through an opening in the cell
	membrane; Facilitated Diffusion- process by which substances are
	transported across cell membranes by means of protein carrier molecules;
	Passive Transport- is the cellular process of moving molecules and other
	substances across membranes; does not require energy; Osmosis-the
	Movement of water molecules from an area of higher or lower
	concentration. Carrier Proteins - Proteins embedded in the plasma
	membrane involved in the movement of ions, small molecules, &
	macromolecules into & out of cells; also known as transport proteins;
	Concentration - The measure of the amount of proportion of a given
	substance when combined with another substance; Concentration Gradient -
	The graduated difference in concentration of a solute per unit distance
	through a solution; Impermeable – Not permitting passage of a substance;
	Pumps - Any of several molecular mechanisms in which ions or molecules are
	transported across a cellular membrane requiring the use of an energy
	source; Equilibrium - Concentration of molecules is the same in & out of the
	cell; Hypotonic Solution - Concentration of dissolved substances is lower in
	the solution outside the cell than inside the cell; Hypertonic solution –
	Concentration of dissolved substances outside the cell is higher than inside
	the cell; Isotonic Solution - Concentration of dissolved substances in the
	solution is the same as the concentration of dissolved substances inside the
	cell.

Module 5	Duration:
Cell Growth &	January (4 weeks)
Reproduction	

Big Idea	Cells grow & develop through a series of stages
Essential Questions	How do new cells arise from the division of pre-existing cells?
Eligible Content	 Describe the events that occur during the cell cycle Compare the processes and outcomes of mitotic and meiotic nuclear divisions Describe how the process of DNA replication results in the transmission and/or conservation of genetic information. Explain the functional relationships between DNA, genes, alleles, and chromosomes and their roles in inheritance Students will be able to describe the cell cycle and the process and
Strategies	significance of mitosis.
Siraregies	 Students will be able to examine how interactions among the different molecules in the cell cause the distinct stages of the cell cycle which can also be influenced by other signaling molecules Students will be able to explain the role of mitosis in the formation of new cells and its importance in maintaining chromosome number during asexual reproduction. Students will be able to relate mitosis and meiosis at the molecular level Students will be able to describe how the process of meiosis results in the formation of haploid gametes and analyze the importance of meiosis in sexual reproduction. Students will be able to compare and contrast the function of mitosis and meiosis. Students will be able to illustrate that the sorting and recombining of genes in sexual reproduction results in a great variety of possible gene combinations in offspring. Students will be able to describe processes that can alter composition or number of chromosomes (i.e., crossing-over, nondisjunction, duplication, translocation, deletion, insertion, and inversion).
Assessments	Weekly quizzes and a common assessment on mitosis/meiosis
	 Mitosis simulation lab Mitosis stages under a microscope
	Good cells Gone Bad
Standards	Leksak Bird activity BIO.B.1.1 Describe the events that occur during the cell cycle: interphase
Standards	nuclear division (i.e., mitosis or meiosis), Compare and contrast a virus and a
	cell. Relate the stages of viral cycles to the cell cycle. Cytokinesis
	BIO.B.1.1.2 Compare the processes and outcomes of mitotic and meiotic nuclear divisions
	BIO.B.1.2.1 Describe how the process of DNA replication results in the
	transmission and/or conservation of genetic information.
	BIO.B.1.2.2 Explain the functional relationships between DNA, genes,
-	alleles, and chromosomes and their roles in inheritance
Common Core	Writing: CC.3.6.9-10.B, CC.3.6.9-10.C, CC.3.6.9-10.D, CC.3.6.9-10.I, CC.3.6.9- 10.A.

	Deading: (C359 10 P (C359 10 P (C359 10 F (C359 10 H (C359
	Reduling, CC.5.5.9-10.B, CC.5.5.9-10.D, CC.5.5.9-10.E, CC.5.5.9-10.H, CC.5.5.9-
	10.1, CC.3.5.9-10.J, CC.3.5.9-10.A, CC.3.5.9-10.C, CC.3.5.9-10.G
Vocabulary	Asexual Reproduction - reproduction, as budding, fission, or spore
	formation, not involving the union of gametes; Cell Cycle- the events of cell
	division including interphase, mitosis, and cytokinesis; Cell Division - the
	division of a cell in reproduction or growth; Chromosome - any of several
	threadlike bodies, consisting of chromatin, that carry the genes in a linear
	order: the human species has 23 pairs, designated 1 to 22 in order of
	decreasing size and X and Y for the female and male sex chromosomes
	respectively; Cytokinesis - the division of the cell cytoplasm that usually
	follows mitotic or meiotic division of the nucleus; Embryo - the young of a
	viviparous animal, especially of a mammal, in the early stages of development
	within the womb, in humans up to the end of the second month; Gametes - a
	mature sexual reproductive cell, as a sperm or egg, that unites with another
	cell to form a new organism; Haploid- an organism or cell having only one
	complete set of chromosomes, ordinarily half the normal diploid number;
	Interphase- the period of the cell cycle during which the nucleus is not
	undergoing division, typically occurring between mitotic or meiotic divisions;
	Lysogenic cycle- the replication of viruses without causing immediate
	destruction of the host cell; Lytic cycle- the replication process of viruses
	that results in the destruction of the host cell; Meiosis - part of the
	process of gamete formation, consisting of chromosome conjugation and two
	cell divisions, in the course of which the diploid chromosome number
	becomes reduced to the haploid; Mitosis - the usual method of cell division,
	characterized typically by the resolving of the chromatin of the nucleus into
	a threadlike form, which condenses into chromosomes, each of which
	separates longitudinally into two parts, one part of each chromosome being
	retained in each of two new cells resulting from the original cell; Sexual
	reproduction - reproduction involving the union of gametes; Virus - a
	nonliving particle composed of a nucleic acid and protein coat

Module 6	Duration:
Genetics Part A	February/March (8 weeks)
& DNA Part B	
Big Idea	All organisms inherit traits from their ancestors
Essential	How do organisms pass their inheritance onto their offspring?

Questions		
Eligible Content Instructional/Eng agement Strategies	 Describe and/or predict observed patterns of inheritance (i.e., dominant, recessive, co-dominance, incomplete dominance, sex-linked, polygenic, and multiple alleles) Describe processes that can alter composition or number of chromosomes (i.e., crossing-over, nondisjunction, duplication, translocation, deletion, insertion, and inversion) Describe how the processes of transcription and translation are similar in all organisms. Describe the role of ribosomes, endoplasmic reticulum, Golgi apparatus, and the nucleus in the production of specific types of proteins Describe how genetic mutations alter the DNA sequence and may or may not affect phenotype (e.g., silent, nonsense, frame-shift) Explain how genetic engineering has impacted the fields of medicine, forensics, and agriculture (e.g., selective breeding, gene splicing, cloning, genetically modified organisms, gene therapy). Students will be able to explain that the information passed from parents to offspring is transmitted by means of genes which are coded in DNA molecules. Students will be able to explain the basic process of DNA replication. Students will be able to describe the basic structure of the DNA and RNA molecules Students will be able to describe the basic structure of DNA and its function in genetic inheritance Students will be able to describe the basic structure of DNA, including the role of hydrogen bonding. Students will be able to describe the basic processes of transcription and translation Students will be able to describe the basic structure of DNA, including the role of hydrogen bonding. Students will be able to describe the basic structure of the DNA sequence and may or silent, nonsense, frame-shift) Students will be able to describe the basic structure of that the possible consequences on resultant cells Students will be able to des	may not affect
Assessments	 Weekly quizzes and one common assessment on genetics and one on DNA LABS Punnett Squares & Probability Karyotypes Building DNA Lego Protein synthesis Monstrous Mutations DNA Fingerprinting 	
Standards	BIO.B.2.1 Compare Mendelian and non-Mendelian patterns of inheritance BIO.B.2.1.1 Describe and/or predict observed patterns of inheritance (i.e., dominant, recessive, co-dominance, incomplete dominance, sex-linked, polygenic, and multiple alleles) BIO.B.2.1.2 Describe processes that can alter composition or number of chromosomes (i.e., crossing-over, nondisjunction, duplication, translocation, deletion, insertion, and	

p٢

	inversion)
	BIO.B.2.2 Explain the process of protein synthesis (i.e., transcription, translation, and
	protein modification)
	BIO.B.2.2.1 Describe how the processes of
	transcription and translation are similar in all organisms.
	BIO.B.2.2.2 Describe the role of ribosomes, endoplasmic reticulum, Golgi apparatus,
	and the nucleus in the production of specific types of proteins
	BIO.B.2.3 Explain how genetic information is expressed
	BIO.B.2.3.1 Describe how genetic mutations alter the DNA sequence and may or may
	not affect phenotype (e.g., silent, nonsense, frame-shift)
	BIO.B.2.4.1Explain how genetic engineering has impacted the fields of medicine,
	forensics, and agriculture (e.g., selective breeding, gene splicing, cloning, genetically
	modified organisms, gene therapy).
	5
Common Core	Writing: CC.3.6.9-10.B, CC.3.6.9-10.C, CC.3.6.9-10.D, CC.3.6.9-10.I, CC.3.6.9-10.A.
Vocabulary	Crossing over- the interchange of corresponding chromatid segments of homologous
	chromosomes with their linked genes; Deletion - a type of chromosomal aberration in
	which a segment of the chromosome is removed or lost; DNA - deoxyribonucleic acid:
	an extremely long macromolecule that is the main component of chromosomes and is
	the material that transfers genetic characteristics in all life forms; DNA
	Replication - the process of producing two identical replicas from one original DNA
	molecule: Duplication- a type of chromosomal aberration in which a region of the
	chromosome is repeated. Gene- the basic physical unit of heredity: a linear sequence
	of nucleotides along a segment of DNA that provides the coded instructions for
	synthesis of RNA which when translated into protein leads to the expression of
	bereditary character: Genetic Code - the biochemical instructions that translate the
	agnetic information present as a linear sequence of nucleotide triplets in messencer
	DNA into the correct linear sequence of amino acide for the synthesis of a particular
	nentide chain on protein: Genetic Variation- describes the variation in alleles of
	performe chain of protein, benefic variation- describes the variation in aneles of
	genes in a gene poor, manamons - a sudden departare it om the parent type in one of
	Phenetunia variations, the absorvable constitution of an anomalism: DNA, nitronuclaid
	acid: any of a class of single stranded molecules transcribed from DNA in the coll
	acid, any of a class of single-stranded molecules transcribed from DNA in the cell
	nucleus of in the information of childropiast, Transcription - the process by which
	generic information on a strand of DIVA is used to synthesize a strand of
	complementary RINA, Translation - the process by which a messenger RINA molecule
	spectres the linear sequence of amino acias on a ribosome for protein synthesis;
	Alleles- day of several forms of a gene, usually arising through mutation, that are
	responsible for nerealitary variation; coaominant- of or relating to two different
	alleles that are fully expressed in a neterozygous individual; Dominant- the trait or
	character determined by such an allele; Incomplete dominance- the appearance in a
	neterozygote of a trait that is intermediate between either of the trait's
	homozygous phenotypes; Genotypic Variations - the genetic makeup of an organism or

group of organisms with reference to a single trait, set of traits, or an entire complex of traits; Independent Assortment the principle, originated by Gregor Mendel, stating that when two or more characteristics are inherited, individual hereditary factors assort independently during gamete production, giving different traits an equal opportunity of occurring together; Law of Segregation the principle, originated by Gregor Mendel, stating that during the production of gametes the two copies of each hereditary factor segregate so that offspring acquire one factor from each parent; Multiple alleles- a series of three or more alternative or allelic forms of a gene, only two of which can exist in any normal, diploid individual; Phenotypic Variations- the observable constitution of an organism; Polygenetic- one of a group of non-allelic genes that together control a quantitative characteristic in an organism; **Recessive-** that one of a pair of alternative alleles whose effect is masked by the activity of the second when both are present in the same cell or organism; Sex Linked- determined by a gene located in a sex chromosome; Carrier- Individuals who have one copy of a recessive autosomal allele; Chromosome Map- a diagram that shows linear sequence of genes on a chromosome; Colorblindness- recessive X-linked disorder in which an individual cannot distinguish between certain colors; Deletionis the loss of a piece of chromosome due to chromosomal breakage; Frameshift Mutation- addition or deletion of a single nucleotide causes the remaining codons to be incorrectly grouped; **Inversion**- is a chromosome mutation in which a chromosomal segment breaks off and then reattaches in reverse orientation to the same chromosome; Monosomy- zygote with 45 chromosomes has only one copy of a particular chromosome; Nondisjunction- the failure of a chromosome to separate from its homologue during meiosis; Pedigree- a family record that's shows how a trait is inherited over several generations; Point Mutation- the substitution, addition, or removal of a single nucleotide; Polygenic Trait- a trait that is controlled by two or more genes; Sex Linkage-the presence of a gene on a sex chromosome; **Substitution-** one nucleotide in a codon is replaced with a different nucleotide, resulting in a new codon; Translocation- a chromosome piece breaks off and reattaches to another, non-homologous chromosome; Trisomy- zygote with 47 chromosomes has three copies or a particular chromosome; DNA Fingerprint-a pattern of bands made up of specific fragments from an individual's DNA; Forensics - forensics, (used with a singular or plural verb) the art or study of argumentation and formal debate; Gel Electrophoresis- separates nucleic acids or proteins, primarily according to their size and charge; Genetic engineering-the development and application of scientific methods, procedures, and technologies that permit direct manipulation of genetic material in order to alter the hereditary traits of a cell, organism, or population; Gene recombination- the production of offspring with combinations of traits that differ from those found in either parent; Medicine - any substance or substances used in treating disease or illness; medicament; remedy; **PCR-** can be used to guickly make many copies of selected segments of the available DNA; **Plasmid**-a ring of DNA found in a bacterium in addition to its main chromosome; Recombinant DNA-the combination of DNA from two or more sources; Restriction Enzyme-bacterial enzymes used to cut DNA molecules into more manageable pieces;

Module 7	Duration:
Origin of Life &	April (3 weeks)
Evolution: Evidence &	
Theory	
Big Idea	Species evolve or change over time
Essential Questions	How do natural processes as described by the theory of evolution effect
	change in a population over time?
Eligible Content Instructional/Engagement Strategies	 Explain how natural selection can impact allele frequencies of a population. Describe the factors that can contribute to the development of new species (e.g., isolating mechanisms, genetic drift, founder effect, migration) Explain how genetic mutations may result in genotypic and phenotypic variations within a population. Interpret evidence supporting the theory of evolution (i.e., fossil, anatomical, physiological, embryological, biochemical, and universal genetic code) Students will be able to define endosymbiosis, and explain why it is important in the history of eukaryotes Students will be able to describe how the examination of fossils led to the development of evolution Students will be able to tell how biogeographic observations suggest decent with modification Students will be able to explain Lamarck's theory of evolution and describe how it was flawed Students will be able to describe the difference between homologous, analogous, and vestigial structure Students will be able to explain the difference between coevolution, and divergent and convergent evolution Students will be able to explain the difference between coevolution, and divergent and convergent evolution Students will be able to explain how natural selection can impact allele frequencies of a population.
Assessments	Weekly quizzes and one common assessment on evolution
	Missing moths lab
	Lamarckia Chocolata Lab
	Biochemical evidence of evolution
	Genetic Drift Deak Peaket Mice
Standards	 KOCK FOCKET MICE 3 1 10 A1 Explain that some structures in subaryotic calls developed from
Standards	early prokaryotic cells(e.g. mitochondria chloroplasts)

	3.1.10.A8. Investigate the spatial relationships of organisms' anatomical
	features using specimens, models, or computer programs
	3.1.B.C2. Describe the theory suggesting that life on Earth arose as a single,
	primitive prokaryote about 4 billion years ago and that for the next 2 billion
	years, a huge diversity of single- celled organisms evolved.
	Analyze how increasingly complex, multicellular organisms evolved once cells
	with nuclei developed.
	Describe the relationship between environmental changes and changes in
	The gene pool of a population
	s.1.10.03. CONSTAINCY AND CHAINGE INterpret data from fossil records,
	evolution (i.e. fossil anatomical physiological embryological biochemical
	and universal genetic code
	3.1.B.C3. CONSTANCY AND CHANGE Compare and contrast various
	theories of evolution.
	Interpret data from fossil records, anatomy and physiology, and DNA
	studies relevant to the theory of evolution.
	PATTERNS Discuss the implications of a universal genetic code for
	evolution.
	DTO D 2 2 1 Interpret evidence supporting the theory of evolution (i.e.
	BIO.B.3.2.1 Interpret evidence supporting the theory of evolution (i.e.,
	rossii, anatomicai, physiologicai, empryologicai, biochemicai, and universal
	genetic code).
Common Core	Writing: CC.3.6.9-10.B, CC.3.6.9-10.C, CC.3.6.9-10.D, CC.3.6.9-10.1, CC.3.6.9-
	Reading: CC.3.5.9-10.B, CC.3.5.9-10.D, CC.3.5.9-10.E, CC.3.5.9-10.H, CC.3.5.9-
	CC.3.5.9-10.J , CC.3.5.9-10.A , CC.3.5.9-10.C
Vocabulary	Analogous - same function different structure; Anatomy - the structure of
	an animal or plant, or of any of its parts; Biogenesis -states that all living
	things come from other living things; Coevolution -the change of two or
	more species in close association with each other: Convergent Evolution-
	occurs when the environment selects similar phenotypes, even though the
	ancestral types were quite different from one another: Divergent
	Evolution -two or more related populations or species become more and more
	dis-similar: Endosymbiosis- a mutually beneficial relationship between one
	and another that lives within it: chloroplasts and mitochondria
	evolved from endosymbiotic bacteria: Diversity, the state or fact of being
	diverses differences unlikeneds: Care real the total constinuinformation in
	diverse, an reference, animeness, Gene poor- the total generic information in
	The gametes of all the matividuals in a population, Genetic drift- random
	changes in the frequency of alleles in a gene pool, usually of small
	populations; Hait Lite-the length of time it takes for one half of any size
	sample of an isotope to decay; Homologous - same structure but different
	tunction; Natural Selection- the process by which forms of life having
	traits that better enable them to adapt to specific environmental

mates, will tend to survive and reproduce in greater numbers than others of their kind, thus ensuring the perpetuation of those favorable traits in succeeding generations; Physiology - the organic processes or functions in an organism or in any of its parts; Population- the assemblage of a specific type of organism living in a given area; all the individuals of one species in a given area; Radioactive Dating-a method used to establish the age of materials; Species- the major subdivision of a genus or subgenus, regarded as the basic category of biological classification, composed of related individuals that resemble one another, are able to breed among themselves, but are not able to breed with members of another species; Spontaneous Generation-the thought that living things arise from nonliving things; Vestigial-features that were useful to an ancestor, but they are not useful to the modern organism; Allele Frequency = The measure of the relative frequency of an allele at the genetic locus in a population; expressed as a proportion or percentage; Embryology = The branch of zoology studying the early development of living things; Evolution = A process in which new species develop from preexisting species (biological evolution or macroevolution); a change in the allele frequencies of a population of organisms from generation to generation (genetic evolution or microevolution); Extinction = A term that typically describes a species that no longer has any known living individuals; Fossils = The preserved remains or traces of organisms that once lived on Earth; Founder Effect = A decrease in genetic variation caused by the formation of a new population by a small number of individuals from a larger population; Gradualism = A proposed explanation in evolutionary biology starting that new species arise from the result of slight modifications (mutations & resulting phenotypic changes) over many generations; Isolating mechanisms = Features of behaviors, morphology, or genetics which serve to prevent mating or breeding between two different species (Ex. Temporal isolation, in which individuals are active at different times of the day, seasons, or mating periods); Punctuated Equilibrium = A proposed explanation in evolutionary biology stating that species are generally stable over long periods of time. Occasionally there are rapid changes that affect some species which can guickly result in a new species; Speciation = A process typically caused by the genetic isolation from a main population resulting in a new genetically distinct species.

Module 8: ECOLOGY	Duration: April/May (6 Weeks)
Big Idea	Ecology is the heart of life through the interactions of organisms with one another and their interrelationship with the environment.
Essential Questions	How do organisms interact and depend on each other in their environment for their survival?
Eligible Content	 Describe & differentiate between the levels of ecological organization.

	Describe characteristic biotic & abiotic components of terrestrial & aquatic ecosystems
	 Describe how energy Flows through an ecosystem
	 Describe how energy rows rni ough an ecosystem. Describe biotic interactions within an ecosystem.
	 Describe biotic interactions within an ecosystem. Describe the nicke of an engenicm
	 Describe the niche of an organism. Describe how matter necucles in an essevetem
	 Describe how matter recycles in an ecosystem. Describe how accounteme change in recognize to natural & human
	 Describe now ecosystems change in response to natural a number disturbances.
	• Describe the effects of limiting factors on population dynamics &
	potential species extinction.
Instructional/Engagement	• Students will be able to examine the interactions between abiotic
Stratagion	and biotic factors within a watershed.
Strategies	 Students will be able to investigate and analyze
	• Students will be able to identify the ecological levels of
	organization (i.e, organism, population, community, ecosystem,
	biome, and biosphere)
	Students will be able to describe characteristic biotic and abiotic
	Components of aquatic and terrestrial ecosystems
	• Students will be able to describe how energy hows through an ecosystem (i.e. food chains, food webs, energy hows through an
	Student will be able to describe biotic interactions in an ecosystem
	(i.e. competition predation symbiosis)
	 Students will be able to describe how matter recycles through an
	ecosystem (i.e., water cycle, carbon cycle, oxygen cycle, and
	nitrogen cycle.)
	• Students will be able to describe how ecosystems change in
	response to natural and human disturbances (i.e., climate changes,
	introduction of nonnative species, pollution, fires.)
	• Students will be able to describe the effects of limiting factors on
	population dynamics and potential species extinction.
Assessments	Weekly quizzes and one common assessment on ecology
	LABS
	 Investigating NW vs SE Owl Pellets Lab
	Energy Flow activity
	Good Buddies Activity
	 Identifying a Limiting Nutrient Lab
	 They Day They Parachuted Cats activity
	 Population Sampling & Mark, recapture Lab
	 Toad Overload Read
Standards	BIO: B.4.1.1 Describe ecological levels of organization (i.e, organism,
	population, community, ecosystem, biome, and biosphere)
	BIO.B.4.1.2 Describe characteristic biotic and abiotic components of
	aquatic and terrestrial ecosystems
	BIO.B.4.2.1 Describe how energy flows through an ecosystem (i.e., food
	chains, food webs, energy pyramids.)
	BIO.B.4.2.2. Describe biotic interactions in an ecosystem (i.e., competition,
	predation, symbiosis)
	BIO. B.4.2.3 Describe how matter recycles through an ecosystem (i.e.,
	water cycle, carbon cycle, oxygen cycle, and nitrogen cycle.)
	BIO.B.4.2.4. Describe how ecosystems change in response to natural and
	human disturbances (i.e., climate changes, introduction of nonnative species,

	pollution, fires.)
	BIO.B.4.2.5 Describe the effects of limiting factors on population dynamics
	and potential species extinction.
Common Core	Writing: CC.3.6.9-10.B, CC.3.6.9-10.C, CC.3.6.9-10.D, CC.3.6.9-10.I, CC.3.6.9-
	10.E,
	CC.3.6.9-10.F, CC.3.6.9-10.G, CC.3.6.9-10.H, CC.3.6.9-10.A.
	Reading: CC.3.5.9-10.B, CC.3.5.9-10.D, CC.3.5.9-10.E, CC.3.5.9-10.H, CC.3.5.9-
	10.I,
	CC.3.5.9-10.J, CC.3.5.9-10.A, CC.3.5.9-10.C, CC.3.5.9-10.G
Vocabulary	Abiotic- nonliving factors; that supports life; Biotic- Living components of
	the Carrying Capacity- the number of individuals the environment can
	support over a long period of time; Commensalism- an interaction in which
	one species benefits and the other is not affected; Community- all the
	interacting organisms living in the area; Ecosystem- includes all of the
	organisms and the nonliving environment found in a particular place;
	Emigration- the movement of individuals out of a population; Immigration-
	the movement of individuals into a population; Mutualism- a cooperative
	relationship in which both species derive some benefit; Population - includes
	all the members of a species that live in one place at one time; Population
	Dynamics- populations change in size and composition over time; Succession-
	the gradual sequential regrowth of species in an area; Watershed- the
	region or area drained by a river, stream, etc.; drainage area; Aguatic = A
	term the describes an organism associated with a water environment.
	Bioeneraetics = The study of energy flow (energy transformations) into &
	within living systems.
	Biogeochemical cycles = The movement of abiotic factors between the living
	& nonliving components within ecosystems: also known as nutrient cycles (ex.
	Water cycle, carbon cycle, oxygen cycle, & nitrogen cycle)
	Biome = A large area of geographical region with distinct plant & animal
	aroups adapted to that environment.
	Biosphere = The zone of life on Earth: sum total of all ecosystems on Earth
	Community (Ecological) = Different populations of organisms interacting in a
	shared environment.
	Competition = When individuals or aroups of organisms compete for similar
	resources such as territory mates water & food in the same environment
	Consumer = An organism that obtains energy by feeding on other organisms
	or their remains (heterotroph)
	Decomposer = An organism that obtains nutrients by consuming dead &
	decaying matter which allows nutrients to be accessible to other organisms
	Follogy = The study of relationships between organisms & their interactions
	with the environment
	Energy pyramid = A model that illustrates the biomass productivity at
	multiple transfic levels in a given ecosystem
	Francy transformation - A process in which energy changes from any form
	to enother form while come of the energy changes from one form
	to another form while some of the energy is lost to the environment.

Endemic Species = A species found in its originating location & is generally restricted to that geographic area.

Environment = The total surroundings of an organism or a group of organisms

Extinction = A term that typically describes a species that no longer has any known living individuals.

Food chain = Simple & illustrates the passing of potential chemical energy (food) from one organism to another.

Food web = A complex arrangement of interrelated food chains illustrating the flow of energy between interdependent organisms.

Habitat = An area that provides an organism with its basic needs for survival.

Limiting factor = Chemical or physical factor that limits the existence, growth, abundance, or distribution of an individual organism or a population. **Nonnative Species** = A species normally living outside a distribution range that has been introduced through either deliberate or accidental human activity; also can be known as introduced, invasive, alien, nonindigenous, or exotic (Cane Toad)

Organism = A form of life; an animal, plant, fungus, protest or bacterium. **Population** = A group of individuals of the same species living in a specific geographical area & reproducing.

Population Dynamics = The study of short- and long-term changes in the number of individuals for a given population, as affected by birth, death, immigration, & emigration.

Producer = An organism that uses a primary energy source to conduct photosynthesis or chemosynthesis (autotrophs).

Species = The lowest taxonomic level of biological classification consisting of organisms capable of reproduction that results in fertile offspring.

Succession = A series of changes within an ecosystem over time. There are two types: primary - beginning (An example of primary is a volcanic island) and secondary - was once present, but lost (forest fires affect this type of succession).

Symbiotic relationship = A relationship between two organisms (mutualism is when both species benefits, parasitism is when one species benefits & hurts the other & commensalisms is when one species & does not hurt the other species)

Terrestrial = This is associated with a land environment.

Trophic level = The position of an organism in relation to the flow of energy & inorganic nutrients through an ecosystem (producer, consumer & decomposer)