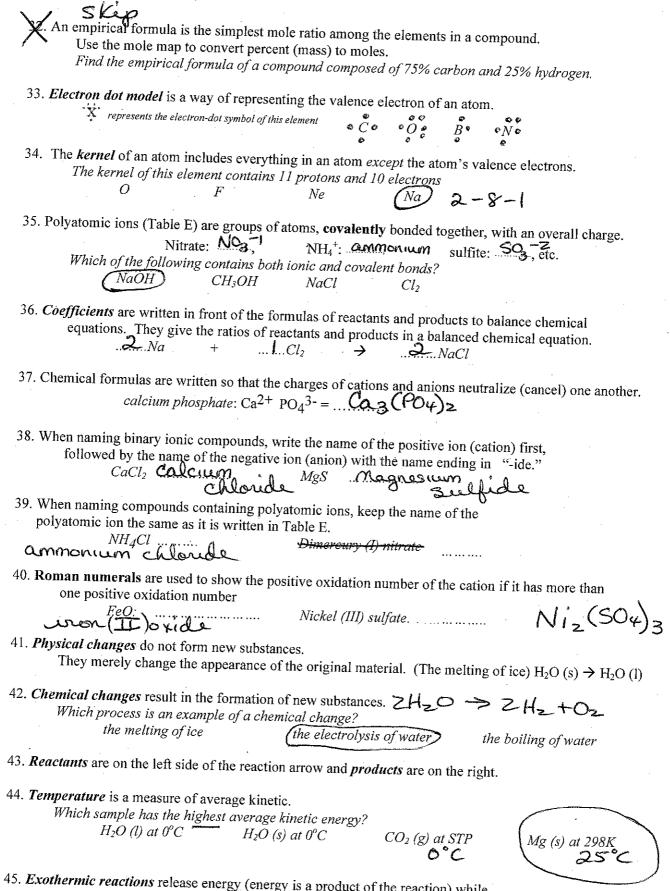
	K
	Neig
200 Things to Know to Pass the C	Chemistry Regents
	ctomic # = nuclear charge
2. Neutrons have no charge and a mass of 1 amu.	17 18 19 20
3. Electrons are small and are negatively charged (-) with a mas	ss of almost 0 amu
4. Protons & neutrons are in an atom's nucleus (<i>nucleons</i>). Which has the greatest number of nucleons? Sn-119 Sb-122 Te-128	<i>I-127</i>
5. Electrons are found in "clouds" (orbitals) around an atom's nu Where is most of the mass of an atom found? Where is most of the size (volume) of an atom found?	e nucleus
6. The mass number is equal to an atom's number of protons and What is the mass number of an atom with 18 protons and	d neutrons added together. d 22 neutrons? 18+22 = 40
7. The atomic number is equal to the number of protons in the number has the greatest atomic number? on Period S 16 Cl 17 Ar 18	ucleus of an atom. die Table K 19
8. The <i>number of neutrons</i> = mass number – atomic number. Which correctly represents an atom of neon containing 1. 11 Ne 21 Ne 20 Ne	1 neutrons? 10+11=21 ²² Ne
9. In a neutral atom the number of protons = the number of electrons	ons.
10. Isotopes are atoms with equal numbers of protons, but differ in Two isotopes of the same element will have the same numbers of protons and electrons, and nucleons, protons and nucleons, protons and electrons are atoms with equal numbers of protons, but differ in two isotopes of the same element will have the same numbers of protons and electrons.	ber of cleons,
11. Cations are positive (+) ions and form when a neutral atom loss. They are smaller than their parent atom. Which of the following will form an ion with a smaller rad. Cl - N-3 Br - 1 B	•
12. Anions are negative ions and form when a neutral atom gains e They are larger than their parent atom. Which electron configuration is correct for a fluoride ion? 2-7 2-8-1 2	rue i
13. Ernest <i>Rutherford's</i> gold foil experiment showed that an atom space with a small, dense, positively charged nucleus.	is mostly empty
14. <i>J.J. Thompson</i> discovered the electron and developed the "plum of the atom.	n-pudding" model

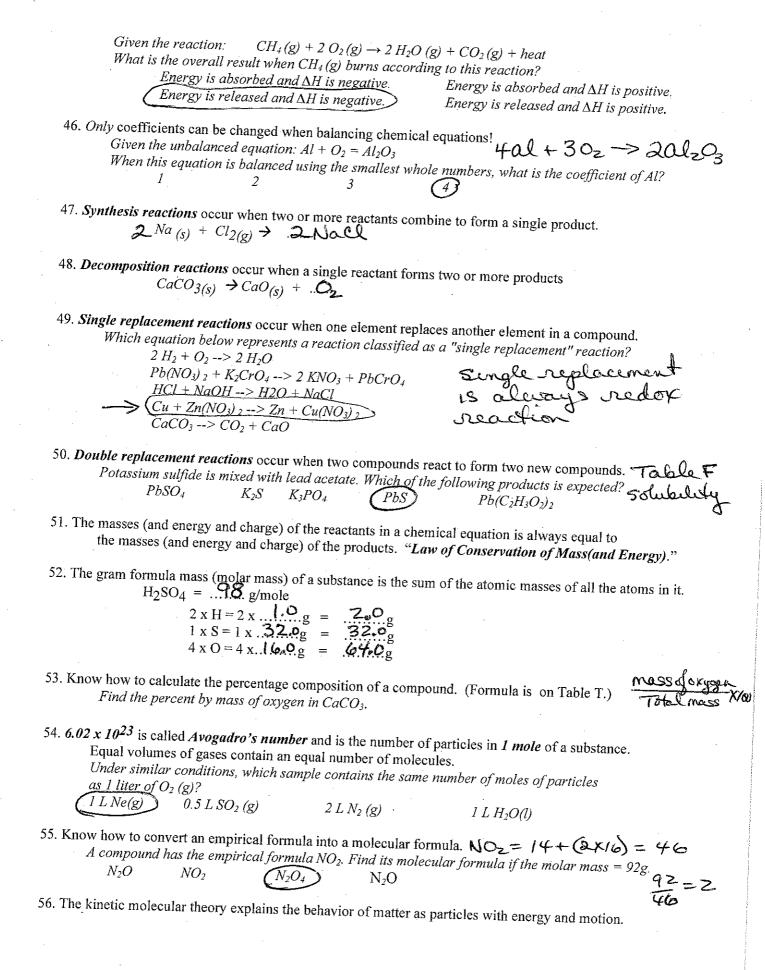
Positive & negative

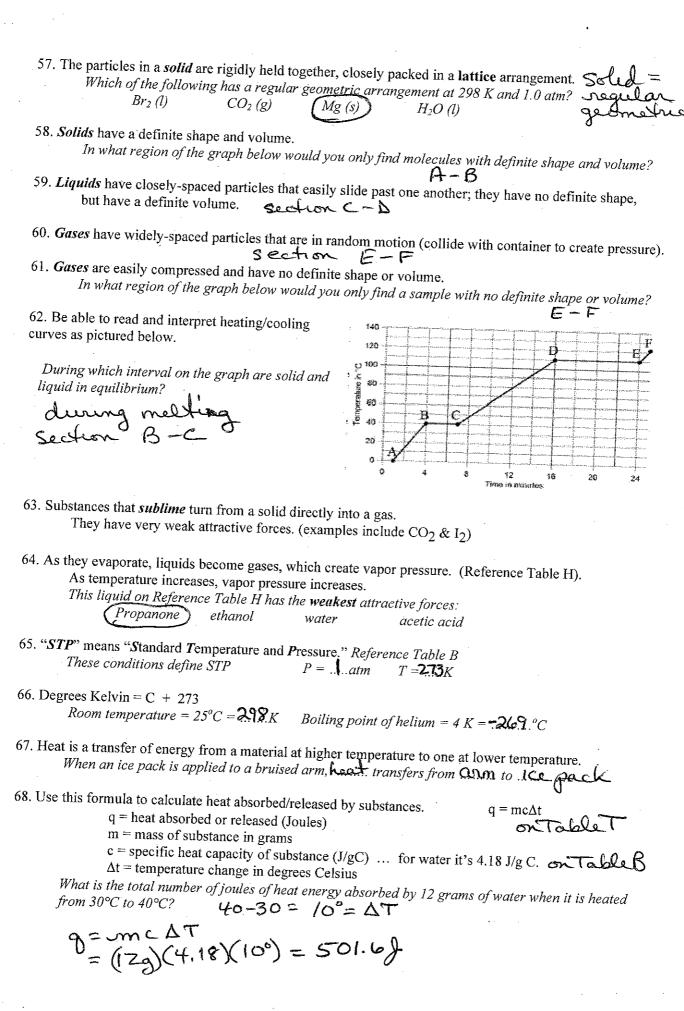
entire atom.

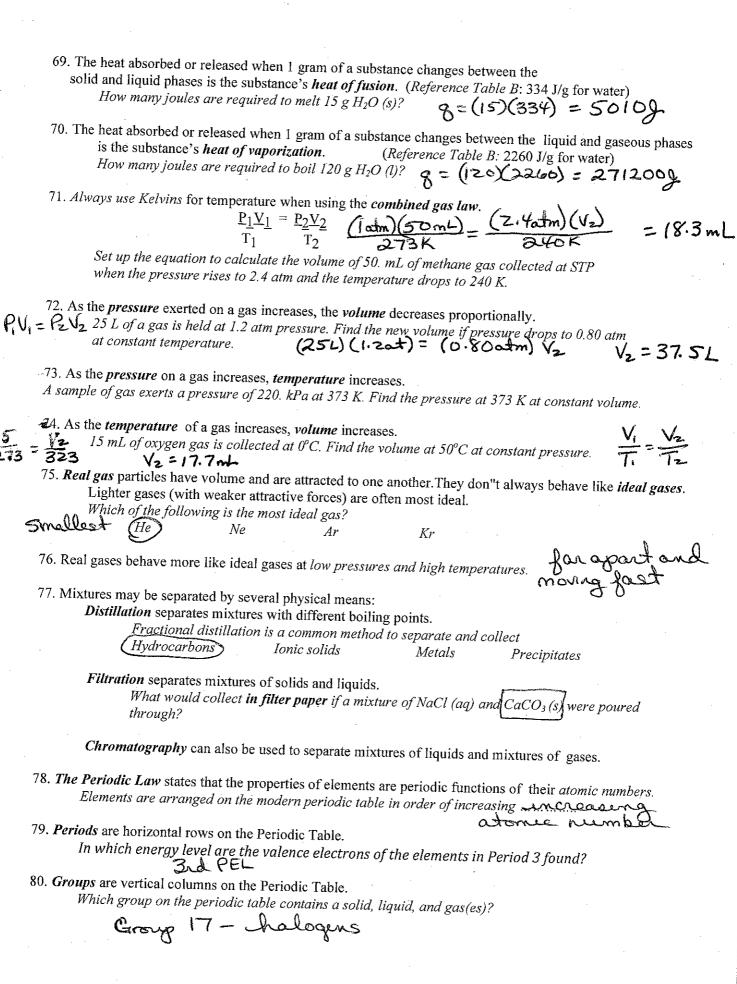
particles spread throughout


15. Dalton's model of the atom was a solid sphere of matter that was uniform throughout. 16. The Bohr Model of the atom placed electrons in "planet-like" orbits around the nucleus of an atom. 17. The current, wave-mechanical model of the atom has electrons in "clouds" (orbitals) around the nucleus. 18. Electrons can be excited to jump to higher energy levels. They emit energy as light when they fall from higher energy levels back down to lower (ground state) energy levels. Bright line spectra are produced. 19. Elements are pure substances composed of atoms with the same atomic number. They cannot be decomposed. A compound differs from an element in that a compound Has a homogeneous composition has one set of properties Has a heterogeneous composition can be decomposed) 20. Binary compounds are substances made up of only two kinds of atoms. "Ternary" compounds contain three (or more) kinds of atoms. Which substance is a binary compound? Ammonia (Table magnesium potassium nitrate NHa KNO3 21. Diatomic molecules are elements that form two atom molecules in their natural form at STP. Which element is a diatomic liquid at STP? Chlorine iodine Solid 22. Use this diagram to help determine the number of significant figures in a measured value... Pacific If the decimal point is present, start counting digits from the Pacific (left) side, Atlantic starting with the first non-zero digit. 0.003100 (...t. sig. figs.) If the decimal point is absent, start counting digits from the Atlantic (right) side, starting with the first non-zero digit. 31,400 (.3..sig. figs.) 23. When multiplying or dividing measurements, final answer must have as many digits as the measurement with the fewest number of digits. When adding or subtracting, use place value. What is the density of the object measured in lab by the displacement of water according to Volume object = 18.2 D = m = 23.60 3.2 mL 3.2 mL = 7.2 g/mL Mass of object: 23.6 g Volume of water: 15.0 mL *Volume of water + object:* 18.2 mL 24. Solutions are the best examples of homogeneous mixtures. They have two sets of properties

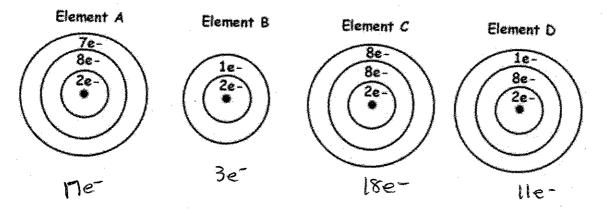
(ag) = dissolved in water


05 87					mixturesof
25. Heterogeneous mixtures hav Air is classified chemica	e discernable	components a	nd are not uniform	throughout.	gases are
~ *	compound	element	(mixture)		mixtures of gases are always homogeneous
26. A <i>solute</i> is the substance bein	ng dissolved:	the salvant is t	ha substance that d		homogeneous
TYGE A LEE IN GOODE TO WORK	214				
The solute is No	the so	lvent is H2O	the solution is	himodo	neous
27. Isotopes are written in a numb	per of ways: (C-14 is also Car	rbon-14, and is also		,
		^{14}C		1-14 cov	tains.
atomic number =	6	6	14	6 Protons	sand
atomic number –	********	mass number	r = .14.	8 neutro	<i>M3</i>
28. The average atomic mass is the	e weighted av	verage mass of	all the known isoto	opes of an elen	nent.
28. The average atomic mass is the Find the average atomic in29. The distribution of electrons in30. Electron configurations are units.	nass of lithiu	n if 7.4 % are '	⁶ Li and 92.6% are	7Li.(7.4)6)+(92.9(7) =
29. The distribution of electrons in	an atom is it	s <i>electron con</i>	figuration.	0.44	14+ 6.482 =
30 Electron configurations are we	des ! at 1			0.11	6.926 an
30. Electron configurations are wr periodic table in your	ruen in the bore reference tabl	ottom center of es. The outerm	an element's box o	on the	.
		Incomen	iost electrons are th	ie valence elec	trons.
		. 1	. ^		
2 = # of	electrons in .	let ethel			
8 = # 3 = ±	of electrons in	in a Co Com	ell ce cahall (outside	shell)
			CE CONCERNE		
31. Use the mole map to help you	solve convers	sions			
between moles, grams, number	ratio	es/atoms, and li	iters of gases at ST	P	
VOLUME	VOLUME		7	\wedge	
	<u></u>		*	/ \	· •
MASS MOLE	ratio MOLE	MASS	· · · · · · · · · · · · · · · · · · ·		\
	1			/ m	\
NUMBER	ratio NUMBER			/a/6	\
			Į.	/ 10	_
	_				
	^ /	1		$\mathcal{L} \setminus \mathcal{E}$	2 c \
	علاا	•		y No.	69'\
40	العلطر		1,400	1, 4	
			<u> </u>		
Given the reaction ($CH_4 + 2O_2>$	$> CO_2 + 2H_2O$,			


Given the reaction $CH_4 + 2O_2 -> CO_2 + 2H_2O$, what amount of carbon dioxide is produced by the reaction of 1 mole of CH_4 ?


1 gram
1 liter
1 mole
22 grams

45. Exothermic reactions release energy (energy is a product of the reaction) while Endothermic reactions absorb energy and the energy is a reactant in the reaction.


81. Metals are found left of the "staircase" on the Periodic Table and at the bottom, nonmetals are above it and at the top, and metalloids border it.

Which of the following Group 14 elements has the greatest metallic character? Carbon silicon germanium

82. Complete and memorize this chart

Metals	Malleable and ductile	All solids except .Ha.	Lustrous	Good conductors of heat & electricity	energy and	Tend to form
Nonmetals	Brittle when solid	Mostly gases at STP	Dull	Good insulators	ionization energy and electroneg.	Tend to form

- 83. Noble gases (Group 18) are unreactive and stable due to the fact that their valence level of electrons is completely filled.
- 84. Ionization energy increases as you go up and to the right on the Periodic Table. Which element among the diagrams below has the lowest ionization energy? TableS
- 85. Atomic radii decrease left to right across a period due to increasing nuclear charge. **D** Which period 3 element among the diagrams below has the largest radius?
- 86. Atomic radii increase as you go down a group due to increased electron energy levels. **D** Which alkali metal among the diagrams below has the largest radius?
- 87. Electronegativity is a measure of an element's attraction for electrons. Which of the following atoms has the greatest tendency to attract electrons? TableS electronegalivity calcium carbon copper chlorine
- 88. Electronegativity increases as you go up and to the right on the Periodic Table. Which element among the diagrams below has the greatest electronegativity? Table S
- 89. The elements in Group 1 are the alkali metals; those in Group 2 are the alkaline earth metals. Which atom below represents the alkali metal of period 2?
- 90. The elements in Group 17 are the halogens. A Which element among the diagrams below is a halogen?
- Group 17 element Group 18 element 91. The elements in Group 18 are the noble gases. **C** Which element among the diagrams below is a noble gas?

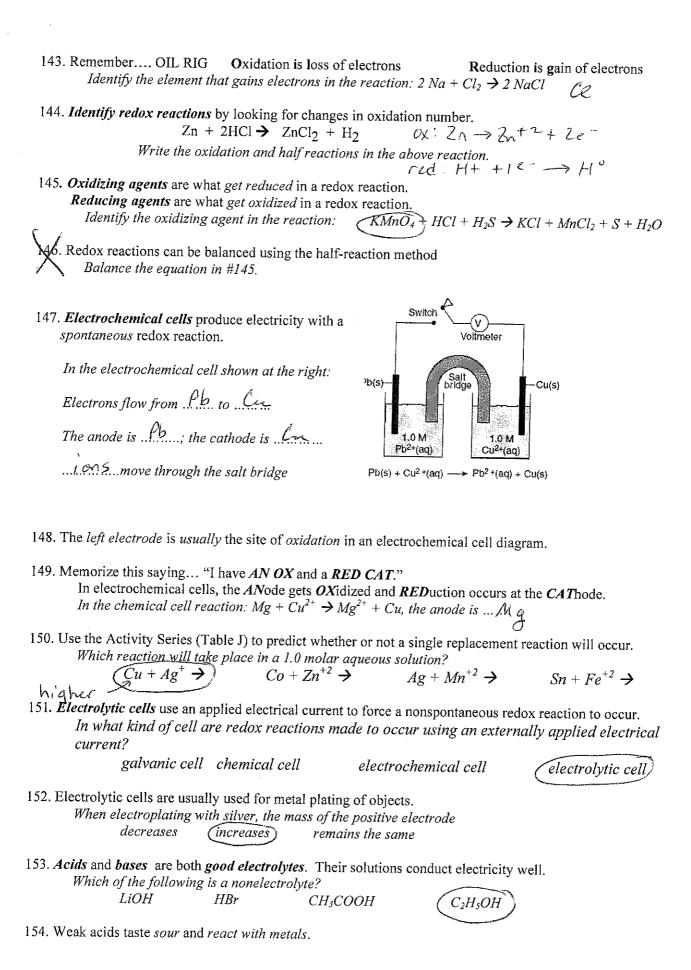
104. Substances containing mostly covalent bo They are attracted to each other by wea Which of the following is a male of the	ak van der Waald	olecular substances.	attractions
Lithium chloride carbon	n monoxide)	sodium nitrate	aluminum oxide
105. Van der Waals attractive forces are the at Nonpolar molecules are molecules that	tractive force be	tween nonpolar molec symmetry.	cules.
106. Van der Waals attractions become strong Which of the following samples has the F_2 Cl_2	greatest forces Br_2	of attraction? $\stackrel{I_2}{}$ Longes	+
107. Polar molecules have stronger forces of att. Which of the following is a polar molecular CO_2 H_2O	ule? C ₄ H ₁₀	N_2	
 108. Hydrogen bonds are attractive forces that f gives the compound unexpectedly high melta. The strongest forces of attraction occur. HCl HBr 109. Substances containing mostly ionic bonds a They are made of metal and nonmetallic. 	between molecus HF	points. les of HI	
110. Complete and memorize this table.	rons. They are n	icid together by electro	ostatic (ionic) forces.
Substance Type		Properties	
Ionic	(Low high	Hard) melting and boiling particity when molten or	points
Covalent (Molecular)	(Low)high)	Soft melting and boiling induct electricity (insulations)	points
111. Remember: substances tend to be soluble in "Like dissolves like" Pentane does not dissolve in water because	solvents with sin	nilar molecular proper	ties.
113. At low temperatures and high pressures solution	ure have the leasur chloride p	st effect on solubility? otassium chlorate	(sodium chloride)
Carbon dioxide gas is least soluble in wate 114. Use Table G to determine whether a solution saturated, unsaturated, or supersaturated.	er at conditions	of Witemperature and	l Lopressure.
and the second s	solubility	J''' sardiated	
			&aturated
·			saturated saturated

temperature °C

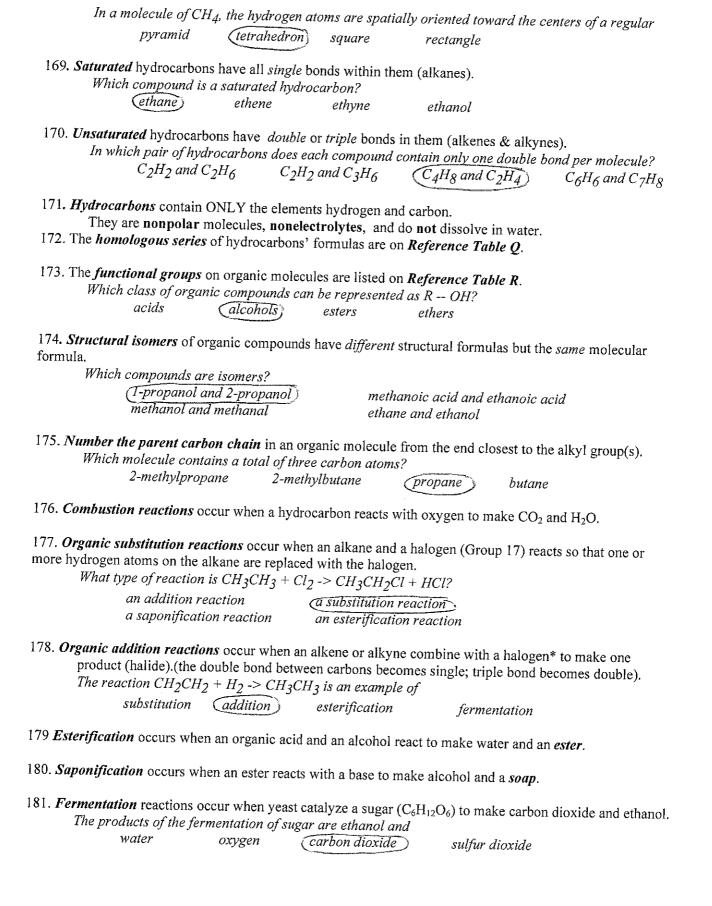
K= C+273

The freezing point of phosphorus is $$ 4. $^{\circ}C$	
93. Energy is absorbed when a chemical bond breaks. Energy is released when a chemical bond forms. The greater the energy, the more stable the bond that forms. Which of the following, according to Reference Table I, is the most stable compound? Ethane ethane ethane ethane ethane ethane hydrogen iodide	
94. The last digit of an element's group number is equal to its number of valence electrons. Which contains the greatest number of valence electrons?	
Ca 2 Ge 4 Se 6 (Kr 8)	
95. Draw one dot for each valence electron when drawing an element's or ion's Lewis electron dot diagram Which dot model would contain the fewest dots as valence electrons? **Ca** **Ge** **Se** **Kr**	1 .
96. Metallic bonds can be thought of as a crystalline lattice of kernels surrounded by a "sea" of mobile valence electrons. Metallic bonding occurs between atoms of	
sulfur sodium fluoride (sodium) carbon	
 97. Atoms are most stable when they have 8 valence electrons (an octet) and tend to form ions to obtain such a configuration of electrons. Which of the following atoms forms a stable ion that does not have an octet structure? Li F Na Cl 98. Covalent bonds form when two atoms share a pair of electrons. How many covalent bonds are found in a nitrogen (N2) molecule? 3 covalent bonds 99. Jonic bands form when one stom travefore and the configurations. 	
forming a bond with it.	
Which substance exhibits ionic bonding rather than covalent bonding? CO_2 N_2O_4 SiO_2 $CaBr_2$ $C_6H_{12}O_6$	
100. Dot models may be used to represent the formation of ions or covalent molecules. Given the equation: F: + 1e - F: This equation represents the formation of a fluoride ion, which is smaller in radius than a fluorine atom fluoride ion, which is larger in radius than a fluorine atom fluorine atom, which is smaller in radius than a fluoride ion fluorine atom, which is larger is radius than a fluoride ion 101. Nonpolar covalent bonds form when two atoms of the same element bond together.	
	tz
102. Polar covalent bonds form when the electronegativity difference between two bonding atoms is between 0.6 and 1.7. Which of the following combinations would form a polar covalent bond? H and H Na and N H and N Na and Br	+ši
103. Ionic bonds form when the electronegativity difference between two bonding atoms is greater than 1.7.	

				·	
	115. Use Reference Table F to predict	t soluble and i	insoluble pro	ducts of cham	ical reactions
	Which compound below would	d "precipitate	" if formed a	luring a double	replacement reaction?
	$AgNO_3$ K_3PO_3	D_4 N_6	a_2CO_3	$MgCl_2$	CaSO ₄
	116. <i>Molarity</i> is a way to measure the	concentration	m of a golystic		
		er of moles o	1 01 a solulio f solute divid)II. ded by the num	hom of the second
M=	= mol (Reference Table T). What is the molority of an New York	or moles o	1 BOIGIC GIVIN	ded by the num	ber of liters of solution.
* *	What is the molarity of an Nat	Cl solution if .	2.0 mol NaC	'l is present in ($0.50 L solution? M = \frac{2m}{0.55}$
	117. Percent by mass = (mass of the	part / mass of	the whole)	x 100%	W = 4
	A solution of glucose is prepai	red by added .	10. g glucose	e to 40. g water	. 10
	What is its percent composition	n?		Ü	m=4 10 × 100 = 25 %
	118. Parts per million (ppm) = (gram	s of solute /	grams of sol	lution) x 1 000	2,000
	A sample of water is found to c	contain 0.010	g lead in 10.	g solution.Wh	at is the concentration in ppm?
	119. Solutes raise the boiling points an				
	which of the following will have	e the highest	hailing nain	±2 ·	3 ions
	1 mol NaCl in 100 g w	ater I m	ole CH₃OH	in 100 g water	(Imol CaCl ₂ in 100 g water)
	120. Liquids boil when their vapor pres				Co.
	Water will boil at 90°C when the	ne atmospheri	c pressure is	pneric pressure & & kPa.	. (Reference Table H)
	121. The <i>normal boiling point</i> of a sub	stance is the t	emnerature a	at which it boils	e at I atm magazine
	(Actordice Table II)				o at 1 aun pressure.
	What is the normal boiling poin	it of propanor	1e? 56°C	≠	
	122. Chemical reactions occur when rea	ecting species	collide effec	ctively.	
	123. Covalently bonded substances tend	to react more	slowly than	ionic compou	nds.
	124. Increasing the concentration of real	ctants will inc	rease reactio	n roto	1 1 1 0
	Which sample of HCl (aq) will r	eact most rap	idlv with ma	nı tate. Ignesium metal	2 most concentrated
	0.50 M HCl	1.0 M HCl		3.0 M HCl	? most concentrated (6.0 MHCI)
	125. Reaction rate increases with an incr	ease in tempe	erature (and i	programa for	The state of the s
					ses).
	126. <i>Catalysts</i> speed up reactions by low They are not changed themselve	ering their <i>ac</i> and can be	<i>tivation ene</i> reused many	rgies. times over.	
	127. Be able to recognize and read poten				1
	The heat content of the reactants of the fe	nuu energy al Orward raaati	agrams.	S 280	
	8. kilojoules.	л мага геасы	on is about	86 40 28 24 00 20 20 160 160 10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	The heat content of the products of the fo	rward reacti	on in about	王 岩 200	1 /1
	∫&Qkilojoules.	n wara reacii	on is about	9 160 160	
	The heat content of the me	6.1. 4	_	të 120	
. 6	The heat content of the activated complex & A.	of the forwar	rd reaction i.	s about 80	<u> </u>
	The activation energy of the forward reac	ction is about	160 kiloiouli	40 es.	
	Add a dotted line to show the effect of a c		, 0 0000	1 100	Tîme


128. The rates of the forward and reverse reactions are equal at equilibrium.
A chemical reaction has reached equilibrium when the
reverse reaction begins
reactants are used up
rates of the forward and reverse reactions are equal
concentrations of products and reactants are equal
129. Adding any reactant or product to a system at equilibrium will shift the equilibrium away from the added substance.
130. <i>Removing</i> (taking out) any reactant or product from a system at equilibrium will shift the equilibrium point toward that removed substance.
131. An increase in temperature shifts an equilibrium system in the endothermic direction.
132. A decrease in temperature shifts an equilibrium system in the exothermic direction.
133. Increasing the pressure on a gaseous equilibrium will shift the equilibrium point toward the side with fewer moles of gas (less gas volume).
134. Decreasing the pressure on a gaseous equilibrium will shift the equilibrium point toward the side with more moles of gas (greater gas volume).
135. Catalysts have no effect on equilibrium. It just establishes itself more quickly. Given the reaction: $H_2(g) + I_2(g) \le 2 HI(g)$
If a catalyst is added, the equilibrium concentration of HI (g) produced Romans the
136. Enthalpy (H) is the heat energy gained or lost in a reaction.
137. Entropy (S) is high in a highly unorganized system, such as a gas, a messy room, etc. Which of the following has the greatest entropy? Na (s) $CO_2(g)$ $H_2O(l)$ $N_2(g) + H_2(g)$ $CO_2(g)$
138. A chemical reaction is most likely to occur (spontaneously) in an exothermic reaction with an increase in entropy. In the reaction below, energy (increases decreases)
139. Oxidation numbers can be assigned to atoms and ions. What is the oxidation number of S in the sulfate ion? SO_{4}^{-2} Si_{2} $(+6)$
140. <i>Oxidation</i> is the <i>loss of electrons</i> by an atom or ion. The oxidation number <i>increases</i> as a result. The electrons are usually on the <i>right side</i> of the reaction arrow. In the reaction $Sn^{+4} + H_1(\alpha) \rightarrow Sn^{+2} + 2H^+$ substance oxidized is

141. *Reduction* is the *gain of electrons* by an atom or ion. The oxidation number *decreases* (is reduced!) as a result. The electrons are on the *left* side of the reaction arrow.


 Sn^{+2}

 H^{+}

142. Redox reactions *always* involve the exchange of *electrons*. Electrons lost = electrons gained.

155. Weak bases tas	te <i>bitter</i> and _J	feel slippery.			
156. Acids and bases Which solut HCl	tion will cho	ange red litmi	olors. They're us to blue? CH3OH(aq)		
pH is the negati What is the	ve log (expoi pH of a 0.00	nent) of the hyd 0001 molar H	dronium [H ⁺] ic ICl solution? 5	on concentration.	
158. Acids have a pH	< 7. Bases 1	nave a pH > 7.		7	
159. Every 1 pH num	ber decrease	e represents a te	en-fold [H ⁺] inc	rease.	
160. <i>Tables K & L</i> lis	t names and	formulas of co	mmon acids an	d bases asked about on th	e Regents.
161. The metals above	e H ₂ on <i>Tabl</i>	e J will react w Il react with ac		ke Hagas hubbles	
Dases give o	ff H ⁺ to form ff OH ⁻ ions is following is n	H ₃ O ⁺ ions in a	tion as their onl	ın Arrhenius base?	
163. Brønsted model of "Acids donate Identify one Bi H_2O	protons."	، in the reaction	Bases accept p	rotons."	
164. Bronsted acids be Identify one co	come Bronst njugate acid	ed bases; Bron -base pair fron	sted bases beco n question #163	me Bronsted acids; formi	ng conjugate pairs.
165. Acids and bases re Name the salt p	eact in <i>neutro</i> produced who	alization reacti en sulfuric acid	ons to make wa d is neutralized	ter and a salt. by potassium hydroxide.	& K2504
sample. Note	the formula t	or it on Table :	Т	the concentration of an a utralize 20. mL of a 0.40 16	K K 2 SO 4 pottassi cm swlta cid or base M NaOH solution?
167. ALL organic comp Which of the for CaCO ₃	llowing is an	organic comp	ound?	HOM) X=32~ ually) hydrogen. CO2	, <u>L</u>
Carbon Carbon Carbon	t explains wh atoms comb atoms have readil <u>y form</u>	ny the element ine readily with very high elect ssionic bonds w	carbon forms so h oxygen.	o many compounds?	

182. <i>Polymers</i> are le	ong chains of rep	peating units called n	nonomers.		
What substa	ınce is made up	of monomers joined i	together in long cha	ins? polyner	
keta	one (pro	otein ester	acid		
183. Polymers form	by <i>polymerizati</i>	on reactions.			
184. Addition polyn	erization occurs	whom ungothered -			
184. Addition polym n(C ₂	$_2H_2) \rightarrow (C_2H_2)$	n	ionomers join in a lo	ong polymer chain.	
185. <i>Condensation p</i> Water is a pr	oolymerization o oduct!	ccurs when monome	ers join to form a pol	lymer by removing w	ater.
186. Natural polym	ers include starc	h, cellulose, and prot	eins.		
187. Synthetic polyn	ners include plas	stics such as nylon, ra	ayon, and polyester.		
188. Unstable atoms	that are radioact	ive are called <i>radiois</i>	notones (Table N		
Which of the	following repres	ents a stable nuclide	??		
Calc	ium-37	Potassium-42	Nitrogen-14	Phosphor	rus-32
189. Each radioactive	: isotone has a sn	ecific mode and rate	of door (1-16116)	<u>-</u>	
Which sample	e will decay leas	t over a period of 30	days? [Refer to Ref	Gerence Table NJ ov	
	oj 11m 100	10 g 0j 1-131	10 g of P-32	$\int 10 g of Rr$	7-222
190. Radioisotopes ca	n decay by givir	ng off any of the part	icles/emanations list	ted in <i>Table O</i> .	
wnich of the j	ottowing decays	by positron emission	n? B+		
Gold-	-198	(Neon-19 [*]) P	lutonium-239	Technetium-99	
191. Alpha particles (see Table J) are	positively charged (-	- -)		
Beta particles (s	ee Table J) are n	egatively charged (-)). Neutrons and gan	nma rays lack charge	3
which particle	e cannot be acce	lerated in a magnetic	c field?	rays rack charge	
alpha	particle	beta particle	(neutron)	proton	
192. The sum of the m	ass numbers and	atomic numbers mu	et he equal on both	-14	
of the reaction arr	ow for nuclear e	quations.	ist be equal on boin!	sides	
1	8 =	18			
¹⁴ N +		$^{17}O + ^{1}H$			
9 		9			·
193. When radioactive	nuclet decay , th ollowing decay e	ey undergo natural t	ransmutation to form	n new, stable atoms.	
$\frac{232}{2}$ Th -	onowing aecay e	280.			

194. When bombarded by radioactive particles, stable atoms undergo artificial transmutation Identify the element produced when aluminum-27 is bombarded with an alpha particle.

(A neutron is also released).

$$\begin{array}{c}
(A \text{ neutron is also released}). \\
\downarrow^{27}Al + {}^{4}He \rightarrow {}^{1}n + \dots {}^{36}P
\end{array}$$

195. *Fission reactions* split heavy nuclei into smaller ones. $^{1}n + ^{235}U \rightarrow ^{139}Ba + ^{94}Kr + 3 ^{1}n + Energy$

196. Fusion reactions occur when light nuclei combine to form a heavy nucleus and a lot of energy. $^{2}H + ^{2}H \rightarrow ^{4}He + ENERGY$

197. The *half life* of a radioisotope is the *length of time* it takes for one half of the atoms in a sample to radioactively decay. (Table N) (Table T).

Which sample will decay least over a period of 30 days? [Refer to Reference Table N]

10 g of Au-198 10 g of I-131 10 g of P-32 10 g of Rn-222

198. Radioactive isotopes have a variety of important uses.

Carbon-14, C-14, is used to determine the ages of organic material up to 23,000 years old. Uranium-238, U-238, is used to determine the ages of rocks. Iodine-131, I-131, is used to treat thyroid disorders. Cobalt-60, Co-60, is used to treat cancer tumors.

- 199. Radiation can be used to kill bacteria on foods to slow the spoilage process.
- 200. Disposal of radioactive waste is a problem associated with nuclear reactors © 2005 John LaMassa