OCS Math 2 Priority Standards

NUMBER & QUANTITY		
NC.M2.N-CN.1	Know there is a complex number i such that $i^2 = -1$, and every complex number has the form a	
	+bi where a and b are real numbers.	
ALGEBRA		
NC.M2.A-SSE.1	Interpret expressions that represent a quantity in terms of its context.	
	a. Identify and interpret parts of a quadratic, square root, inverse variation, or right triangle	
	trigonometric expression, including terms, factors, coefficients, radicands, and	
	exponents.	
	b. Interpret quadratic and square root expressions made of multiple parts as a combination of single entities to give meaning in terms of a context.	
NC.M2.A-APR.1	Extend the understanding that operations with polynomials are comparable to operations with	
	integers by adding, subtracting, and multiplying polynomials.	
NC.M2.A-CED.3	Create systems of linear, quadratic, square root, and inverse variation equations to model	
	situations in context.	
NC.M2.A-REI.4	Solve for all solutions of quadratic equations in one variable.	
	a. Understand that the quadratic formula is the generalization of solving $ax^2 + bx + c$ by	
	using the process of completing the square.	
	b. Explain when quadratic equations will have non-real solutions and express complex solutions as $a \pm bi$ for real numbers a and b .	
NC.M2.A-REI.11	Extend the understanding that the x -coordinates of the points where the graphs of two square	
NC.WIZ.A KEI.II	root and/or inverse variation equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the	
	equation $f(x) = g(x)$ and approximate solutions using graphing technology or successive	
	approximations with a table of values.	
	FUNCTIONS	
NC.M2.F-IF.9	Compare key features of two functions (linear, quadratic, square root, or inverse variation	
	functions) each with a different representation (symbolically, graphically, numerically in tables,	
	or by verbal descriptions).	
NC.M2.F-BF.3	Understand the effects of the graphical and tabular representations of a linear, quadratic, square	
	root, and inverse variation function f with $k \cdot f(x)$, $f(x) + k$, $f(x + k)$ for specific values of k (both	
	positive and negative).	
NC M2 C CO F	GEOMETRY	
NC.M2.G-CO.5	Given a geometric figure and a rigid motion, find the image of the figure. Given a geometric	
	figure and its image, specify a rigid motion or sequence of rigid motions that will transform the pre-image to its image.	
NC.M2.G-CO.9	Prove theorems about lines and angles and use them to prove relationships in geometric figures	
140.1412.0 00.5	including:	
	Vertical angles are congruent.	
	When a transversal crosses parallel lines, alternate interior angles are congruent.	
	When a transversal crosses parallel lines, corresponding angles are congruent.	
	Points are on a perpendicular bisector of a line segment if and only if they are	
	equidistant from the endpoints of the segment.	
	Use congruent triangles to justify why the bisector of an angle is equidistant from the	
	sides of the angle.	
NC.M2.G-CO.10	Prove theorems about triangles and use them to prove relationships in geometric figures	
	including:	
	The sum of the measures of the interior angles of a triangle is 180º.	
	An exterior angle of a triangle is equal to the sum of its remote interior angles.	
	The base angles of an isosceles triangle are congruent.	
	The segment joining the midpoints of two sides of a triangle is parallel to the third side	
	and half the length.	

NC.M2.G-SRT.4	Use similarity to solve problems and to prove theorems about triangles. Use theorems about triangles to prove relationships in geometric figures. • A line parallel to one side of a triangle divides the other two sides proportionally and its
	converse.
	The Pythagorean Theorem
NC.M2.G-SRT.8	Use trigonometric ratios and the Pythagorean Theorem to solve problems involving right
	triangles in terms of a context.
NC.M2.G-SRT.12	Develop properties of special right triangles (45-45-90 and 30-60-90) and use them to solve
	problems.
STATISTICS & PROBABILTY	
NC.M2.S-CP.5	Recognize and explain the concepts of conditional probability and independence in everyday
	language and everyday situations.
NC.M2.S-CP.8	Apply the general Multiplication Rule $P(A \text{ and } B) = P(A)P(B A) = P(B)P(A B)$, and interpret the
	answer in context. Include the case where A and B are independent: P(A and B) = P(A) P(B).