

Walla Walla High School

Formulas You Should Know Before Taking the End of Course Algebra Exam

Formulas You Should <u>Know How to Use</u> Before Taking the End of Course Algebra Exam

Standard Form of a Quadratic Equation $ax^2 + bx + c = 0$ in order to find the values for **a**, **b**, and **c** to use in The Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The Compound Interest Formula $A = P(1 + \frac{r}{n})^{nt}$

Name_____

Date_____ Period____

EOC Review #1 © 2013 Kuta Software LLC. All rights reserved. Solve each equation.

1)
$$-6x + 3 = 63$$
 2) $-10 + 6k = -40$

3)
$$-x + 2 = -1$$
 4) $-8a - 4 = -28$

5)
$$1 + \frac{x}{8} = 2$$
 6) $\frac{x}{4} - 2 = -3$

7)
$$\frac{8+a}{5} = 5$$
 8) $\frac{n-3}{4} = -1$

9)
$$\frac{2+p}{4} = -1$$
 10) $\frac{x-3}{6} = -2$

11) -63 = 9 - 9b 12) 2(-8 + 3p) = 26

13)
$$60 = 4 + 2(5x + 3)$$
 14) $-(a + 1) = 2$

15)
$$6 = -(1+7x)$$
 16) $-6(1+k) = -30$

17) 5 + 4(6x + 6) = 6 + x18) 32 - 4r = 8(7r + 4)

19) -4(p-7) = -4p + 25 20) 2(1-x) = 2 - 2x

Answers to EOC Review #1

1) {-10}	2) {-5}	3) {3}	4) {3}
5) {8}	6) {-4}	7) {17}	8) {-1}
9) {-6}	10) {-9}	11) {8}	12) {7}
13) {5}	14) {-3}	15) {-1}	16) {4}
17) {-1}	18) {0}	19) No solution.	

20) { All real numbers. }

1. The formula P = 2l + 2w relates the perimeter P of a rectangle to its length l and width w. Solve this formula for w.

2. The formula $a = \frac{v_f - v_i}{t}$ is used to find an object's acceleration given initial velocity v_i , final velocity v_f , and time *t*. Solve this formula for v_f .

Solve each literal equation for the variable indicated.

3. -3f = g for f4. 12 = a + 5b for a5. 3x - 7y = z for x6. 5h - g = jk for h7. $\frac{r}{s} = t - 9$ for r8. $\frac{m + 3}{n} = p$ for n

Answer each of the following.

- The formula F = ma relates the force F exerted on an object, to the object's mass m, and acceleration a.
 - **a.** Solve the formula F = ma for a.
 - b. Suppose a shot-putter exerts a force of 123.5 kg • m/s² on a shot that has a mass of 6.5 kg. What is the rate of acceleration of the shot? (The answer will be in m/s².)
- 10. The formula for the area of a triangle is $A = \frac{1}{2}bh$, where *b* represents the length of the base and *h* represents the height.
 - **a.** Solve the formula $A = \frac{1}{2}bh$ for *b*.
 - b. If a triangle has an area of 192 mm², and the height measures 12 mm, what is the measure of the base?

Solve each equation for y

11. 8x + 2y = 6 12. 3y = x + 6

13.
$$22 - 2y = 7 - 5y$$
 14. $3x + 2y = 5(x + 4)$

15.
$$3y-5x+3=2y+9$$
 16. $\frac{1}{2}y-x=12$

11.
$$y-3=2(x+9)$$
 12. $y-7=\frac{1}{2}(5x-8)$

17.
$$y-12+3x = 5(x-4)$$
 18. $\frac{3}{2}(y+6x) = 12$

Solve each inequality and graph its solution.

12)
$$1 + 4x - 2x \ge -11$$

 $\leftarrow -10 -9 -8 -7 -6 -5 -4 -3 -2$

13)
$$-7(-3n+7) \le 35$$

A) $n \le -2$: $\xrightarrow{-7} -6 -5 -4 -3 -2 -1 0 1$
B) $n \le 4$: $\xrightarrow{-7} -6 -5 -4 -3 -2 -1 0 1$
C) $n \le -2$: $\xleftarrow{-7} -6 -5 -4 -3 -2 -1 0 1$
D) $n \ge -2$: $\xleftarrow{-7} -6 -5 -4 -3 -2 -1 0 1$

15)
$$56 \le 7(8m+8)$$

EOC review 4 Absolute Value

Algebra

Solve each equation.

1)
$$|x+8| = 5$$
 2) $|x-1| = 1$

3)
$$|k| - 2 = 8$$
 4) $|a| - 5 = 1$

5)
$$|-8x| + 10 = 18$$
 6) $-6|7p| = -42$

7)
$$\left| \frac{n}{6} \right| - 5 = -4$$
 8) $-8 \left| \frac{m}{9} \right| = -8$

9)
$$|-6b| - 8 = -2$$
 10) $|-10 + x| - 2 = 15$

11)
$$5|5+n|+8=28$$
 12) $-3|b+10|+7=-26$

13)
$$\begin{vmatrix} x - 10 \end{vmatrix} + 6 = 11$$
 14) $2 \begin{vmatrix} v - 4 \end{vmatrix} + 3 = 13$

-1-

Name_____

Solve each inequality and graph its solution.

Answers to Algebra

EOC Review 5 Linear Equations

Page 1 - Slope

Find the slope of the following lines. If the slope is undefined write "undefined". <u>Make sure all slopes are in simplest form</u>.

		0. m =
		1. m =
		2. m =
Find the slope of the lines that pass t	hrough the following pairs of points.	
3. (5, -4), (-2, 10)	4. (5, 3), (8, -6)	3. m =
		4. m =
5. (2, 7), (2, 13)	6. (-2, 6), (-18, 6)	5. m =
		6. m =
Find the slope of the lines defined by	the following equations.	
7. $y = 488x - 257$	8. $5x - 3y = 48$	7. m =
		8. m =
9. $y = -4x + 4$	10. $2y = 2x - 15$	9. m =

10. m = _____

Name_____ Period _____

page 2. Slope intercept form. All answers on this page should be the equation of a line <u>in slope intercept form.</u>

Find an equation in slope intercept form (y = mx + b) for the lines on the graph below.

Write the slope intercept form of the line with the given information.

 16) $m = \frac{1}{2}$, b = -6 17) m = 5, b = 2 16) ______

 18) slope is 12, y intercept is 7
 18) ______

Page 3 graphing. Graph the following lines

 $21) \quad y = \frac{1}{3}x - 5$

23) Passes through (-4, 2), m = 2

24) passes through (4,3) and (-2,6)

Point Slope Equation

For each question: Substitute the needed information into the point slope form of a linear equation. Solve for y (show your work) Check your answer by plotting the line for your equation and any points you were given.

slope = -2 Goes through point (-1,3) 1.

3. parallel to y = 3x - 5 Goes through point (2,3)

4. Which equation is perpendicular to y = 2x - 3

a.
$$y = 2x + \frac{1}{3}$$

b. $y = -2x - 7$
c. $y = \frac{1}{2}x - 3$
d. $y = \frac{-1}{2}x - 8$

- Graph the data set
- Draw a best fit line.

ł	Height of tomato plants						
	Time after planting(days)	height (inches)					
	5	18					
	10	20					
	15	22					
	25	28					
	40	35					
	50	39					
	60	45					
	75	53					
	100	65					

- 33) Find the slope of the best fit line. **Be sure to include units**. m = _____
- 34) Find the y intercept of the best fit line. **Be sure to include units.** b = _____
- 35) Write an equation for the best fit line in slope-intercept form (y=mx+b)
- 36) Write a sentence that explains what the slope of the line tells us about the height of tomato plants. Be sure

to include the slope in your answer. _____

37) Write a sentence that explains what the y-intercept of the line tells us about the height of tomato plants. **Be** sure to include the y-intercept in your answer.

38) How tall were the plants on day 85?_____(1pt)

39) On what day were the plants 30 inches tall?_____(1pt)

EOC Review 6 part 2

Name_____

1. Which inequality is represented by the graph shown?

2. Which ordered pair is a solution of the system graphed below?

F (-3, 0)H (0, -2)G (3, 2)J (-3, 2)

3. Which is the graph of $y \ge -2x + 1$?

4. Which of the following is a solution of the system graphed below?

Graph each linear inequality on the coordinate plane provided.

Graph each system of linear inequalities.

7. $y \le 6x + 3$ $y \ge -2x - 4$

6. $2x + 3y \le 12$

1

III

١V

EOC Review #7 Ex	ponents & Polynoi	mials Name		Per
Simplify.			1	
1. $(12n^3)(-5n)$	2. $(b^8)^3$	3. $(ab^5)^2$	2	
			3.	
4 5	$(1)^{-8}$	$(2^{-5})^{-2}$		
4. $\frac{4x}{10x^9}$ 5.	$\cdot \frac{\left(\overline{2}\right)}{\left(\overline{2}\right)^{-10}} \left(\frac{3}{4}\right)^2$	6. $\left\lfloor \frac{2}{3} \right\rfloor$	4	
104	$\left(\frac{1}{2}\right)^{10}$			
	(2)		5	
			6	
Simplify. Then write t	he result in descendin	ng order of exponents.		
7. $15 + 9x + 2x + $	$8x^2 + 4x^2 - 2x$		7	
8. $(9x^3 + 7x - 5)$	$+(3x^3-x^2+x)$		8	
, , ,		\ \		
9. $(5x^3 + 8x^2 + 7x)$	$(x-3)-(x^3+8x^2)$	+1)	9	
10. $3(2a^3 - 2a^2 +$	(-9a - 9) 11.	$-(x^2+7x-16)$	10.	
10. 5(24 24	ju j _j iii	(x + 7x + 10)	100	
			11	
12. $-8c(-7c^3+6c)$	(c) 13. $9(-x^2)$	+4x-1)+3x(3x	i−1) 12	
			13	
			13	
14. $4(2x^3-1x^2-1)$	$5x+6)-3x(x^2-$	-5x)	14.	
() ()		
15. $(x-6)(x+9)$	16. (8 <i>r</i>	+2)(r-7)	15	
			16	
(11x - 2)(2x)	2) 10 (2-	(2x - 12)	17	
1. $(11x - 5)(2x - 5)$	3j 18. (2 <i>X</i>	-13)(2x-13)	1/	
			18	

19.	$(2x+7)^2$	20. $(5x-15)^2$	19	
			20	
21.	(12x+11)(12x-11)	22. $(2x-7)(2x^2-x+6)$	21	
			22	
Exp 23.	ress each number in Scienti 24,500	fic Notation. 24. 0.00000029	23	
Exp	ress each number in Standa	ard Notation.	24	
25.	5.7×10^{6}	26. 8.5×10^{-3}	25	
			26	
Mul	tiply. Write your answer in	both Scientific and Standard Nota	ation.	
27.	$(9 \times 10^3)(5.5 \times 10^{22})$		27	

29. Write an expression for the perimeter and area of each figure.

EOC Review #8	Name_	 Period
Factoring & Solving Quadratics		

Factor out the greatest common factor from each polynomial.

1. 7x + 42 2. $-8x^2 + 44x$ 3. $45x^4y^4 + 21x^7y$

4.
$$21x^2 - 14x + 35$$
 5. $-34x^7 - 51x^3 + 102x^2$

Factor each polynomial by grouping.

6. $21x^3 + 7x^2 - 3x - 1$ 7. $25x^3 - 15x^2 + 35x - 21$

8.
$$21x^3 - 35x^2 + 18x - 30$$

9. $28x^3 - 35x^2 - 12x + 15$

Factor each polynomial completely. Your answer must have at least 2 binomial factors.

11. $x^2 + 9x + 20$ 12. $x^2 - 11x + 18$

Factor each polynomial completely. Your answer must have at least 2 binomial factors.

13.
$$16x^2 + 40x + 25$$
 14. $30x^2 + 220x + 70$

15.
$$4x^2 + 35x + 24$$
 16. $144x^2 - 4$

Solve this quadratic equation by graphing.

17) $.5x^2 - x - 1.5 = 0$.

Solve using the quadratic formula. Round to the nearest hundredth.

18) $4x^2 + 2x = 19$

19) $9x^2 - 12 = 96x$ 20) $12x^2 + 100 = 19$

Solve by factoring.

7)
$$k^2 = 18 + 3k$$

8) $x^2 = -11x - 24$

9)
$$2n^2 - 9 = 3n$$
 10) $3n^2 - 22n = -35$

Solve any way you want to:

5)
$$5x^2 + 48 = -46x$$

6)
$$49p^2 - 56p = -16$$

7)
$$15x^2 = 144 - 66x$$
8) $12x^2 - 64x = -20$ A) $\left\{-\frac{5}{2}, 6\right\}$ B) $\left\{\frac{8}{5}, -6\right\}$ A) $\left\{-\frac{1}{3}, 4\right\}$ B) $\left\{\frac{1}{3}, 5\right\}$ C) $\left\{-\frac{2}{3}, 6\right\}$ D) $\left\{\frac{8}{3}, -8\right\}$ C) $\left\{\frac{1}{3}, 4\right\}$ D) $\left\{\frac{4}{3}, 3\right\}$

The path of a certain firework in the air is modeled by the parabolic function $y = -16x^2 + 256x - 624$ where x is the number of seconds after the fuse is lit. Write the correct answer.

1. Graph the function on the grid below.

3. Based on the graph of the firework, what are the two zeros of this function?

- 2. The firework will explode when it reaches its highest point. How long after the fuse is lit will the firework explode and how high will the firework be?
- 4. What is the meaning of each of the zeros you found in problem 3?

Select the best answer.

5. The quadratic function $f(x) = -16x^2 + 90x$ models the height of a baseball in feet after *x* seconds. How long is the baseball in the air?

Α	2.8125 s	С	11.25 s

- **B** 5.625 s **D** 126.5625 s
- 7. The function $y = -0.04x^2 + 2x$ models the height of an arch support for a bridge, where x is the distance in feet from where the arch supports enter the water. How many real solutions does this function have?

F 0	H 2
F 0	H 2

G 1 J 3

6. The height of a football y in feet is given by the function $y = -16x^2 + 56x + 2$ where x is the time in seconds after the ball was kicked. This function is graphed below. How long was the football in the air?

Algebra 1-2	Name					
Evaluating Functions	Date Period					
Evaluate each function.						
1) $h(n) = 3n + 5$ Find $h(n)$ when $n = 8$.	2) $h(n) = n^2 + 4 + 2n$; Find $h(10)$					
1a) For what value of <i>n</i> does $h(n) = 47$?	2a) For what value of <i>n</i> does $h(n) = 52$?					
3) $g(t) = 3t - 2 $; Find $g(0)$	4) $h(x) = 5^x$; Find $h(2)$					

- 3a) For what values of t does g(t) = 13? 4a) For what value of x does h(x) = 3125?
- 5) $f(n) = n^2 + n$ Find f(n) when n = -7. 6) $g(a) = a^2 - 3a$; Find g(7)
- 5a) For what value of *n* does f(n) = 90?

6a) For what value of *a* does g(a) = 208?

7)
$$g(x) = -2 \cdot 4^x - 2$$
; Find $g(-1)$
8) $f(x) = |x - 3|$; Find $f(-6)$

7a) For what value of x does g(x) = -32,770?

8a) For what values of x does
$$f(x) = 6$$
?

9)
$$g(n) = n^2 - 4$$

Find $g(n)$ when $n = -4$.
10) $g(x) = 2|x|$; Find $g(5)$

10a) Ear what values of $r \operatorname{dees} a(r) = 62$ 9a) For what values of *n* does g(n) = 5?

10a) For what values of x does
$$g(x) = 6$$
?

11)
$$f(a) = a + \frac{8}{5}$$
; Find $f\left(-\frac{8}{9}\right)$
12) $f(x) = -x^2 + \frac{5}{4}x$
Find $f(x)$ when $x = -1$.

11a) For what values of *a* does
$$f(a) = \frac{3}{5}$$
? 12a) For what values of *x* does $f(x) = -\frac{87}{2}$?

Answers to odd-numbered problems: 1) 29 1a) 14 3) 2 3a) 5 or -11/3 5) 42 5a) 9 7) -2.5 7a) 7 9) 12 9a) 3 or -3 11) 32/45 11a) -1

-9 -8 -7 -6 -5 -4 -3 -2 -1

ШC

-6

J٧

Graph each square root function. Find the domain and range of each.

1)
$$y = \sqrt{x-3}$$
 Domain: x
Range: y
Range: y

-9 -8 -7 -6 -5 -4 -3 -2 -1

Ш

-6 -7

٦v

Πv

Īv

Name_

ZOOM

ZOOM

5

6

Pick the graph that matches the equation.

To make your graph the right shape you may need to hit:

To enter an absolute value function use the keys:

ENTER

)

Solving systems of equations with a graphing calculator.

- Graph both equations on a graphing calculator (solve for *y* if needed)
- Sketch the graph of both equations on the grid provided
- Use the TRACE and TRACE 5 ENTER ENTER to find the solution.

Solution: (,)

9. y = -x - 3 -2x + y = -6

10.
$$x + y = 2$$
 $2y - x = 10$

To solve this type of transformation question put the first equation in $y_1 =$ and then try each of the answers in $y_2 =$

- 11. The graphs of $f(x) = x^2$ and g(x)are plotted to the right. Which function could be g(x)?
 - A) $g(x) = 10x^{2} + 3$ B) $g(x) = 10x^{2} - 3$ C) $g(x) = \frac{1}{10}x^{2} + 3$ D) $g(x) = \frac{1}{10}x^{2} - 3$
- 12. The graph of $y = 3(2)^x$ is shown. Which could be the equation for graph B?
- a. $y = 9(2)^{x}$ b. $y = 1(2)^{x}$ c. $y = 3(4)^{x}$ d. $y = 3(1.5)^{x}$
- 13. The graph of $y = 2(3)^x$ is shown. Which could be the equation for graph B?
- a. $y = \frac{1}{2}(4)^{x}$ b. $y = 4(4)^{x}$ c. $y = 1(1.5)^{x}$ d. $y = 4(1.5)^{x}$

Graph B

- 14. The graph of y = |x-3| is shown. Which could be the equation for graph B?
- a. y = |x+3|b. y = 4|x-3|c. y = |x-7|d. y = |x-3|+4

15. Which equation represents the data in this table?

Х	у	a. y = x - 10
-4	6	<i>b</i> . $y = x + 2$
0	2	$c v = x^2 - 10$
2	0	$\begin{array}{c} c. y = x 10 \\ d w w 2 \end{array}$
7	5	a. y = x - 2

16. Which equation represents the data in this table?

х	У	<i>a</i> . <i>y</i>	= x - 10
-4	6	<i>b. y</i>	= x +2
-1	-9	<i>c</i> . v	$=x^{2}-10$
2	-6	d v	- r-2
5	15	<i>u.y</i>	- x-2

17. Which equation represents the data in this table?

х	у	
-3	7	
0	-2	
3	7	
6	16	

a. $y = x^{2} - 2$ b. $y = x^{2} + |x| - 2$ c. $y = x^{2} + 10$ d. y = 3|x| - 2

18. Which equation represents the data in this table?

х	У
-3	10
0	-2
3	10
6	40

a. $y = x^{2} - 2$ b. $y = x^{2} + |x| - 2$ c. $y = x^{2} + 10$ d. y = 3|x| - 2

Graph each system of linear inequalities.

19. $y \le 6x + 3$ $y \ge -2x - 4$

Is the point (5,5) a solution to this system of inequalities?

$$y \le 3x + 3 \\ y \ge \frac{1}{2}x - 2$$

Is the point (-3,4) a solution to this system of inequalities?

21.
$$y \le x+3$$

 $y \ge x-4$

Is the point (5,5) a solution to this system of inequalities?

$$y \le 2x + 1 \\ y \ge \frac{3}{4}x - 2$$

Is the point (10,7) a solution to this system of inequalities?

 $\frac{1}{3}$

Practice End of Course Test

Select the best answer and fill in the appropriate bubble on your answer sheet.

- 1. Which situation is best modeled by the expression 2 + x?
 - A Julia lost 2 out of her *x* marbles under the couch.
 - B Brenda had \$2 and spent *x* dollars on a hamburger.
 - C Alicia is 2 years older than her sister Delilah who is *x* years old.
 - D Joseph ran the *x* mile course 2 times.
- 2. Solve 8x (2x + 3) = 4x + 1.

F
$$-\frac{1}{3}$$
 H 2
G -1 J 4

3. Which expression represents the perimeter of the triangle below?

A 3 + 4*m* C 5 + 4*m* B 3 + 6*m* D 5 + 6*m*

- 4. If a = -1, which quadrant does the point
 - (2*a*, -*a*) lie in?
 - F Quadrant I H Quadrant III
 - G Quadrant II J Quadrant IV
- 5. The time it takes Gregg to get to school

on his bike is $\frac{1}{3}$ of the time it takes to

walk. Which equation can be solved to find the time it takes Gregg to walk to school if he can bike there in 5 minutes?

A
$$3w = 5$$

B $w = \frac{1}{3} \times 5$
C $\frac{1}{3}w = 5$
D $w - \frac{1}{3} = 5$

6. Solve
$$-\frac{x}{7} - \frac{2}{3} = \frac{4}{21}$$
.
F -6 H 1

$$G -1\frac{1}{3}$$
 J 6

7. Approximately 9 out of 100 people are left handed. Out of a population of 1740 people, how many are likely to be left handed?

A 139	C 174
B 157	D 193

8. Solve 2|x + 1| = 8.

F 3	H –4, 3
G 3, 5	J <i>–</i> 5, 3

9. Which is NOT a solution to the inequality 4x - 7 < 5?

A –2	C 1
B 0	D 3

 Abbie and Andres are both five years old. Every year they each get a cash present from their neighbor. Andres gets \$1.50 for every year in his age, and Abbie gets \$20. How old will they be when Andres gets more money than Abbie?

F	9	Н	14
G	13	J	20

11. Which represents the solutions of |2x| - 5 < -1?

A x > 2 OR x < -2

B x > 2 OR x > -2

C x > -2 AND x < 2

D
$$x < -2$$
 AND $x > 2$

End of Course Test

- 12. Which of the following statements is true?
 - F The dependent variable is the input of the function.
 - G The dependent variable determines the domain of the function.
 - H In f(x) = 2x + 1, x is the dependent variable.
 - J In f(x) = 2x + 1, f(x) is the dependent variable.
- 13. Which function has (0, 7) on its graph?

A
$$-3x + y = 7$$
 C $y = 14 - x$

B
$$y = x - 7$$
 D $-7x + y = 2$

14. Which situation best fits the graph below and what type of correlation is it?

F distance traveled vs. cost of gas; negative correlation

- G distance traveled vs. cost of gas; positive correlation
- H time traveled vs. distance from destination; negative correlation
- J time traveled vs. distance from destination; positive correlation
- 15. A function has *x*-intercept 3 and *y*-intercept 2. Which of the functions below could be this function?
 - A 4 + 3x = 2y
 - B 2x 3y = -6
 - C 2y + 3x = 4
 - D 3y 6 = -2x

- 16.The scoring for a football game by quarters was recorded as the ordered pairs {(1, 7), (2, 10), (3, 21), (4, 21}. Which of the following statements is true?
 - F The relation is a function with domain {1, 2, 3, 4}.
 - H he relation is a function with domain $\{7, 10, 21\}$.
 - G The relation is a not a function.
 - J The relation is a function with domain $\{1 \le x \le 4\}$.
- 17. Which equation describes a line that passes through (7, 1) and is perpendicular to the line described by

$$y = -\frac{1}{2}x + 3?$$

A
$$y = 2x - 13$$
 C $y = 2x - 6$

B y = 2x - 7 D y = 2x + 3

- 18. The change from f(x) = 4x + 2 to g(x) = 3x + 2 is an example of which type of transformation?
 - F rotation H translation up
 - G reflection J translation down
- 19. A local video store has two new renting plans. Plan A charges a \$10 monthly fee and \$2 for every movie rented. Plan B charges \$40 per month but then each movie rented is only 25¢. How many movies must be rented in a month to make plan B the cheaper option?

A 17	C 28
B 18	D 29

- 20. The correct answer is G.
- 21. Which point is a solution of $\begin{cases} y-3x \ge 2\\ y \le x+9 \end{cases}$?
 - A (-2, 8) C (4, -1)
 - B (-1, 4) D (8, -2)

End of Course Test

- 22. Which of the following pairs of points is the solution to the system of equations below? $\begin{cases} y = x^2 - 1\\ y = -x + 5 \end{cases}$ F (2, 3), (4, 15) H (-3, 8), (2, 3) G (-3, 8), (1, 4) J (1, -1), (1, 4) 23. Which of the following is NOT equivalent to $\left(\frac{x^2y}{4x^5}\right)^2$? $A\left(\frac{y}{4x^3}\right)^{-2} \qquad C\left(\frac{16x^5}{y^2}\right)$ $\mathsf{B}\left(\frac{4x^3}{y}\right)^2 \qquad \mathsf{D}\left(\frac{4x^5}{x^2y}\right)^2$ 24. Simplify $\left(x^{\frac{1}{4}}\right)^8 \sqrt[3]{x^3}$. All variables represent nonnegative numbers. F x³ $H x^{2}(x)$ $G x^4$.1 x⁶ 25. Identify the quartic trinomial. A $4x^4 - 2x^5 + 6x$ $B - x^3 + 7x^2 - 2x + 3$ C $x^3 + 14x^4 - 3$ D $4x^4 - x^3 - 5x + 1$ 26. What is the volume of the rectangular prism shown below? x – 2 5*x* – 1 x + 2 $F 5x^3 - 21x^2 + 24x - 4$ G $5x^3 - x^2 - 20x + 4$ H $5x^3 + x^2 - 20x - 4$ $J 5x^3 + 19x^2 + 16x - 4$ 27. Which pair of terms has a GCF of 5x?
 - A $5x^2$ and 15 C $25x^2$ and 50x B $5x^2$ and 20x D $40x^3$ and $8x^2$

- 28. Factor $2x^2 + 17x + 30$. F (2x + 6) (x + 5)
 - G (2x+5)(x+6)
 - H (2x + 10) (x + 3)
 - J (2x+3)(x+10)
- 29. Which values of *b* and *c* would make $x^2 + bx + c$ a perfect square trinomial?
 - A b = 2, c = 6 C b = 8, c = 16
 - B b = 6, c = 12 D b = 10, c = 100
- 30. Which of the following statements does NOT apply to the quadratic function $f(x) = -x^2 + 7$?
 - F The vertex is at (0, 7).
 - G The parabola opens downward.
 - H Its axis of symmetry is y = 0.
 - J There are two *x*-intercepts.
- 31. Sarah is hiking and notices that some of the mountains resemble parabolas. If the following functions describe shapes of mountains, which of the following mountains would have the steepest slope?
 - A Mountain A: $y = -\frac{3}{2}x^2 + 5$

B Mountain B:
$$y = -x^2 + 5$$

- C Mountain C: $y = -\frac{1}{2}x^2 + 5$
- D Mountain D: $y = -\frac{1}{5}x^2 + 5$
- 32. Solve $x^2 + 10x = 39$ by completing the square.

F
$$x = -5 \pm \sqrt{14}$$

G $x = -3$ or 13
H $x = 3$ or -13
J $x = 5 \pm \sqrt{14}$

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

End of Course Test

33. Eva's class was surveyed to help figure out what color their school banner should be. If a total of 28 students were surveyed, how many chose green?

School Banner

- F the mean of the data set
- G the number of values in the data set
- H the median of the data set
- J the mode of the data set
- 35. Andrew has 7 tickets to a concert and 2 of the tickets have backstage passes.

If Andrew passes out the tickets randomly to 7 friends, what are the odds against his friend Donovan getting a backstage pass?

A 2:5	C 5:2
B 2:7	D 5:7

36. The table shows the number of customers at an ice cream shop and the number of sundaes sold. Which is the best line of fit for the data?

Customers	10	12	20	24
Sundaes	60	70	118	148

 $F y \approx 6.24x - 4.0 H y \approx 6.82x - 11.0$

G
$$y \approx 6.0x - 1.3$$
 J $y \approx 4.0x - 48.7$

37. What is the 5th term in the geometric sequence 96, 72, 54, ...?

A 30 B $30\frac{3}{8}$ C 36 D $40\frac{1}{2}$

Answer Key End of Course Assessment

- 38. Which two quadrants is the function $f(x) = 2(4)^x$ graphed in?
 - F Quadrants I and II
 - G Quadrants II and III
 - H Quadrants III and IV
 - J Quadrants I and IV
- 39. Which function has the higher rate of change over the interval [0, 3]?
 - A y = 2x + 4
 - B y = -x 3
 - C $y = 2x^2 1$
 - D $y = 2(3)^{x}$
- 40. Which is the more precise measurement?
 - F 84.2 cm
 - G 84 cm
 - H 842 mm
 - J 0.8 m
- 41. What is the *x*-value for the solution to the system of equations below?

$$2x + y = 8$$
$$-4x - y = -14$$

A –3	C 3
В —2	D 4

42. A research biologist starts with 100 bacteria and watches it double in number each day. Which equation will give the number of bacteria as a function of *x*, the number of days?

F
$$y = 2^{x}$$

G $y = 100^{x}$
H $y = 2(100)^{x}$

$$J y = 100(2)^{x}$$

43. Which is an *x*-intercept of the graph of $y = x^2 + x - 12$?

A 1	B –4
C - 3	D 4

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

END OF COURSE ASSESSMENT

1. C	2. H
3. A	4. G
5. C	6. F
7. B	8. G
9. C	10. G
11. C	12. H
13. A	14. H
15. C	16. F
17. A	18. F
19. B	20. G
21. B	22. H
23. C	24. G
25. B	26. H
27. B	28. G
29. C	30. H
31. A	32. H
33. C	34. H
35. C	36. F
37. B	38. F
39. C	40. H
41. C	42. H
43. B	