Discrete Mathematics

2018-2019

Tom Tamburello ttamburello@lrhsd.org x3336

Stephanie Marone smarone@Irhsd.org x8579

Unit 1: Problem Solving and Number Theory

Transfer goal: Students will be able to independently use their learning to construct valid conclusions, effectively communicate those conclusions and critique the reasoning of others.

Stage 1 – Desired Results

5	
Established Goals	<u>21st Century Themes</u>
NJ Student Learning Standards for Mathematics http://www.state.nj.us/education/cccs/2016/math/hs	www.21stcentruyskills.org
Number and Quantity N-QA: Reason quantitatively and use units to solve problems.	
Number and Quantity N-VMC: Perform operations on matrices and use matrices in applications.	_xCivic Literacy Health Literacy Fourieramental Literacy
Algebra A-SSE: Interpret the structure of expressions.	
NCTM Principles and Standards of School Mathematics www.cssu.org/cms/lib5/VT01000775/Centricity/Domain/32/CSSUMathCurric	
 N1: Understand numbers, ways of representing numbers, relationships among numbers, and number systems N2: Understand meanings of operations and how they relate to one another. N3: Compute fluently and make reasonable estimates. A2: Represent and analyze mathematical situations and structures. A3: Use mathematical models to represent and understand quantitative relationships M1: Understand measurable attributes of objects and the units, systems, and processes of measurement. M2: Apply appropriate techniques, tools, and formulas to determine 	
measurements.	

LRHSD (2011) Adapted from ASCD © 2004

	21st Century Skills Learning and Innovation Skills: _x_Creativity and Innovation _x_Critical Thinking and Problem Solving _x_Communication and Collaboration Information, Media and Technology Skills: _x_Information Literacy Media Literacy ICT (Information, Communications and Technology) Literacy	
	_xFlexibility and Adaptability _xInitiative and Self-Direction _xSocial and Cross-Cultural Skills _xProductivity and Accountability _x_Leadership and Responsibility	
Enduring Understandings:	Essential Questions:	
Students will understand that		
<i>EU 1</i> being a successful problem solver is vital to succeeding in every discipline and aspect of life.	 EU1 What strategies and techniques can be used to become a better problem solver? 	
<i>EU 2</i> math is a universal language that spans various times and civilizations.	 EU 2 How did ancient Babylonians help in the development of modern technologies? 	
<i>EU 3</i> mathematics is the foundation to cryptography, a coding system necessary for all modern technology as well as the security and safety of our world.	EU 3How does Amazon ensure your cyber security?	
Knowledge: Students will know	Skills: Students will be able to	
 EU 1 inductive and deductive reasoning is used to solve problems. general procedures can be used to streamline the problem solving process. 	 EU 1 use inductive reasoning to create conjectures and state counterexamples. use Polya's problem solving process to solve non-routine problems. use permutations, combinations and Pascal's triangles to solve problems. 	

EU 2 • •	the language of math consists of symbols, bases, and processes which are the foundation of numeration systems. a variety of numeration systems have been used throughout history and are used throughout the world today. modern methods of calculations have been derived from methods used thousands of years ago.	EU 2	explain connections between various civilizations and their role in the development of mathematics. discuss the similarities and differences of numbers among Hindu-Arabic, Babylonian, Egyptian, Roman, Chinese and Greek numeration systems. solve math problems in a variety of bases other than base ten explain, use and apply ancient calculation methods and devices.
EU 3		EU 3	
•	encryption systems involve many areas of mathematics.	•	identify special sets of numbers and describe properties of the real number system.
•	it's important to not only look at numbers as a whole but what they become when broken down into its parts.	•	discuss and apply divisibility rules. use arithmetic, geometric and Fibonacci sequences. discuss the requirements that make a set of numbers a group.
•	series and sequences can be used to make predictions.	•	use modular arithmetic to perform operations with numbers. decode and encode messages using encryption. apply real number and group concepts to matrices.

Stage 2 – Assessment Evidence

Recommended Performance Task: EU 2

A new numerations system is being invented for secret communications within the U.S. military. A cryptographer will be hired to create the numeration system. As a cryptographer contending for this prestigious position, create your proposal that contains:

a cover page stating your name, the name of the numeration system, and the base that the system is written in (It can't be any base already discussed in class);

a second page listing all of the numerals/symbols for your numeration system, stating what the symbols represent in the new system as well as in base 10; a third page that lists at least 5 numerals from the numeration system. At least one numeral from each of the following ranges must be represented (1-50, 51-100, 250-1000, 1001-50,000, and a fraction);

a fourth page demonstrating a combination of at least three addition and three subtraction problems in your numeration system, at least one of which requires carrying and at least one requiring regrouping;

a fifth page explaining advantages and disadvantages of the numeration systems and an argument as to why the U.S. should use this new numeration system compared to others that already exist (comparing to those studied in class);

explanations and work that are well organized, neat, and mathematically correct.

Other Evidence: Tests, Quizzes, Prompts, Self-assessment, Observations, Dialogues, etc.

Tests, quizzes and activities to include

non-routine problems assessed with rubrics

number patterns

uses of inductive and deductive reasoning

applications of combinatorics and Pascal's Triangle

solving math problems in other bases and numeration systems

Venn diagrams comparing different historical numeration systems

presentations about historical mathematicians and events regarding the history of math

demonstrating the use of ancient calculational devices (abacus, Napier's Bones, lattice multiplication)

calculating terms in various series and sequences

uses of cryptography to locate "hidden treasures" in the classroom or school

using divisibility rules

recreational number theory problems

summarizers involving groups and fields

Stage 3 – Learning Plan

Understanding the Problem

3	2	1	0
Problem is rewritten clearly,	Problem is rewritten in your	Problem is restated or	Problem is not restated or
accurately in your own	own words and	rewritten in your own words	rewritten in your own words.
words and demonstrates	demonstrates	demonstrating	A complete
understanding. Explanation	understanding. Explanation	mistunderstanding. A	misunderstandingis
includes what information in	is missing either the given	minimal explanation is given	represented in the
the problem is given, what	information or what the answer	regarding the given	explanation of the problem.
answer is being looked for,	will/will not look like.	information or what the	No given information is
and what the answer will/will		answer wil/will not look like.	written and/or no description
notlook like.			of the final answer is

Devise a Plan

3 2 1 0	I
At least two reasonable problem solving strategy is are listed. These strategies are justified completely in terms of the context of the problem. At least one reasonable solving strategy is is listed and the solving strategy is although it may not be problem context. No problem solving strategy is listed or the problem solving strategy is not justified.	jety

Suggested Learning Activities to Include Differentiated Instruction and Interdisciplinary Connections: Consider the WHERETO elements

Activity 1: Polya's Process (T)

Carry out the Plan

3	2	1	0
One or more plans is carried	One or more plans is carried	One or more plans is carried	Either no plan is carried
out and shows complete	out and shows a nearly	out and demonstrates a	out, or the plan shows
understanding of the	complete understading of	limited understanding of	in sufficient understanding
problem's mathematical	the problem's mathematical	the problem's mathematical	of the problem's
concepts. The response	concepts. The response may	concepts. The response	mathematical concepts.
contains few minor , if any,	have minor errors. Most, if	contains major errors.	There maybe no solution, no
mathematical errors. Al	not all work is shown and	Little work is shown and	work shown, and/or no
work is clear and explained.	explained. (correct or	explained. (correct or	explanation. (corrector
(correct answer)	incorrect answer)	incorrectanswer)	incorrect answer)

Look Back

3	2	1	0
A complete, clear and	An explanation is provided	An explanation is	An explanation is either
insightful explanation is	explaning why the plan did or	provided explaning why the	missing, or contains no
provided explaining why the	did notwork. The explanation	plan did or did not work. The	justification or insight into
plan worked, and how you	maybe brief, or lacking	explanation is weak and	why the plan worked or did
know it worked or, if the plan	insight/darity.	contains little, if any, insight	not work.
didn't work, why the plan		or clarity to the work done.	
failed, and how you know it			
feiled			

• Students will solve non-routine problems which will be assessed using Poly's Problem Solving Rubric and/or the LRHSD Math Department Progress Assessment Rubric.

Activity 2: Egyptian Fractions (M)

- Students will apply concepts regarding fractions from the Hindu-Arabic Numeration System and the Egyptian Numeration System.
- Students will use the Egyptian Numeration System to compare fractions.
- Students will use the Egyptian Numeration System to explain fundamental concepts in the Hindu-Arabic Numeration System.

http://www.nctm.org/Publications/Student-Explorations-in-Mathematics/2009/Egyptian-Fractions(March-2009)/

Activity 3: 20 Questions (T) Students will use the game of 20 questions to explain the use of the binary numeration system.

Activity 4: Ancient Egyptians and Russian Peasants (M)

- Students will be able to apply ancient Egyptian and Russian multiplication techniques to solve problems.
- Students will be able to explain connections between Egyptian and Russian multiplication methods to the use of Napier's Bones.
- Students will be able to explain how multiplication by hand works.

http://www.nctm.org/Publications/mathematics-teacher/2007/Vol100/Issue9/Ancient-Egyptians-and-Russian-Peasants-Foretell-the-Digital-Age/

Activity 5: Cryptography (T) Students will cipher and decipher messages using various cryptography techniques. Students will apply modular arithmetic concepts to encoding and decoding. https://blossoms.mit.edu/sites/default/files/video/download/aurangzeb-activities.pdf

Students will practice decoding messages

Students will make connections between other branches of discrete math and other disciplines while practicing cryptograph2 https://www.braingle.com/Cryptography.html

Key Vocabulary Includes:

natural numbers	expanded form	unit	counterexample
counting numbers	bases	sieve of Eratosthenes	inverse
ellipsis	binary	prime factorization	group
inductive reasoning	octal	theorem	commutative group

scientific method hypothesis conjecture deductive reasoning number numeral Hindu-Arabic system place-value system positional-value system base decimal number system digits hexadecimal bit byte number theory counting numbers natural numbers factors divisor divisor divides divisible prime number composite number Mersenne primes Fermat number Goldbach's conjecture twin prime conjecture twin prime whole numbers integers inverse base mathematical system binary operation closure modulo m system modulo classes modulus remainder congruent cipher dimensions matrix square scalar

Approximate Timeline: 22 days

Explain inductive and deductive reasoning (A) Apply inductive and deductive reasoning to state conclusions and counterexamples (T) Explain the steps of Polva's Problem Solving Process (A) Activity 1: Use Polya's process to solve non-routine problems (T) Use combinatorics and Pascal's Triangle to solve non-routine problems (M) Explain concepts associated with numeration systems (A) Solve math problems involving additive and ciphered numeration systems (T) Use place value numeration systems (M) Activity 2: Egyptian Fractions (M) Perform mathematical operations in bases other than base ten (M) Activity 3: 20 Questions (T) Explain and use historic calculational methods and devices (M) Activity 3: Ancient Egyptians and Russian Peasants (M) Explain divisibility rules (A) Use divisibility rules without using a calculator (M) Solve problems involving number theory (T) Calculate terms of arithmetic and geometric sequences (A) Use golden ratios (M) Describe mathematical systems and properties of those systems (A) Determine whether mathematical systems are groups (M) Solve problems involving modulo systems (M) Use modulo systems in cryptography (T)

Activity 5: Cryptography (T) Apply group theory to matrices (T)