Course Title – Calculus

Implement start year – 2015-2016

Revision Committee Members, email, extension -

Paula Marques, <u>pmarques@lrhsd.org</u>, ext. 8981, Deborah Jenson, <u>djenson@lrhsd.org</u>, ext. 8560, Dana Palumbo, <u>dpalumbo@lrhsd.org</u>, ext. 8422, Brian Moore, <u>bmoore@lrhsd.org</u>, ext. 8129

Unit # 5, topic – Applications of Integration

Transfer Goal -

Students will be able to independently use their learning to apply the rules for finding integrals that they've learned to solve applied problems.

Stage 1 – Desired Results 21st Century Themes **Established Goals** (www.21stcenturvskills.org) 2009 NJCCC Standard(s), Strand(s)/CPI # x Global Awareness (http://www.nj.gov/education/cccs/2009/final.htm) _x_Financial, Economic, Business and **Common Core Curriculum Standards for Math and English Entrepreneurial Literacy** (http://www.corestandards.org/) ___Civic Literacy _x_Health Literacy _x_Environmental Literacy Since the Calculus curriculum goes beyond the Common Core Curriculum Standards for Math, the NCTM standards have been adopted: 21st Century Skills Learning and Innovation Skills: Analyze change in various contexts. x Creativity and Innovation Represent and analyze mathematical situations using algebraic _x_Critical Thinking and Problem Solving symbols. x Communication and Collaboration Use mathematical models to represent and understand quantitative relationships. Information, Media and Technology Skills: Apply and adapt a variety of appropriate strategies to solve • _x_Information Literacy problems. _x_Media Literacy Apply appropriate techniques, tools, and formulas to determine _x_ICT (Information, Communications and Technology) Literacy measurements. Use the language of mathematics to express mathematical ideas • Life and Career Skills: precisely. _x_Flexibility and Adaptability Understand how mathematical ideas interconnect and build on x Initiative and Self-Direction one another. x Social and Cross-Cultural Skills _x_Productivity and Accountability x Leadership and Responsibility

LRHSD (2011) Adapted from ASCD © 2004

Enduring Understandings:	Essential Questions:
Students will understand that	
<i>EU 1</i> techniques of calculus can be used to describe real-life phenomena. <i>EU 2</i> areas and volumes of irregular shapes and solids can be determined using calculus techniques.	 EU 1 How do techniques of calculus describe real-life phenomena? EU 2 How can the application of definite integrals be extended to find area under a curve to finding the area of a region bounded by two curves? How can the definite integral be used to find the volume of a three-dimensional solid?
 Knowledge: Students will know EU 1 functions which model growth and decay can be solved using methods of integration. differential equations, when written implicitly, can be solved by separation of variables. differential equations can be used to model real-life problems. EU 2 integration techniques are used to find the area between two curves. integration techniques can be used to find the volume of a solid of revolution. 	 Skills: Students will be able to EU 1 use exponential functions to model growth and decay. use separation of variables to solve simple differential equations. recognize and solve differential equations which can be solved by separation of variables. use differential equations to solve real-world problems. EU 2 find the area between two curves. find the volume of a solid of revolution using the disk or washer methods

Stage 2 – Assessment Evidence

Performance Task #1:

Other Recommended Evidence: Tests, Quizzes, Prompts, Self-assessment, Observations, Dialogues, etc.

- Quiz on Differential Equations: Growth and Decay
- Quiz on Separation of Variables
- Quiz on Area of a Region Between Two Curves
- Quiz on Volume: The Disk Method and Known Cross Section
- Unit Test
- Assessed elements from the recommended performance tasks

Stage 3 – Learning Plan

Suggested Learning Activities to Include Differentiated Instruction and Interdisciplinary Connections:

• Activity #1: Area Between Curves (A)

What is the area of the following symbol?

Procedures:

- 1. Enlarge and superimpose the above symbol onto grid paper.
- 2. Study the symbol carefully to decide:
 - a) how many functions will be needed to represent the shape
 - b) the domains for each function
- 3. Select a sufficient number of points for each function and enter into the TI-Nspire.
- 4. Find an equation for each part of the symbol.
- 5. Using your knowledge of Calculus, find the area of the symbol.

- Activity #2: Solids of Revolution-Disc (A, M)
 <u>http://education.ti.com/en/timathnspired/us/detail?id=3A57A5D19E3A4EB3B33CC3AFB9E7912C&t=2596C50B247541C1B54AC803ECC87BD1</u>
- Activity #3: Visualizing Solids of Revolution-Washers (A, M) http://education.ti.com/en/timathnspired/us/detail?id=06B156C0931E40C1813C0C550ADDC486&t=2596C50B247541C1B54AC803ECC87BD1

The following is a suggested sequence of learning activities for the Accelerated Calculus class. Approximate days for completion: 25.

- YWBAT use separation of variables to solve a simple differential equation.
- YWBAT use exponential functions to model growth and decay in applied problems.
- YWBAT recognize and solve differential equations that can be solved by separation of variables.
- YWBAT find the area of a region between two curves using integration.
 Activity #1
- YWBAT find the area of a region between to intersecting curves using integration
- YWBAT find the volume of a solid of revolution using the disk/washer methods.
 - Activity #2, #3
- YWBAT find the volume of a solid with known cross section.
- Performance Task

Critical Vocabulary:

- Differential Equation
- Growth/Decay
- Initial Value
- Proportionality Constant
- Separable
- Representative Rectangle
- Bounded
- Disk
- Washer
- Revolution
- Outer Radius
- Inner Radius
- Cross Section