Course Title – Calculus

Implement start year – 2015-2016

Revision Committee Members, email, extension -

Paula Marques, <u>pmarques@lrhsd.org</u>, ext. 8981, Deborah Jenson, <u>djenson@lrhsd.org</u>, ext. 8560, Dana Palumbo, <u>dpalumbo@lrhsd.org</u>, ext. 8422, Brian Moore, <u>bmoore@lrhsd.org</u>, ext. 8129

Unit # 4, topic – Integrals

Transfer Goal -

Students will be able to independently use their learning to evaluate and understand integrals.

Stage 1 – Desired Results 21st Century Themes **Established Goals** (www.21stcenturvskills.org) 2009 NJCCC Standard(s), Strand(s)/CPI # x Global Awareness (http://www.nj.gov/education/cccs/2009/final.htm) _x_Financial, Economic, Business and **Common Core Curriculum Standards for Math and English** Entrepreneurial Literacy (http://www.corestandards.org/) ___Civic Literacy _x_Health Literacy Since the Calculus curriculum goes beyond the Common Core Curriculum _x_Environmental Literacy Standards for Math. the NCTM standards have been adopted: 21st Century Skills Analyze change in various contexts. • Learning and Innovation Skills: Represent and analyze mathematical situations using algebraic • _x_Creativity and Innovation symbols. _x_Critical Thinking and Problem Solving Use mathematical models to represent and understand x Communication and Collaboration quantitative relationships. Apply and adapt a variety of appropriate strategies to solve Information, Media and Technology Skills: problems. _x_Information Literacy Apply appropriate techniques, tools, and formulas to determine _x_Media Literacy _x_ICT (Information, Communications and measurements. Technology) Literacy Use the language of mathematics to express mathematical ideas precisely. Life and Career Skills: Understand how mathematical ideas interconnect and build on _x_Flexibility and Adaptability one another. x Initiative and Self-Direction x Social and Cross-Cultural Skills _x_Productivity and Accountability x Leadership and Responsibility

LRHSD (2011) Adapted from ASCD © 2004

<i>EU 1</i> integration is a summation process. <i>EU 2</i> the fundamental theorems of calculus relate differentiation and	EU 1 • What is integration?
<i>EU 2</i> the fundamental theorems of calculus relate differentiation and	
integration.	 EU 2 How are the derivative and the integral related? How can knowledge of derivatives be used to find the integral of a function?
EU 3 antiderivatives can be used to solve initial condition problems.	EU 3What is the purpose of an antiderivative?
EU 4 there are several numerical techniques to approximate the definite integral.	<i>EU 4</i>• How can the area under a curve be approximated?
Knowledge: Students will know	Skills: Students will be able to
 EU 1 integration is the limit of a summation. EU2 the relationship between derivative and the integral EU3 differential equations and initial condition problems have unique solutions. 	 EU 1 compute Riemann sums using left, right, and midpoint evaluation points. EU2 show that integration rules follow directly from the derivatives rules of basic functions. EU3 solve initial condition problems including separable differential equations.
EU4definite integrals can be evaluated.	 EU4 evaluate the definite integral using the Fundamental Theorem of Calculus

Stage 2 – Assessment Evidence

Performance Task #1:

Other Recommended Evidence: Tests, Quizzes, Prompts, Self-assessment, Observations, Dialogues, etc.

- Quiz on Antiderivatives and Indefinite Integration
- Quiz on Area
- Quiz on Riemann Sums and Definite Integrals
- Quiz on The Fundamental Theorem of Calculus
- Quiz on U-Substitution
- Quiz on Trapezoidal Rule
- Quiz on The Natural Log Function: Integration
- Quiz on Exponential Functions: Integration
- Quiz on Bases Other than e and Applications: Integration
- Quiz on Inverse Trig Functions: Integration
- Unit Test
- Assessed elements from recommended performance tasks

Stage 3 – Learning Plan

Suggested Learning Activities to Include Differentiated Instruction and Interdisciplinary Connections:

- Activity #1 TI-Nspire Riemann Sums (M) http://education.ti.com/en/timathnspired/us/detail?id=3CD2788D70CE46C6837BED58EA69C255&t=2596C50B247541C1B54AC803ECC87BD1
- Activity #2 TI-Nspire Definite Integral (A, M) http://education.ti.com/en/timathnspired/us/detail?id=95E10AB515E046ABA11198316E389FB6&t=2596C50B247541C1B54AC803ECC87BD1
- Activity #3 TI-Nspire Trapezoid and Midpoint Approximations (A) http://education.ti.com/en/timathnspired/us/detail?id=D8C74AF3BF67474A86A40DA7457BF048&t=2596C50B247541C1B54AC803ECC87BD1
- Activity #4: TI-Nspire The First Fundamental Theorem of Calculus (A, M) <u>http://education.ti.com/en/timathnspired/us/detail?id=13662A371429479B9E6A33ACF8EB8ABD&t=A83C9A2C88E44245ADF6A76FBA4BCB2C</u>
- Activity #5: TI-Nspire The Second Fundamental Theorem of Calculus (A, M) <u>http://education.ti.com/en/timathnspired/us/detail?id=F75E97ED4BB14511B1BE92F0F6113CC0&t=A83C9A2C88E44245ADF6A76FBA4BCB2C</u>
- Activity #6: The Dead Body Lab (A, M, T)
 - Materials:
 - 1. meter stick
 - 2. large piece of white paper
 - 3. several sturdy pencils/pens
 - 4. notebook for recording data **Procedures:**
 - 1. Choose a partner and decide who dies (who is going to be the dead body)
 - 2. Go to a location in the school directed by the teacher
 - 3. Lie on the paper keeping feet and arms on the paper (no mummies!)
 - 4. Trace around the body carefully
 - 5. Draw a vertical line down the center of the body and measure every 3 inches
 - 6. Draw a horizontal line and measure every 3 inches across (measure to nearest quarter inch)
 - 7. Add the lengths and write down on the paper.
 - 8. Make a table of horizontal and vertical distances and record.
 - 9. Make a good copy of the table on the back of this paper to hand in
 - 10. Design a calculus method to calculate the area of the body. Put the final answer on the back of this paper.

The following is a suggested sequence of learning activities for the Accelerated Calculus class. Approximate days for completion: 37.

- YWBAT write a general solution of a differential equation and use indefinite integral notation for antiderivatives.
- YWBAT use basic integration rules to find antiderivatives.
- YWBAT find a particular solution of a differential equation.
- YWBAT use sigma notation to write and evaluate a sum.
- YWBAT understand the concept of area.
- YWBAT approximate the area of a plane region.
 - Activity #1
 - Activity #3
 - Activity #6
- YWBAT find the area of a plane region using limits.
 - o Activity #1
- YWBAT explain the definition of a Riemann sum.
 - Activity #1
- YWBAT evaluate a definite integral using limits.
 - o Activity #4
- YWBAT evaluate a definite integral using properties of definite integrals.
- YWBAT evaluate a definite integral using the Fundamental Theorem of Calculus.
 - o Activity #2
 - Activity #4
- YWBAT explain and use the Mean Value Theorem for integrals.
- YWBAT find the average value of a function over a closed interval.
- YWBAT apply and use the Second Fundamental Theorem of Calculus. • Activity #5
- YWBAT explain and use the Net Change Theorem.
 - Activity #4
- YWBAT use pattern recognition to find an indefinite integral.
- YWBAT use a change of variables to find an indefinite integral.
- YWBAT use the General Power Rule for integration to find an indefinite integral.
- YWBAT use a change of variables to evaluate a definite integral.
- YWBAT evaluate a definite integral involving even or odd functions.
- YWBAT approximate a definite integral using the Trapezoidal Rule.
 Activity #3
- YWBAT use the Log Rule for integration to integrate a rational function.
- YWBAT integrate trigonometric functions.
- YWBAT differentiate and integrate exponential functions that have bases other than e.
- YWBAT use exponential functions to model compound interest and exponential growth.
- YWBAT integrate functions whose antiderivatives involve inverse trigonometric functions.
- YWBAT use a method of completing the square to integrate functions.
- Performance Task

Critical Vocabulary:

- Antiderivative
- Integration
- Differential Equation
- Initial Condition
- Particular Solution
- Definite Integral
- Indefinite Integral
- Upper/Lower Sum
- Left/Right Sum
- Midpoint Sum
- Riemann Sum
- Net Change
- Displacement
- Transcendental
- Completing the Square
- Compound Interest
- Half-Life
- Natural Exponential Function
- Common Logarithmic Function
- Long Division
- Base
- Natural Logarithmic Function
- Logarithm