AP Calculus AB - Summer Assignment - 2023

Directions: Please complete all of the problems listed below. If you have any difficulty with a problem,
make sure you have read the examples in the book. You will need to bring your completed assignment,
showing work on EVERY problem, to class on the first day of school. This material is an important

prerequisite for the study of Calculus.

Anton 7th Edition Appendix (attached below):

Section Pages Problems

Appendix A A 8-10 43, 45

Appendix C A 25-27 23, 33e¢, 41, 52
Appendix D A 34-36 47,51,77, 81
Anton 9th Edition (textbook handed out or PDF shared):

Section Pages Problems

B A 23 5a, 13, 41, 45

C A 32 3,13,17

0.1 12-15 19-22 (all)

0.2 24-26 29

0.3 35-37 11, 29

0.4 48-51 10, 19

0.5 61-62 1,5,9, 22,29

Ch 1.1 76-79 3,7,9

Ch1.2 87 3-19 (odd)

Ch1.3 97 9,13,17,19, 23, 27, 29, 31, 35,

39

Ch1.5 118 11-21 (odd), 29, 31, 36
Ch1.6 125 17-37 (every other odd)
Ch 2.1 140 3,4,15,18

Ch2.2 152 9,13, 23, 25, 31, 32
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Figure A.1 describes the various categories of numbets that we will encounter in this text,

The simplest numbers are the natural numbers

1, 2 3 4, 5,...
These are a subset of the integers

e, —4, =3, =2, =1, 0, 1, 2, 3, 4,...
and these in turn are a subset of the 'rational‘nwhbers which are the numbers formed by
takmg ratios of integers (avoiding division by 0). Some examples are

2, 0L B=% 09=£, -i=F=3

“The early Greeks believed that every measurable quanuty had to be a rational” number
However, this idea was overturned in the fifth century B.C. by Hippasus of Metapontum :
who demonstrated the existence of irrational numbers, that is, numbers that cannot be
expressed as the ratio of two integers. Using geometric methods, he showed that the length
of the hypotenuse of the triangle in Figure A.2 could not be expressed as a ratio of integers,

thereby proving that V2is an irrational number. Some other examples of irrational numbers
are

V3, V5, 1+432, ¥, m cos19°
The rational and irrational numbers together comprise what is called the real number system,
and both the rational and irrational numbers are-called real numbers. -
Because the square of a real number cannot be negative, the equation
2 _
x* = -1

has no solutions in the real number system. In the eighteenth century mathematicians rexne-
died this problem by inventing a new numbet, which they denoted by

i= =1

and which they defined to have the property i% = —1. This, in turn, led to the development

* HIPPASUS OF METAPONTUM (circa 500 B.C.). A Greek Pythagorean philosopher. According to legenid, Hippasus
made his discovery at sea and was:thrown overboard by fanatic Pythagoreans because his result contradicted theit

doctrine. The discovery of Hippasus is one. of the most fundamental in the entire history of science.
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3.141592653589793238462643383279502884197163.

399375105B2097454459230781640628620899862803

4825342117067982148086513282306647033B446095"

50582231725359406226481117450284102701938521
10555964462234805693038196442881097566593344

6128475648333 7867631652712019091456485669234.
-60348610454326648213393607260249141273724587

006606315588174881520020962829254091 72536436
78925903600113305305486204665223841469519435
118609433057270365759591953092186117381932611
79310511654807446237996274956735188575272489
12279381830119491298336733623406566430860213
5494639522473 71907021759860943702770539217176

29317675238487481846766940523200056012714526
3560827785771342757709609173637178721458440%°

61224853430245549585371050792279685258933542

G1995611212902196086403441815981362977477130
99605287072313495999983729780499510597312328"

16096319595024455455346508302642522308253344

-68503526193719817103000313783875208658753320

838142061717766914730355682534904287554667311

595628638823537875937519577818577605321 71226

8066130019275766111959092164201889

Figure A.3

of the complex in‘umber;, which are numbers of the form
a-+bi

where a and b are real numbers. Some examples are

243 3~ 4i 6i %
la =2, b e=3) Jei =53, b we —4] fa =00 =G| o = ;’ b=

Observe that every real number a is also a complex number because it can be written as

a = a+0i

Thus, the real numbers are a subset of the complex numbers. Although we will be concerned

: pnmanly with real numbers in this text, complex aumbers will arise in the course of soivmg

equations. For example, the solutions of the quadratic equation
ax’+bx+e=90
which ate given by the quadratic formula

are not real if the quantity b* — 4ac is negative.

Division by zero is not allowed in numerical computations because it leads to mathematical

inconsistencies. For example, if 1/0 were assigned some numerical value, say p, then it
would follow that 0 - p.= 1, which is incorrect.

‘Rational and irraﬁonai' numbers can be distinguished by their decimal representations. Ra-

tional numbers have decimals that are repeating, by which we mean that at some point in

‘the decimal some ﬁxed block of numbers begins to repeat: mdeﬁmtely For example,

§=1333..., &=212727..., }=.50000..., $=.714285714285714285...
3repeats 27 wepeuis Ouogents F14243 repeats -

Decimals in which zero repeats from some point on are called terminating decimals. For

brevity, itis usual to omit the repetitive zeros in terminating decimals and for other repeating

decimals to write the repeating digits only once but with a bar over them to indicate the repe-
tition. For example,

i=5, F=3 £=232 $=13 $=727, :=.7M28

Irrational numbers have nonrepeating decimals, so we can be certain that the decimals

V2 = 1.414213562373095. .. and m = 3.141592653589793. ..

donot. repeal from somie point on. Moreover, if we stop.the decimal expansion of anirrational

number at some point, we get only an approximation to the number, never an exact value,
For example, even if we compute 7 to 1000 decimal places, as in Figure A.3, we still have
only an approximation..

(EAMARK. Beginning mathematics students are sometimes taught to approxzmate 4 by
£ Keep in mind, however, that this is only an approximation, since

Z = 3742857

is a rational number whose decimal representation begins to differ from 7in the third deci-
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In 1637 René Descartes” published a philosophical work called Discourse on the Method
of Rightly Conducting the Reason. In the back of that book was an appendix that the Brit-
ish philosopher John Stnart Mill described as “the greatest single step ever made in the
progress of the exact sciences.” In that appendix Rene Descartes linked together algebra
and geometry, thereby creating a new subject called analytw geometry; it gave a way of

Adescribing algebraic formulas by geometric curves and, conversely, geometric curves by

algebraic formulas.

The key step in analytic geometry is 1o establish a correspondence between real nimbers
and points on a line. To do this, choose any point on the line as a reference point, and call
it the origin; and then arbitrarily choose one of the two directions along the line to be the
positive direction, and let the other be the negative direction. 1t is usual to mark the positive
direction with an arrowhead, as in Figure A.4, and to take the positive direction to the right
when the line is horizontal. Next, choose a convenient unit of measure, and represent each
positive number r by the point that is r units from the origin in the positive direction, each
negative number —r by the point that is r units from the origin in the negative direction
from the origin, and 0 by the origin itself (Figure A.5). The number associated with a point
P is called the coordinate of P, and the line is called a coordinate line, areal number line,
or areal line.
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The real numbers can be ordered by size as follows: If b—a is-positive, then we write either
a < b (read “a is less than »”) or b > a (read “b is greater than ™). We write @ < b o
meang < bora = b, and we writt g < b < cto mean thata < b and b < c. As one,
traverses a coordinate line in the positive direction, the real numbers increase in size, so
on a horizontal coordinate line the inequality « < b implies that a is to the left-of b, and
the inequalities @ < b < ¢ imply that a is to the left of ¢, and b lies between @ and ¢. The
meanings of such symbols as

and d<b<c<d

a<b<ge, a<b<e,

should be clear. For example, you should be able to confirm that all of the following are
true stafements: .

3<8, —T<15 -—12<-m 5<5 0<2<4,

8>3, 15>-7, —m>-12, 55, 3>0>—-13—3

In the following discussion we will be concerned with certain sets of real numbers, so it will
be helpful to review the basic ideas about sets. Recall that a set is a collection of objects,
called elements or members of the set. In this text we will be concerned primarily with sets
whose members are numbers or points that lie on a line, a plane, or in three-dimensional
space. We will denote sets by capital letters and elements by lowercase letters. To indicate
that a is a member of the set A we will write a € A (read “a belongs to A™), and to indicate

*RENE DLSCAPTES (15964 650). Descartes, a French atistocrat, was the son of a government official. He grad-
uated from the University of Poitiers with a law degree at age 20 After a hrief probe into the pleasares of Paris
he became a military engineer, first for the Dutch Prince of Nassau and then for the German Duike of Bavaria. It
was duting his service as a soldier that Descartes began to- pursue mathematics seriously and develop his analytic
geometry. After the wars, he retorned to Paris where he stalked the- city-as an eccentric, wearing & sword in his belt
and a plumed hat. He lived in leisure, seldom arose before 11 M., and dabbled in the study of human, physiclogy,
philosophy, glaciers, meteors, and rainhows. He eventually moved to Holland; where he published his Discourse
on the Method, and finally to Sweden where he died while serving as tutor to Queen Christina. Déscartes is re-
garded as a genivs of the first ftagnitude. In addition to major contributions in mathematics and philosophy, ke is
considered, along with William Harvey, to be a founder of mod.em physwlogy
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INTERVALS

The open interval (g, )

a b

- >
The closed intetval {a, b]
Figure A6

that a is not a member of the set A we will write @ ¢ A (read “a does not belong to A”).
For example, if A is the set of positive integers, then 5 € A, but —5 ¢ A. Sometimes sets
arise that have no members (¢.g., the set of odd integers that are divisible by 2). A set with _
no members is called an empty set or a null set and is denoted by the syrbol .

Some sets can be described by listing their members between braces. The order in which
the members are listed does not matter, so, for example, the set A of positive integers that
are less than 6 can be expressed as

" We can also write A in set-builder notation as

= {x : x is an integer and 0 < x < 6}

which is read “A is the set of all x such that x is an integer and 0 < x < 6 In general,
to express a set S in set-builder notation we write S = {x : ___ 1} in which the line is
replaced by a property that identifies exactly those elements i in the set S.

If every member of a set A is also a member of a set B, then we say that A is a subset
of B and write A C B. For example, if A is the set of positive integers and B is the set of
all integers, then A C B. If two sets A and B have the same members (i.e., A B and
B C A), then we say that A and B are equal and write A = B.

to hne segments ona coordmate line. For example, ifa <b, then the open mterval fmm a
to b, denoted by («, b), is the line segment extending from 4 to b, excluding the endpoints;
and the closed interval from a to b, denoted by [a, b], is the line segment extending from
atob, mcludmg the endpoints (Figure A.6). These sets can be expressed in set-builder
notation as-

(@,b)=[x:a<x<b The open interval from & to &b

[a,b]={x:a<x <b) “The closed interval from a toh

? REMARK. Observe that in this notation:and in the corresponding Figure A..6, parentheses

and open dots mark endpoints that are excluded from the interval, whereas brackets and

closed dots mark endpoints that are included in the interval. Observe also that in set-builder
i notation for the intervals, it is understood that x is a real number, even though itis not stated
¢ explicitly.

As shown in Table 1, an interval can include one endpoint and not the other; such
intervals are called half-open (or sometimes half-closed). Moreover, the table also shows
that it is possible for an interval to extend indefinitely in one or both directions. To indicate
that an interval extends indefinitely in the positive direction we write --co (read “positive
infinity”) in place of a right endpoint, and to indicate that an interval extends indefinitely
in the negative direction we write —c (read “negative infinity”).in place of a left endpoint.
Intervals that extend between tworeal nambers are called finite intervals, whereas intervals
that extend indefinitely in one or both directions are called infinite intervals.

? REMARK. By convention, infinite intervals of the form [a, +o) or (—oo, b] are considered
i to be closed because they contain their endpoint, and intervals of the form (a, +o) and
i {~o, b) are considered to be open because they do not include their endpoint. The interval
(-0, 400}, which is the set of all real numbers, has no endpoints and can be regarded as
i either open or closed, as convenient. This set is often denoted by the special symbol R.
i To distinguish verbally between the open interval (0, 4&) = {x : x > 0} and the closed
interval [0, 4o} = {x : x > 0}, we will call x positive if x > 0 and nonnegative if
i x > 0. Thas, a positive number must be nonnegative, but a nonnegative number need not
i be positive, since it might possibly be 0,
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Table 1 ‘
NOQTATION NOTATION PICTURE CLASSIFICATION
(a,b) {x a<x< b} | ‘b g d > Finite; open.
Ta: b1 {xrafx<h} . o > Finite; closed
fa, by {xrasx<b} B A »’Fini'te; half-open
(a, b} {xia<x<b} ¢ > Finite; half-open
{—o0,-5] {x:x< b} e g Infinite; closed
{00, B} {x:x< b} : 7 > Infinite: open
Ta, +o0) {x:x=Za} e - Infinite; closed
(a, +e0) {x:x>a} st Infinite; open

(=00, +c0) R St g Infinite; open and closed

If A and B are sets, then the unior of A and B (denoted by A U B) is the set whose members
belong to A or B (or both), and the intersection of A and B (denoted by A N B) is the set
whose members belong to both A and B. For example,

Zi0<x<SlUxil<x<T=x:0<x <7}
x:x<lNix:x>0={x:0<x <1}
xix<ON{x:x>0 =

or in interval notation,
0,5U1,7=(0,7)
(=0, 1) N[0, +) = [0, 1)
(=0, 0) N (0, +o0y = &

The following algebraic properties of inequalities will be used frequem:ly in this text. We
omit the proofs.

A} THEOREM (Properties of Inequalities). Leta, b, ¢, and d be real numbers.
(@) Ifa <bandb <c thena < c.

) Ifa<b thenat+c<b+canda—c<b-—ec

(€) Ifa <b, thenac < bc when c is positive and ac > bc when ¢ is negative.
(d) Ifa<bandc<d, thena+c<b+d.

(e) Ifa and b are both positive or both negative and a < b, then 1/a > 1/b.

If we call the direction of an inequality its sense, then these properties can be paraphrased
as follows: .

(b) The sense of an inequality is unchanged if the same number is added to or subtracted
[from both sides.
(¢) Thesenseofan mqualzﬁy is unchanged ifboth sides are multiplied by the same posi rzve.

number, but the sense is reversed. if both sides are multlplled by the same negative
number. :
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SOLVING INEQUALITIES
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(d) Inequalities with the same sense can be added.
(¢) Ifboth sides of an inequality have the same sign, then the sense of the inequality is
reversed by taking the reciprocal of each side,

REMARK.  These properties remain true if the symbols < and > are replaced by < and > -

H in Theorem A.1.

Example 1
STARTING | RESULTING
INEQUALITY OPERATION' INEQUALITY
-2<6 Add 7'to botti sides. 5<13
=2 <6 Subtract § from both sides. “10< -2
2<6 Muitiply both sides by 3. -6< 8
2<6 Multiply both sides by 3. 6>-18
37 Multiply both sides by 4. 12<28
3<7 Multiply both sides by 4. ~12 > -28
3<7 ‘Take reciprocals of both sides. % > %
-8 <6 Take reciprocals of both sides. ~ —1> -1

4<5-7<8  Add corresponding sides. 3«13 <

A solution of an inequality in an unknown x is a value for x that makes the inequality a tiue
statement. For example, x = 1 is a solution of the inequality x < 5, but x == 7 is not. The
set of all solutions of an inequality is called its solution set. It can be shown that if one does
not multiply both sides of an inequality by zero or an expression involving an unknown,
then the operations in Theorem A.1 will not change the solution set of the inequality. The

- process of finding the solution set of an inequality is called solving the inequality.

Example 2 Solve3 + 7x <2x -9,

Selution. We will use the operations of Theorem A.1 to isolate x on one side of the in-
equality.

3475 <29 Given

Tx < 2x — 12 Wesubtracted 3 from both sides. °

Sx < =12

12
XS—"S'

Because we have not multiplied by any expressions involving the unknown x, the last in-
equality has the same solution set as the first. Thus, the solution set is the interval (—eo, — 2]

shown in Figure A.7. 4 ' >

Example 3 Solve7 <2-5x < 9.

Solution. The given inequality is actually a combination of the two inequalities
7<2-5x amd 2—5x<9

We could solve the two inequalities separately, then determine the values of x that satisty
‘both by taking the intersection of the two solution sets. However, itis possibleto work with
the combined inequalities in this problem:
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T<2—=5%x<9 |

5<—5x=<7 jwe su:f)'tractedﬁ from each méﬁbé_x',’_}

We multiplied by — 4 and reversed:

. 7
—lzx> 73 . the sense of the inequaliies.

——— X < =1 { For clarity, we rewrote the inequalities
- 1 with the smaller number on the left, !

e Jom 5 . - 5 >

‘%v — ‘Thus, the solution set is the interval ,(w%, ~1] shown in Figure A.8. «

Figure A8

Example 4 Solve x? — 3x > 10.
Solution. By subtracting 10 from both sides, the inequality can be rewritten as
¥ =32 ~10>0 |
‘Factoring the left side yields
x+2)x~-5 >0
The values of x for whichx +2=0erx —5= Oare x = ~2 and x = 5, These values
divide the coordinate line into three open intervals,
(=0, ~2), (=2,5), (5,+w)

on each of which the product (x -+ 2)(x — 5) has constant sign. To determine those signs
we will choose an arbitrary number in each interval at which we will determine the sign;
these are called fest values. As shown in Figure A.9, we will use —3, 0, anid 6 as our test
values. The results can be organized as follows:

SIGN OF
(x+2)(x - 35)
INTERVAL TEST VALUE AT THE TEST VALUE

(oo, ~2§ 3 () =+
2,5 0 ()) = -
(5, +o0) 6 () =+

The pattern of signs in the intervals is shown on the number line in the middle of Figure A.9.
We deduce that the solution set is (—w, —2) U (5, -+oo), which is shown at the bottom of
Figure A.9. <4

|
w
R
[

) » 5 > i ‘T.est values E

+F+ + 0 - - - e - o 0o 4+ o+ i —
: ' > | Sign of (x+2)x-5) |

. - s | Solutionsetfor
Figure A9 -2 5 G+ DE-5>0

Example 5 Solve

b <1
x=-2
Solution. We could start by multiplying both sides by x — 2 to eliminate the fraction.
However, this would require ys to consider the cases x —2 > Qand x — 2 < @ separately
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because the sense of the ineqﬁaiity would be reversed in the second case, but not the first.
The following approach is simpler:
2x~5
x—2

2x =35 —-1<0 gWesuhuactedlﬁombothﬂdeS(
' " | to obtain a.0 on the right.

<1 {Given. |

(2x — 5)1}:: -2)
DA e A
x=2

The quantity x — 3 is zero if x = 3, and the quantity x — 2 is zero if x = 2. These values
divide the coordinate line into three open intetvals,
(—0,2), (2,3), (@3,+w)

on each of which the quotient (x — 3)/(x —2) has constant sign. Using 0, 2.5, and 4 as test
values (Figure A.10), we obtain the following results:

" sion o
: @-3)/(x~2)
INTERVAL TEST VALQE AT THE TEST VALUE
(o2, 2) 0 - ) =+
2,3) 25 W) = -

(3, +o0) 4 ) =+

The signs of the quotient are shown in the middle of Figure A.10. From the figure we see
that the solution set consists of all real values of x such that2 < x < 3. This is the interval
(2, 3) shown at the bottom of Figure A.10, =«

9.....|2;5|.é ‘Tti|'
: T i es vaues!;

Y

B T N N R T S T ;
- ol | N - - y -3
) 3 » | Sign of =
So!Utiaan'set' for {
o - - P x=3
2 3 —'_—<0
Figure A.10 x-2

EXERCISE SET A
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1. Among the terms integer, rational, and irrational, which 3. The repeating decimal 0.137137137...can be expressed as
‘ones apply to the given number? a ratio of integers by writing
(ay —3 ey 4
@ —3 ® 0 © 3 x = 0137137137 . .

(d) 0.25 © -vie (@) 2" 1000x = 137.137137137.. ..

0.020202. .. 7.000.." - o ,
©® - ®) and subtracting to obtain 999x = 137 or x = &%. Use this

: \ * =55 :
2. Which of the terms integer, rational, and irrational apply - idea, where needed, to express the following decimals as
to the given number? _ . ratios of integers.
(ay 0.31311311131111... (b) 0.729999... ' (@) 0.123123123... (by 12,7777 ...

(¢) 0.376237623762... (@ 1‘7% ' (c) 38.07818181... ~ (d) 0.4296000...




4. Show that the repeating decimal 0.99999. . .represents the
number 1. Since 1.000...is also a decimal representation
of 1, this problem shows that a real number can have two
different decimal representations. {Hint: Use the technique
of Exercise 3.]

S. The Rhind Papyrus, which is a fragment of Egyptian math-

ematical writing from about 1650 B.C,, is one of the oldest.

known cxamples of written mathematics. It is stated in the
papyrus that the area A of a circle is related to its diameter
D by

A=(iD)

(a) What approximation to m were the Egyptians using?

(b) Use a calculating utility to determine if this approxi--

mation is better or worse than the approximation 2.

6. The following are all famous approximations to.7:

—— . Adtian Athoniszoon, ¢. 1583 ;
weemws+ Tsu Chung-Chi and others |
63 [174+15/5\ -~ cmrri
— | — . Ramanujan :
e Archimedes
7 o P L
223 Chimi
71 oremmeds
(a) Usea calculaung utility to order these approxlmatlons
according to size.
(b) ‘Which of these approximations is closest to but larger
than 7 v
(c) Which of these approximations is closest to but smaller
than 7n?

{d) Which of these approximations is most accurate?

7. In each line of the accompanying table, check the blocks;
if any, that describe a valid relationship between the real
numbers ¢ and b. The first line is already completed as an
illustration.

» 6 1
-3 5
5 i3
-4 -4
’ ; 't
0.2§ : 3
N O
4

Table Ex-7
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8. In each line of the accompanying table, check the blocks,
if any, that describe a valid relationship between the real
numbers a, b, and ¢.

9

10

.

11

12
13

*

14.

16.

| 15.

-

17.

O 8
21 443
L1 1t 3
L2l 20 4%
5t -5 5
_0;75 1251125
Tabie Ex-8

Which of the following are always correct if a < 4?7 &

@a—-3<b-3 ) —a < —b qlyg
@3-a=3-b @ 6a <65 L e
(e) a® <ab ) & <a’ A

Which of the following are always comrect.if a < b and
c<d?

@ a+2e<b+2d
() a=2c=b-2d

(b) a—2 <b—2d

For what values of a are the following inequalities valid?

@ax<a b) a<a

Ifa <bandb < a, what can you say about a and b?

(2) a < bis trae, does it follow that a < b must also be
true? '

(b) If @ < b is true, does it follow that 2 < & must also. be
true?

In each part, list the elements in the set.

(@ {x:x*—5x =0}

(b) {x : x is an integer satisfying —2 < x < 3}

In each part, express the set in the notation {x : 1.

@ {1,3,5,7,9,...}

(b) the set of even integers

(c) the set of irrational numbers

(d) {7, 8,9, 10}

Let A = (1,2, 3}. Which of the following sets are equal

to A?

@) {0, 1,2, 3} ® {3.2,1)

©) {x: (x =3 —3x +2) =0}

In the accompanying figure, let
§ =-the set of points inside the square
T = the set of points inside the triangle
C = the set of points inside the circle

and let g, b, and ¢ be the points shown Answer the follow-
ing as true or fa]se
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@rcc ®TCS
)ag¢T Dags
@ beTandbeC f)acCoracT

(g ceTandc ¢ C

Figure Ex-17

18, List all subsets of
(a) {a1, a2, as} {b) .

19. In each part, sketch on a coordinate line all values of x
that satisfy the stated condition.
@x=<4 (b) x> -3 () -1=x27
@ x*=9 €) x* <9 ) x* =9

20. In parts (a)~(d), sketch on a coordinate line all values of x,
if any, that satisfy the stated conditions.
(a) x >4 and x<8
(byx<2 or x=5
©) x> ~2 and x>3
(d x <5 and x>7

21. Express in interval notation.

(@) {x:x* <4} (b) {x:x*>4)
22. In each part, sketch the set on a coordinate line.
(a) [-3,2]U(L. 4] (b) [4,6]UI8, 11]
) (-4,0U(=51) @ 2,904,
© (-2,49N(.5] () [1,23) U (1.4,42)

(8 (o, = U(=3,+e} (h) (—,5) N[0, )

tion on a-coordinate line.

' In Exercises 23-44, solve the inequality and sketch the solu-

23.3x -2 <8 24, bx4+6> 14

25, 44+ 5x <3x—7 26. 2x — 1> 11x +9
27.3<4-2x <7 28. ~2>73~8x > ~11
X . X ,
29, 4 30. > -2
2 x—-3< g—x "~
E ,.»n_l_; €

3, X+l 2. 270

x—2 44x

4 ' ' 3

S { 34. <2

33 2—x 7 x—-5"
35. x2>9 . 36. x> <5

“

T3,

(X—4)(x +2)>0 38, (x—3)x+4) <0
39. 2%~ 9x 42050 40.2-3x4+x220

2 3 , 1 3
41, — < — )
R 2oz
43.x‘3__x2__x___2>0 44-1'3“‘3}4"2$0

In Exercises 45 and 46, ﬁnd all values of x for which the
- given expression yields a real number: '

47.

48.

49.

.

50.

51.

52.

53.

54.
55.
56.

§7.

58.

46. x+2

' , x—1
Pahrenheit and Celsius temperatures are reléited by the for-
mula C = 3(F - 32). If the temperature in degrees Celsius
ranges over theinterval 25 < € < 40 on a certain day, what
is the temperature range in degrees Fahrenheit that day?
Every integer is either even or odd. The even integers are
those that are divisible by 2, so n is even if and only if
n = 2k for some integer k. Bach odd integer is one unit
larger than an even integer, so » is odd if and only if
= 2k+ 1 for some integer k. Show:
(@) If niseven, then so is n?
(b If nis odd, then so is n2.
Prove the following results about sums of rational and
irrational numbers;
{a) rational + rational = rational -
(b) rational 4 irrational = irrational.
Prove the following results about products of rational and
irrational numbers:
(a) rational - rational = rational
(b) rational - irrational = irrational (provided the rational

factor is nonzero).

Show that the sum-or product of two irrational numbers can
berational or irrational.
Classify the following as rational or irrational and justify
your conclusion. '

(a) 347 ® iv2
© V82 (d) V7
{See Exercises 49 and 50.)

Prove: The average of two rational numbers is a rational
number, but the average of two irrational numbers can be
rational or irrational. -

Can a rational number satisfy 10° = 37

Solve: 8x% —4x? —2x + 1 < 0.

Solve: 12x3 — 20x2 > —11x + 2.

Prove: i a, b, ¢, and d are positive numbers.such thata < b

and ¢ < d, then ac < bd. (This result gives conditions

under which inequalities can be “multiplied together.”)

Is the number represented by the decimal
0.101001000100001000001 . .. .

rational or itrational? Explain your reasoning,
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Absolute Value

EEEEEREY

B DEFINITION. The absolute value ot magnitude of a real number a is denoted by
' {a| and is defined by

§ |'"" a if a0
aﬁ'*—a if a<0

Example 1.
(5] =135

e
7~<0 {

Note that the effect of taking the absolute value of a number is to strip away the minus
sign if the number is negative and to leave the number unchanged if it is nonnegative.

Exarnple 2 Solve |x — 3| =4.
Solution. Depending on whether x — 3 is positive or negative, the equation jx — 3| = 4
can be written as
x=3=4 of x—-3=—4
Solving these two equations gives x = 7 and x = ~1. |
Example 3 Solve |3x — 2| = |5x +4|.
Solution. Because two numbers with the same absolute value are either equal or differ in
sign, the given equation will be satisfied if either
3x~2=05x+44 or 3x~2=—(5x+4)

Solving the first equation yields x = —3 and solving the second yields x = w«%; thus, the
given equation has the solutions x = —3 and x = -1 |

Recall from algebra that a number is called a square root of a if its square is a. Recall also
that every positive real number has two square roots, one positive and one negative; the
positive square root is denoted by ./a and the negative square root by —4/a. For example,.
the positive square root 0£9 is +/9 = 3, and the negative square root of 9 is —/9 = —3.
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BREIPONPILIUCIRSIACIRDOOEILIGAPINIS IS

PROPERTIES OF ABSOLUTE VALUE

1 B2 'i‘HiLORllM For any real number a,

i (a) | -—'a-l = | a‘[ A number and its negative have the same absolute vajue.

: (C) {a/ bl Iaf/ }bl The absolute value of a ratic is the ratio of the absolufe values.

¢ REMARK. Readers who may have been taught to write /9 as +3 should stop doing so,
i since it is incorrect.

It is a common error to replace +/a? by a. Although this is correct when a is nonnegative,

itis falge for negative a. For example, if a = —4, then

Va2 = [CaE = Vi6=4#a

A result that is correct for all a is given in the following theorem.

=l

Proof. Since ¢ = (+a)* = (—a)?, the numbers ++a and —a are square roots of a’. It
a > 0,then +a is the nonneganve square root of a2, and if a < 0, then —a is the nonnega-
tive square root of a2, Since +/a? denotes the nonnegative: square root of @2, it follows: that

Val=+a i az0
Val=—a if a<0

That is, Na? = lal.. B

B3 THBEOREM. Ifaandb are real numbers, then

(b) labl = [al [Bf The absolute valii¢ of a product is the product of the absolute values.

>We will prove parts (a) and (5) only.
Proof (@), From Theorem B.2,
| —al = /(=a = va? = |a|
Pm(gf (b}, From Theorem B.2 and a basic property of square roots,

lab| = v/(ab)? = Va2b? = Va?~/b? = {a||b] o i

* REMARK. Inpart (c) of Theorem B.3 we did not explicitly state that & 54 0, but this must
i be so since division by zero is not allowed. Whenever divisions occur in this text, it will be

assumed that the denominator is not zero, even if we do not mention it explicitly.

The result in part (b) of Theorem B.3 can be extended to-three or more factors. More
precisely, for any n real numbers, dy, ay, . . . ; 4y, it follows that

laraz -+ axl = lallaa] - fanl | )

In the special case where ay, az, . . ., @, have the same value, a, it follows from (1) that

el =lal" | @
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GEOMETRIC INTERPRETATION OF

Appendix B: Absolute Value Al3

The notion of absolute value arises naturally in distance problems. For example, suppose
that A and B are points on a coordinate line that have coordinates a and b, respectively.
Depending on the relative positions of the points, the distance d between them will be b —a
or a — b (Figure B.1). In either case, the distance can be written as d = [b — a|, so we have
the following resuit.

B.4 THEOREM (Distance Formula). If A and B are points on a coordinate line with |
coordmate.s a and b, respectively, then the distance d between A and B is d Ib — al

This theorem p,rovi,d’e;,é useful geometric interpretations of some common mathematical
expressions:

EXPRESSION GEOMETRIC INTERPRETATION ON A COORDINATE LINE
[x—al The distance between x and a

1% +al The distance between x and —a (since |x + af = [x — (—a)])
12 The dlstance between xand the orlgm (‘;mce [x}= lx Oi)

‘Inequalities of the form |x—al < k and |x —a} > k arise so-often that we have summarized

the key facts about them in Table 1. , -

Table 1

INEQUALITY GEOMETRIC : ALTERNATIVE FORMS
&> 0) INTERPRETATION’ FIGURE OF THE INEQUALITY
x—a} <k x is within k ["*" units—>|«k un'i.ts'-l k<x-a<k

units of a. — - - > —k -

_ mt a-k a x a+k a~k<x<atk
[x~al >k z‘]s f?orcthan __JHC units-sle-% u‘n‘its—i Eed<—korx—a>k
' : C units away . : Y . . .
from a. Py p PRI x<a-korx>a+k

REMARK. The statements in this table remain true if < is replaced by < and > by >, and

i 1f the open dots are replaced by closed dots in the illustrations.

ABSOLUTE VALUE
A 5
a b
E<—b¢—s~a'-+——»|
@
B 4
b a "
[—a-p—|
)
Figire B.1
INEQUALITIES WITH ABSOLUTE
VALUES
s b G
-1 3. 7

Figure B.2

Example 4 Solve

. 1
@ x=3l<4 - ) lx+4=2 (C)m>5
Solution {@). The inequality |x — 3] < 4 can be rewritten as
4 <x—-3<4
Adding 3 thronghout yields
—1l<x<?

which can be writt:en: in interval notation as (—1,7). Observe that this solution set consists
of all x that are within 4 ynits,of 3 on a number line (Figure B.2), which is consistent with
Table 1.
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6 -a -2

‘Figure B.3

5 4 5
Figure B.4
HEREPSHVILERIRAEL ISP UL VIDAESPCPEROANS
AN INEQUALITY FROM CALCULUS

'I#—S; units—>red Lmits»[

a-8§ " a a+8

E}[x-:aka;

Figure B.5
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THE TRIANGLE INEQUALITY

Solution (b). The inequality [x -+ 4] > 2 will be satisfied if ,

x+4<-2 or x+4>2
Solving for x in the two cases yields

x<—6 or x=-2
which can be expressed in interval notation as

(=0, —6] U [=2, +)
Observe that the solution set consists of all x that are at least 2 units away from —4 on a
number line (Figure B.3), which is consistent with Table 1 and the remark that follows it.
Seolution (c). Observe first that x = 3 3 results in a division by zero, so this value of x cannot
be in the solution set. Putting this aside for the moment, we will begin by taking reciprocals
on both sides and reversing the sense of the inequality in accordance with Theorem A.1(¢)
of Appendix A; then we will use Theorem B.3 to rewrite the inequality 1/]2x — 3| > 5in
a more. familiar form:

12x —3| « é

12]}x — él <1 TheoremB3®) -

5
lx — % <& ' We multiplied both sides by 1/j2} = 12
5L e
T<*~3<71 Tableiv v
5 <x<3 We added 3/2 throughout,

As noted eailier, we must eliminate x = 3 to avoid a division by zero, so the solution set is

7 3 3 . 3

-5-<x<§-01' §<vx‘<§
g P 3 . 7 3 3 8 P
which can be expressed in interval notation as (7, 2) U (i $). (SeeFigure B4) <

One of the most important inequalities in calculus is
O<|x—al<$ ' (3)
where 8 (Greek “delta”) is a positive real number. This is equivalent to the two inequalities
O<jx—a|l and [x—a]<$ _
the first of which is satisfied by all x except x = a, and the second of which is satisfied by
all x that are within & units of 2 on a coordinate line. Combining these two restrictions, we

conclude that the solution set of (3) consists of all x in the intérval (@ — 8, a + 8) except
x = a (Figure B.5). Stated another way, the solution setg" 3)is

@a—38,a)U(a,a+8) 4

It is not generally true that |a + b| = |a| + [b]. For example, if @ = 1 and b = —1, then
la + b} = 0, whereas |a| + |b] = 2. It is true, however, that the absolute value of a sum
is always less than or equal to the sum of the absolute values. This i is the cdntent of the
following useful theorem, called the triangle inequality.

j B THEOREM (Triangle Inequality). Ifa and b aré any redl nu}ﬁbers, then
| la+bl<lal+ b &)

Proof. Observe first that g satisfies the inequality

—fa| < a < |a]

~ because eithera = |a] ora = —|a|, depending on the sign of a. The corresponding inequal-




* REMARK.
i inequality that can be made when a and b are complex nunibers. A more detailed explanation

Appendix B: Absolute Value A1S

ity for b is
—Ibl < b < B}
Adding the two inequalities we obtain
—(lal + 1) < @ + b < (la] + |B]) o (6)

Let us now consider the cases 2 + & > O and a + b < 0 separately. In the first case,

@+ b = la+ b}, so the right-hand inequality in (6) yields the triangle inequality (5). In the

second case, @ + b = —|a + b/, so the left-hand inequality in (6) can be written as
—(lal +1b]) < —la + &l

which yields the triangle inequality (5) on multiplying by —1. B

The name “triangle inequality” arises from a geometric interpretation of the

i is outside the scope of this text.

EXERCISE 86T B

socet‘.1ve.¢-‘o’o¢ona.o‘aonoaonoé«»oqn‘no.a'x‘u.o»nfnnuuo‘ooéadaﬁ'cvonochc‘oen{eeoécqaaun-auée-.q’n_goqnz'nc-onoquaaoqc»oe&tv)otonaﬂi«tléo

1. Compute |x| if ‘
(c) x=k* @) x = —k*.

2. Rewrite \/: {x - 6)2 without using a square root or absolute
value 81gn

.; In Exercx‘;cs 3-10 ﬁnd all va}ues of x for whlch the given

-i statemenus true,

4 X 4+2| =x+2
6. [x* +5x| = x% +5x
lﬁ 2x} =2}x — 3]

3 k-3 =
5. |x2 +9{—x +9
7. 13x% 4 2x| = x|3x + 2|
9 VTN =r+5
11. Verify Va2 = |a| fora = 7and a = —7.

12. Verify the inequalities —ja| < @ < la| for ¢ = 2 and for
a = =3,

13. Let A and B be points with coordinates a and b. In each.

part find the distance between 4 and B.
@a=9 b=7 ) a=25b=3 -
()a=-8,b=6 @) a=+2, b~—3\
(&) a=—11, b=—4 ®a=0, b=~5

14. Is the equality w/a_ = a? valid for all values of 2? Explain.

15. Let A and B be points with coordinates ¢ and b. In each
part, use the given information to find b.
(a) a =~3,Bistotheleftof A, and |b — a| =
(b) a = -2, Bistotherightof A, and | — g} = 9.
() a=5,bLal=7andb > 0. »

- 16. Let E and F be points with coordinates e and f. In each

B

part, determine whether E is to the left or to the right of F'

of a coordinate line.
@ f-e=4
© f-e=—6

B e—-f=4
@ e—f=~7

LS

A2, Prove: ja| —

In Exercises 1724, solve for x.

17. |6x —2| =7 18, 342x]= 11

19. [6x — 7] = |3+ 2x| 20, J4x + 5| = |8x — 3|
21 Px| - =x 22, 2x —T={x +1]
lx-{«S x—3
24, | —— i =
23. 12—x =6 4 x+4 5

In Exercises 25-36, solve for x and express the solution in
terms of intervals. s

2. 7-x]<5 27 |2x-3|<6

25. x+6| <3
/ 2 — 9 2y
10. vBx -2 =2 3¥ 28. Bx+1 <4 290 ix+2(>1 30. § ix—1>=2
31, |5-2x| =4 32.1x+1]>3 33. [ I” <2
| o
| 3
3. - >5 35,
PBx-+1f ~ invmll z4

2 ,
P |
37. For which values of x is / (x2 ~ 5x + 6)° = x — Sx + 67
38. Solve3 < |x —2| < 7for x. o '
39. Solve |x — 3% — 4|x — 3| = 12 for x. [Hint: Begin by let-
ting # = {x ~3|.)
40. Verify the triangle inequality |@ + b] < |a] + }b| (Theorem
B.5) for
@ a=3 b=4
© a=-7, b=-8
41. Prove: ja — b| < |a| + |b}.
1] < la — b).
43. Prove: | |af — [b] | < |a — b]. [Hint: Use Bxercise 42

36.

b)) a=-2,b=6
(d) a=~4, b=4.
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Coordinate Planes
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Just as points on a coordinate line can be associated with real numbers, so points in a plane
can be associated with paiis of real numbers by introducing a rectangular coordinate system
(also called a Cartesian coordinate system). A rectangular coordinate system consists of
two perpendicular coordinate lines, called coordinate axes, that intersect at their origins.
Usually, but not always, one axis is horizontal with its positive direction to the right, and
the other is vertical with its positive direction up. The intersection of the axes is called the
origin of the coordinate system,

It is common to call the horizontal axis the x-axis and the vertical axis the y-axis, in
which case the plane and the axes together are refeired to as the xy-plane (Figure C.1).
Although labeling the axes with the letters x and y is common, other letters may be more
appropriate in specific applications. Figure C.2 shows a uv-plane and & ¢s-plane—the first
letter in the name of the plane always refers to the horizontal axis and the second to the
vertical axis.

T 1 T & 2
<
n

L S

¥
-

| I T !‘I - | I : | S N S | >
{_ uy-piang Es L ] ss-plane | [

Figiwe C.2.

Every point P in a coordinate plane can be associated with a unique ordered pair of real
numbers by drawing two lines through P, one perpendicular to the x-axis and the other
‘perpendicular to the y-axis (Figure C.3). If the first line intersects the x-axis-atthe point with

~coordinate ¢ and the second line intersects the y-axis at the point with coordinate b, then we

associate the ordered pair of real pumbers (a, b) with the point P. The niamber q is called
the x-coordinate or abscissa of P and the pumber b is called the y-coordinate or ordinate of
P. We will say that P has coordinates (a, b) and write P(a, b) when we want io emphasize
that the coordinates of P are (a, b). We can also reverse the above procedure and find the
point P associated with the coordinates (a, b) by locating the intersection of the dashed
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lines in Figure C.3. Because of this one-to-one correspondence between coordinates and
points, we will sometimes blur the distinction between points and ordcred pairs of numbers
by talkmg about the point (a, b).

REMARK.  Recall that the symbol (g, b) also denoté; the open interval between a and b;
the appropriate interpretation will usually be clear from the context.-

In a rectangular coordinate system the coordinate axes divide the rest of the plane into
four regions called quadrants. These are numbered counterclockwise with roman numerals
as shown in Figure C4. As indicated in that figure, it is easy to determine the: quadrant
in which a given point lies from the signs of its coordinates: a point with two positive
coordinates (+, +) les in Quadrant I, a point with a negative x-coordinate and a positive
y-coordinate (—, +) lies in Quadrant II, and so forth, Points with a zero x-coordinate lie
on the y-axis and p‘o'in'ts wi‘th a zef‘o y-caordin’ate §§e’ on the x-axis

plane For example, in Flgure C. 5 we have plotted the pomts
Observe how the signs of the coordinates identify the quadrants in which the points lie.

A
6 =
sk P2.5)
4} i
L
| 2
| i :
v".']v"liiitlllg
-7-6~-5-4-3-2-1.1 12 3456 7
i =1 |
b g '
R(-5,~2) O 4 S(4, -3)
—4}
-5
Figure C.5

The correspondence between points in a plane and ordered pairs of real numbers makes it
possible to visualize algebraic equations as geometric curves, and, conversely, to represent
geometric curves by algebraic equations. To understand how this is done, suppose that we
have an xy-coordinate system and an equation involving two variables x and y, say

6x —4y =10, y=+x x=y+1, o F+y* =1

‘We define a solution of such an equation o be any ordered pair of real numbers (a, b)

whose coordinates satisfy the equation when we substitute x = a and y = b, For example,

~ the ordered pair (3, 2) is a solution of the equation 6x — 4y = 10, since the equation is

satisfied by x = 3 and y = 2 (verify). However, the ordered pair (2, 0) is not a solution of
this equation, since the equation is not satisfied by x = 2 and y = 0 (verify).
The following definition makes the association between equations in x and y and curves

" in the xy-plane.

{ C.1 DEFINITION. The set of all solutions of an equation in x and y is called the solu~

tion set of the equation, and the set of all points in the xy-plane whose coordinates are
- members of the solumm set is called the graph of the equauon
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.One of the main themes in calcuius isto identify the exact shape of a graph. Point plotting
is-one approach to obtaining a graph, but this method has limitations, as discussed in the
following example.

Example 1  Sketch the graph of y = x2.

Solution. The solution set of the equation has 1nﬁnite1y many members; since we can
substitute an arbitrary value for x into the right side of y = x? and compute the associated
¥ to obtain a point (¥, y) in the solution set. The fact that the solution set has infinitely
many members means that we cannot obtain the entire graph of y = x? by point plotting,
However, we can obtain an approximation to the graph by plotting some sample members
of the solution set and connecting them with a smooth curve, as in Fi gure C.6. The problem
with this method is that we cannot be sure how the graph behaves berween the plotted
points. For example, the curves in Figure C.7 also pass through the plotted points and hence
are legitimate candidates for the graph in the absence of additional information. Moreover,
even if we use a graphing calculator or a computer program to generate the graph, as in
Figure C.8, we have the. same problem because. graphing technology uses point-plotting
algorithms to generate graphs. Indeed, in Section 1.3 of the text we see examples where
graphing technology can be fooled into producing grossly inaccurate graphs <«

AY 5 Ay |
oF ¢ % ok $
S A S A
LA H L 7L o
ol 0 | ©0 / 3 i
1 an 6 ioer
27 4 | (2,4 5 / ‘{ 5t g
3 9 1 B9 4r 4r ?
=1 1 1L, D1 gL . 1 3t {
2 E ey a2} W oo p
- 9 (,"3:’ 9) ‘1 (. /\\‘ 1+ &
bl 1Y ¢ (TS AT T4
-3 =2 —{ =3 -2 -1 2 3
Figure C.6 Figure C.7

In spite of its limitations, point plotting by hand or with the help of graphing technology
can be useful, so here are two more examples

Example 2 Sketch the graph of y = /x.

i

Solution. ¥ x < 0, then /X is an imaginary number. Thus, we can only plot points for

: bt which x 2 0, since points in the xy-plane have real coordinates. Figure C.9 shows the graph
[-4.41% [0, 10] obtained by point plotting and a graph obtained with a graphing calculator. <
Scl=1,ySci=2

e Example 3. Sketch the graph of y2 — 2y —x = 0.

y=x

Solution. To calculate coordinates of points on the graph of an equation in x and y, it is
desirable to have y expressed in terms of x or x in terms of y. In thlS case it is. easier to
express x interms of y, $6 we rewrii¢ the equation as

Figure C.8

,xmy -2y

Members of the solution set can be obtained from this equation by substituting arbitrary
values for y in the right side and computing the associated va.lues of x (Figure C.10). «
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Figure C.10

REMARK. ~ Most graphing calculators and computer graphing programs require that y be
expressed in terms of x to generate a graph in the xy-plane. In Section 1.8 we discuss a
method for circumventing this restriction.

rercanacrcel

Example 4 Sketch the graphof y = 1/x..

Solution. Because 1/x is undefined at x = 0, we can only plot points for which x # 0.
This forces a break, called a discontinuity, in the graph at x = 0 (Figure C.11). «

a2 Gy

1 1 @,y

2 3 (2, 2),

Ll 3 :-i‘ (3) )
Y Sl 16
SN

Af -l (-1,-1)

A

Figure C.11
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v Points where a graph intersects the coordinate axes are of special interest in many problems.
INTERCEPTS

As illustrated in Figure C.12, intersections of a graph with the x-axis have the form (a, 0)
and intersections with the.y-axis have the form (0, b). The number ¢ is called an x-intercept
of the graph and the number b a y-intercept.
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Figure C.13
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Figure C.14
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Figure C.15

Example 5 Find all interéépts of.
@3x+2y=6 Mx=y"—2y () y=1/x
Solution (@). To find the x-intercepts we set y = 0 and solve for x:
3=6 ot x=2

To find the y-intercepts we set x = 0 and solve for y:

2y =6 or y=3

As we will sce later, the graph of 3x -+ 2y = 6 is the line shown in Figure C.13.

Solution (b). To find the x-mtercepts set y == 0-and solve for x:
x =0
Thus, x = 0 is the only x-intercept. To find the y-intercepts, set x =0 and solve for y:
¥ —-2y=0
yoy -2 =
Sothe y-intercepts are y = 0 and y = 2. The graph is shown in Figure C.10.
Solution (c). To find the x-intercepts, set y = 0:
1
=0

X
This equation has no solutions (why?), so there are no x- mtercepts To find y-intercepts we

_ would set x = 0 and solve for y. But, substituting x = 0 leads to.a division by zero, which

is not allowed, so there are no y-intercepts either. The graph of the equation is shown in
Figure C.11. 4

To obtain equations .of lines we will first need to discuss the concept of slope, which isa
numerical measure of the “steepness” of a line. .

Consider a particle moving left to right along a nonvertical line from a pomt Pitxy, 1)

to a point Py(xz, y;). As shown in Figure C.14, the particle moves y, — y; units in the

y-~direction as it travels x — x; units in the positive x-direction. The vertical change y, — y

is called the rise, and the horizontal change x, ~ x; the run. The ratio of the rise over the run

can be used to measure the stegpness of the line, which leads us to the following definition.

 C.2 DEEINITION. If Py(x1, y1) and Py(x, y;) are points on a nonvertical line, then
| the slope m of the line is defined by

me= 2 L P2 TN o M

‘D Xy — Xy .

! REMARK. Observe that this definition does not apply to vertical lines. For such lines we
i have x, = x1 (a zero run), which means that the formula for  involves a division by zero.
i For this reason, the slope of a vertical line is undefined, which is sometimes described
i informally by stating that a vertical line has infinite slope. :

When calculating the slope of a nonvertical line from Formula (1), it does not matter

which two points on the line you use for the calculation, as long as they are distinct. This

can be proved using Figure C.15 and similar triangles to show that
2N Y2 —
Xp—xi X~ x,

m o=

- Moreover, once you choose two poists £ use for the calculation, it does not matter which

oneyou call P and which one you call P, because reversing the points reverses the sign of
both the numerator and denominator of (1) and hence has no effect on the rafio.
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Example 6 In each part find the slope of the line through
(a) the. points (6 2) and (9, 8)

(c) the pomts»v(—2,7) »and (5,, 7). ' o
Solution.

8—-2 6 _, .. _3-9 -6 . 1T
@m=5g=3=2 Om=gm=7=-3 Om=zr5m=0

Example 7 Figure C.16 shows the three lines determined by the points in Example 6
and explains the significance of their slopes. -«

&2, 0

T 1 1 1 1 11

v 1 T

' Traveling left to right, a point on the
line rises two units for each unit it
| tnoves in the positive x-direction.

m=72 ] . m= =3
} Traveling left to right, a point on the §
line falls three units for each unit it
1 moves in the positive x-difection.

m=0 )
Traveling Jeft to right, a point on
the line neither rises nor- falls.

Figure C.16

GELOIC NI UIONPANADOUNARIIAVRANGORAOSEE

PARALLEL. AND PERPENDICULAR
LINES

Figure C.17

As illustrated in this example, the slope of a line can be positive, negative, or zero. A
positive slope means that the line is inclined upward to the right, a negative slope means that
the line is inclined downward to the right, and a zero slope means that the line is horizontal.
An undefined slope means that the line is vertical. Figure C.17 shows various lines through
the origin with their slopes.

The following theorem shows how slopes can be used to tell whether two lines are parallel
ot perpendicular.

C.3 THEOREM. :
(a) Two nonvertical lines with slopes my and my are parallel if and only if they have
the same slope, that is,
m; ='my
(b) Two nonvertical lines with slopes m) and my are perpendicular if and only if the
praduct of their slopes is —1, that is,
mymy = =1

This relationship can also be expressed as mi = —1/my or my = —1/my, which
states that nonvertical lines are perpendicular if and only if their slopes are negative
reciprocals of one another.

A complete proof of this theorem is a little: tedmu@ but it is not hard to motivite the results
informally. Let us start with part ().
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Figure C.19
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LINES PARALLEL TO THE
COORDINATE AXES

Suppose that L and L; ar€ nonvertical parallel lines with slopes m and mj, respectively.
If the lines are parallel to the x-axis, then m; = m, = 0, and we are done. If they are not
parallel to the x-axis, then both lines intersect the x-axis; and for simplicity assume that
they are oriented as in Figure C.184. On each line choose the point whose run relative to
‘the point of intersection with the x-axis is 1. On line L; the ‘corresponding rise will be m,
and on Ly it will be my. However, because the lines are parallel, the shaded triangles in the
figure must be congruent (verify), so my =m;. Conversely', the condition my = my can be
used to show that the shaded triangles are congruent, from which it follows that the lines
make the same angle with the x-axis and hence are parallel (verify).

Rise=m, Rise=-1

‘Figure C.18

Now suppose that L; and Ly are nonvertical perpendicular lines with slopes my and my,
respectively; and for simplicity assume that they are oriented as in Figure C.18b. On line
L choose the point whose run relative to the point of intersection of the lines is 1, it which
case the corresponding rise will be m; and on line L choose the point whose rise telative
to the point of intersection is —1, in which case the corresponding run will be —1/im;.
Because the lines are perpendicular, the shaded triangles in the figure must be congruent
(verify), and hence the ratios of corresponding sides of the triangles must be equal. Taking
into account that for line L, the vertical side of the triangle has length 1 and. the horizontal
side has length —1/m; (since my is negative), the congruence of the triangles implies that
mi/1 = (~=1/m2)/1 ot mymz = —1. Conversely, the condition m; = —1/m; can be used
to show that the shaded triangles are congruent, from which it can be deduced that the lines
are perpendicular (verify).

Example 8 Use slopes to show that the points A(1, 3), B(3, 7), and C(7, 5) are vertices
of a right triangle.

Solution. We will show that the line through A and B is perpendicular to the line through
B and C. The slopes of these lines are.

7-=3 5-7 1
m1=m=2 and mz=-7-m—3z-—§
*Slope of the line - " Slope of the Tine
i through A and B ; through B and C

Since mymy = —1, the line through Aand B is perpendicular to the line through B and C;
thus, ABC is a right triangle (Figure C.19). <

We now turn to the problem of finding equations of lines that satisfy specified conditions.
The simplest cases are lines parallel to the coordinate axes. A line paraliel to the y-axis
intersects the x-axis at some point (a, 0). This line consists precisely of those points whose
x-coordinates equal a (Figure C.20). Similarly, a line parallel to the x-axis intefsects the
y-axis at some point (0, b). This line consists precisely of those points whose y-coordinates
equal b (Figure C.20). Thus, we have the following theorem.
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(a,0)

i Every point on Ly has an §
{ x-coordinate of gand |
{ every-peintonLohasa

y-coordinate of b.

Figure-€.20:
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LINES DETERMINED BY POINT AND
SLOPE

AY

A £

| There is a un'iqu‘e fine
' through £ with slope m. |

Figure: C.22
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} C4 THEOREM. The vertical »line-fthfough (a, 0) and the horizontal Iiné’th}'oﬁgh (0, b)
are represented, respectively, by the equations '

and

Example 8 The graph of x = -5 is the vertical line through (—5, 0), and the graph of
y =7 is the horizontal line through {0, 7) (Figure C.21). <

Ay ’ Ay

(0,7

¥
A

(-5,0)

Figure C.21

There are infinitely many lines that pass through any given point in the plane. However, if
we specify the slope of the line in addition to a point on it, then the point and the slope
together determine a unique tine (Figure C.22).

Let us now consider how to find an equation of a nonvertical line L that passes through
apoint Py(xi, yi) and has slope m. If P(x, y) is any point on L, different from P;, then the
slope m can be obtained from the points P(x, y) and Py(x;, yi); this gives

=N
X —x
which can be rewrittén as
¥ —yi =m(x —x;) : @

With the possible exception of (xy, y1), we have shown that every point on L satisfies (2).
Butx = x;, y = y, satisfies (2), so that all points on L satisfy (2). We leave it as an exercise
to show that every point satisfying (2) lies on L.

In summary, we have the following theorem:

C.5 THEOREM. The line passing through P\(x1, yi) and having slope m is given by
the equation _

3) i

This is called the point-slope form of the line.

Example 10 Find the point-slope form of the line through (4, —3) with slope 5.

Solution. Substituting the valyes x; = 4,y) = —3,andm = 5in(3) yields the point-slope
form y +3 = 5(x — 4). <

A nonvertical line crosses the y-axis at some point (0, b). If we use this point in the point- -

slope form of its equation, we: obtain
y—b=mx-0)y

-

which we can rewrite as 'y = mx + b. To summarize:
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Figute C.23

y-intercept

| C.6 THEOREM. The line with y-intercept b and slope m is given by the equation

| This is called the slope-intercept form of the line.

L

@

? REMARK. Note that y is alone on one side of Equation (4). When the equation of a hne i8
‘written in this way the slope of the line and its y-intercept can be determined by-inspection

ke
b4

: of the equation—the slope is the coefficient of x and the y-intercept is the constant term

i (Figure C:23).
Example 11
EQUATION SLCPE Y-INTERCEPT
y=3x+7 m=3 b=7
»,3=v_x+% m=-} b:%
y=x m=1 b=0
= ﬁxv—- 8§ m= '\ja b=-8

<

Example 12 Find the slope-intercept form of the equation of the line that satisfies the
stated conditions:

(a) slope is —9; crosses the y-axis at (0, —4)

{(b) slope is 1; passes through the origin

(¢) passes through (5, —1); perpendicular to y = 3x + 4

(d) passes through (3, 4) and (2, -5).

Solution (a). From the given conditions we have m = —9 and b = —4, so (4) yields
y=-9x —4.

Solution (b). From the given conditions m = 1 and the line passes through 0,0), so
b = 0. Thus, it follows from (4) that y = x + O or y =X,

Solutwn (c). The given line has slope 3, so the line to be determined will have slope»

m = -- - Substituting this slope and the given point in the point-slope form (3) and then
snnphfymg yields
y= (=) =—§@-5)
y= —gx + %

Solution {(d). We will first find the point-slope form, then solve for y in terms of x to
obtain the slope-intercept form. From the given pomts the slope of the line is
—5-14
2-3 '
We can use either of the given points for (xl \ yl) in (3). We will use (3, 4). This yields the
point-slope form
y—4=9(-3) |
Solving for y in terms of x yields the slope-intercept form
y=9x-123

m= =9
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‘We leave it for the reader to show that the same equation resuIts if (2, -5) rather than 3,4)
isused: for {x1, y1) in (3) «

An equation that is expressible in the form

Ax+By+C=0 | )

where A, B, and C are constants and A and B are not both zero, is called a first-degree

equation in x and'y. For example,
dx+6y—5=0
is a first-degree equation in x and y since it has form (5) with
A=4, B=6, =-5
In fact, all the equations of lines studied in this section are first-degres equations ini X aind y.
The following theorem states that the first-degree equations in x and y are precisely the
equations whose graphs in the xy-plane are straight lines.

C.7 THEOREM. Every first-degree equation in x and y has a straight line as its graph
and, conversely, évery straight line can be represented by a first-degree equation in x
and’y.

Because of this.-th’eorem, {5) is sometimes called the general equation of a live or a
linear egunation in x and v

Solution. Since this is a linear 'equatlon in x and y, its graph is a straight line. Thus,
to sketch the graph we need only plot any two points on the graph and draw the line
through them. It is particularly convenient to plot the points where the line crosses the
coordinate axes. These points are (0, 3) and (—4, 0) (verify), so the graph is the line in
Figure C.24. |

Example 14 Find the slope of the fine in Example 13.

Solution. Solving the equation for y yields
y= %x +3

which is the slope-intercept form of the line. Thus, the slope.is m = 3. <

aowvovav-:»a'&nscncubcvooonau»wooq-n-uut#.o,«:ra,n.uioeonecnt-oa.oao«pe:nau'ﬂa:euoo-o('noconzs'uo«acauowoaneoo.o»eonnn'e»caab»'aaodonn

the gwcn conditions.

In Exercises 3 and 4, draw a rectangular coordinate system
and sketch the set of | points whose coordinates (x, y) satisfy |~

1. Draw the rectangle, three of whose vertices are (6, 1), 3. @ x=2 b) y=-3 ©&Wxz0
_ (—4, 1), and (6,7), and find the coordinates of the fourth D y=x () y>x @) xi=1
vertex.
2. Draw the triangl.e whose vertices are (—3,2), (5,2), and 4 (a): =0 (b)y=0
(4, 3), and find its area. €y y<0 (@=x>landy<2
- &) x =3 ) &) Ix]=5

| In Exercises 5-12, sketch the graph of the equation. (A cal-
culating utility will be helpful in some of these problems.)

X
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5.
7
9.
11.
13.

14.

15.

16.

17

»

18.

19.

20

>

21.

22.

23.

25

-

y=4—x* 6. y=1+432*
y=+x-4 8.y=—vi+l
P ex4y=0 10. x = y* —y?
Py =2 12, xy = —1
Find the slope of the line through

(@) (—1,2) and (3,4) () (5,3) and (7, 1)
() (4,v/2) and (=3,+/2) () (2, —6) and (=2, 12).

Find the slopes of the. sides of the tnangle with vertices.
(—1,2), (6,5, and (2,7).

Use slopes to determine whether the given points lie on the
same line.

(@ Q,1),(-2,-5),and (0,-1)

(b) (—2,4),(0,2), and (1, 5)

Draw the line through (4, 2) with slope

(@ m=3 (b) m=— © m=-3
Draw the line through (—1, —2) with slope »

(@ m=1 by m= -1 © m=+2.

An equilateral triangle has one vertex at the origin, another

on the x-axis, and the third in the first quadrant. Find the
slopes of its sides.

List the lines in the accompanying figure in the order of
increasing slope
T}’ y

V.~
/l li I\ -

2§ v

List the lines in the accompanying ﬁgure in the order of

increasing slope.

AY Y,
V.
I I i

A particle, initially at (1, 2), moves along a line of slope
m = 3 to anew position (x, y).
(@) Findyifx =5, (b) Findxif y = —2.

A particle, initially at (7, 5), moves along a line of slope
m. = ~2 {0 a new position. (x, y).
(®) Find yifx =9, (b) Flndx ify=12.

Let the point (3, k) lie on the hne of slope m = 5 through
(~2, 4); find k.

. Given that the point (%, 4) is on the line through (1, 5) and

2, -3), find k.

Find x if the slope of the line through (1, 2) and (x, 0) is the
negative of the slope of the line through (4, 5) and (x, 0).

29

3

™ 26.

27.

28.

30.

.

32.

34,

Fmd x-and y if the line through. (0, 0) and (x, y) has slope
2, and the line through (x, y) and (7, 5) has stope 2.

Use slopes to show that (3, =1, 6,49, (-3, 2), and .
(—6, ~3) are vertices ofaparal!e}ogram

Use 310pes to show that (3, 1), (6, 3), and 2,9) arev'Vertices
of a right triangle.
Graph the equations .
(@) 2x+5y =15 b) x=3
) y=-2 @ y=2x-7.
Graph the equations
@3-%=1 ®) x=-8
(e) y=0 (d) x =3y +2.
Graph the equations _ ’
(@ y=2x—1 (by y=3
©) y=-2x.
Graph the equations '
@ y=2-3 ® y=4x
© y==/3.

- Find the slope and y-intercept of
@ y=3x+2 ® y=3—}x
{¢) 3x+5y =38 @y=1
©+2=1

a b

Find the slope and y-intercept of
(@) y=—4x+4+2 b x=3y+2
o Eid Dy
©5+3=1 @ y—-3=0

€ aox +ary=0 (a #0).

In Exermses 35 and 36, use the graph to ﬁnd the equatlon of
the hne n sIope«mtercept form. ;

35.

36.

\Y hY

@

)
Figure Ex-35 ’
I 94 AY

(@)
Pigure-Ex-36_

®)




- In Exercises 3748, find the slope-mtercept form of the line |

37. Slope =
38. m=35b=-3. B
39. The line is parallel to y = 4x —2 and its y-~interceptis 7.

~ 40. The line is parallel to 3x + 2y = 5 and passes through
(- }-’ 2)- ’ v

41, The line is perpendicular to y = Sx -9 and its y-intercept
is6. .

42. The line is perpendtcnlar tox — 4y 7-and passes throngh
@, —4).

43. The line passes through (2, 4) and Q,~-7.

44. The line passes through (—3, 6) and. (=2, 1).

45. The y-intercept is %md the x-intercept is —4.

—2, yvlntercept =4,

46. The y-intercept is.b and the x-intercept is a.

47. The line is perpendicular to the y-axis and passes through
(—4, 1. ’
48. The line is parallel to y == —5 and passes through (—1, —8).
49. In each part, classify the lines as parallel, perpendicular, or
neither.
(a) y= 4x——7andy 4x +9
) y=2x—3andy=7—ix
) 5x =3y +6=0and IO‘x"—— 6y+7=0
(@) Ax+By+C=0andBx—Ay+ D=0
(& y—2=4x—3)andy—7= {(x ~3)
. 50. In each part, classify the lmes as parallel, perpendlcula:, or
neither.
(@ y=-5x+1landy=3-5x
® y-1=2x~3)andy~4=—3(x+7)
(©) 4x+5y+7=0and5x -4y +9=0
(d) Ax+By+C=0andAx+By+ D=0
© y=jxandx =3y

' satlsfymg the glven conditions. r

- 53
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51. For what value of k will the line 3x +ky = 4

(2) have slope 2

(b) have y-intercept 5

(c) pass through the point (—2, 4)

(d) be parallel to the'line 2x ~ Sy =1

(e) be perpendicular to the line 4x + 3y = 27

Sketch the graph of y? = 3x and explain how this graph is
related to the graphs of y = +/3x and y = —+/3%.

Sketch the graph of (x — y){x + y) = 0 and explain how it
is related fo the graphs of x — y = O and x + y = 0.

54. Graph F = §C+ 32 in a CF-coordinate system.

55, Graph u = 3%? in 4 uv-coordinate system.

56. Graph Y = 4X + 5 in a YX-coordinate system.

§7. A point moves in the xy-plane in such a way that at any time
¢ its coordinates are given by x = 5t + 2and y = ¢ — 3. By
expressing y in terms of x, show that the point moves along
‘a straight line.

58. A point moves in the xy-plane in such a way that at any time
t its coordinates are given by x = 143t andy = 2~1% By
expressing y in terms of x, show that the point moves along
a straight-line path and specify the values of x for which the
equation is valid. '

52

H

x

"59. Find the area of the triangle formed by the coordinate axes

and the line through (1, 4) and (2, 1).
60. Draw the graph of 4x? — 9y? = 0.

61. In each part, name an appropriate coordinate system for
graphing the equation [e.g., an af-coordinate system in part
(a)], and state whether the graph of the equation is a line in

that coordinate system.

@ 3a—-28=5

(b) A =2000(1 + 0.067)

(©) A=mr’

@ E =mc* (¢ constant)

& V=CU-¥#) (r and C constanty
() V = tmrin (r constant)

(&) V= % rlh (h constant)
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Suppose that we are interested in finding the distance 4 between two points Py(xq, 1) and
Py(x3, y2) in the xy-plane. If, as in Figure D.1, we form a right triangle with P, and P; as.
vertices, then it follows from Theorem B.4 in Appendix B that the sides of that triangle
have lengths b2 — x1] and [y, — yi}. Thus, it follows from the Theorem of Pythagoras that

d=yln-xP+y~nl=v0m-x)?2+0 - n?
and hence we have 'th@.:followiug resuit.

D.1 THEOREM. The dzsrance d between iwo pomts P1 (xl, 1) and Ps (JCg, yg) ingi
coordinate plane is given by

3;(,{2,_-—1;41)? + (’3’2{"‘.‘ n?. (1) §
AY
¥y |- S,Pl>(xl’)'1):
vz~ wl
y2 -—n-—-fl',:]‘;-é.-:w}:w.'.::.e A s SRR A 8 s 2 2 2
I ] s
X , X
i‘x?—;ﬁl
Figure D.1

? REMARK. To apply Formula (1) the scales on the coordinate axes must be the same;
: otherwise, we would not have been able to use the Theorem of Pythagoras in the derivation.
i Moreover, when using Formula (1) it does not matter which point is labeled P; and which
i one is labeled P, since reversing the points changes the signs of x; — x; and y, — y,; this
i bas no effect on the value of d because these quantities are squared in the formula, When it is
_importtant to emphasize the points, the dxetance between Pj and Pyis denoted byd{P, P)
i ord(Py, Pr).

Example 1 Find the distance between the points (—2, 3) and (1, 7).
Solution. If welet (x1, y;) be (2, 3) and let (xa, y@) be (1, 7), then (1) yields
d=y[1 — ()P +[T-3P=+/32+42=/25=5 <
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Figure D4
CIRCLES

1 D2 THEOREM (The Midpoint Formula).  The midpoint of the line segment joining two
t points (xi, y1) and (%, }72) in a coordinate plane is

Appendix D: Distance, Circles, and Quadratic Equations A29 ‘

Example 2 It can be shown that the converse of the Theorem of Pythagoras is true; that
is, if the sides of a triangle satisfy the relationship a® + b = ¢?, then the triangle must be

a right triangle. Use this result to show that the points A(4,6), B(1, —3), and C(7,5) are

vertices of a right triangle.

Solution. The points and the triangle are shown in Figure D.2. From (1), the Iengths of

‘the sides of the triangles are

d(A, B) = /(I -4 + (—3— 6)2 = /981 = /90

(A, C)=/(1-82+(5-62=9+1=/10

d(B.C) =~/ —12+[5— (-3} = i = /100 = 10
Since

[d(A, B)F + [d(A, O)F = [d(B, C)P
it follows that AABC is a right triangle with hypotenuse BC. <

Itis often necessary to. find the coordinates of the midpoint of a line segment joining two
points in the plane. To derive the midpoint formula, we will start with two points on a coor-
dinate line. If we assume that the points have coordinates a and b and that ¢ < b, then,
as shown in Figure D.3, the distance between ¢ and b is b — a, and the coordinate of the

‘idpoint between @ and b is.

a+ib-a)=ta+ib=1@+b
which is the arithmetic average of @ and b. Had the points been labeled with # < a, the same
formula would have resulted (verify). Therefore, the midpoint of two points on a coordinate.
line is the arithmetic average of their coordinates, regardless of their relative positions.

If we now et Py (xy, y;) and Py(x3, y,) be any two points in the plane and M (x, y) the
midpoint of the line segment joining them (Figure D.4); then it can be shown using similar
triangles that x is the midpoint of x; and x, on the x-axis and y is the midpoint of y; and y,
on the y-axis, $0

x=30x+x) and y=1i(y+m)
Thaus, we have the following result.

( (xi + xz), 3 ()’1 + )’2)) @)

Example 3 Find the midpoint of the line segment joining (3, —4)-and (7, 2).
Solution. From (2) the midpoint is
(647, 4=4+2)) =5, -1) <

If (xo, yo) is a fixed point in the plane, then the circle of radius r centered at (x0, yo) is the
set of all points in the plane whose distance from (xp, yp) is # (Figure D.5). Thus, a point

{x, ) will lie on.this circle if and only if

VE—x2+ G-yl =r
or. equwalent!y, ‘
(x — xo)2 + (y yzr)z =r* o 3
This is called the standard form of the equation of a circle. J
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Example 4 Find an edjuation for the circle of radius 4 centered at (—5, 3).

Solution. From (3) with xg = —5, yp = 3, and 7 = 4 we obtain

G+ +p—-32=16
If desired, this equation can be written in an expanded form by squaring the terms and then
simplifying; |

2 +10x+25) + ()2 =6y +9) — 16 = 0 _
224924+ 10x — 6y + 18 =0 > |
Example 5 Findan equation for the circle with center (1, —2) that passes through (4, 2).

Solution. The radius r of the circle is the distance between (4, 2) and 1, ~2),50
r=y(1 -4+ (-2-2%=5

‘We now know the center and radius, so we can use (3) to obtain the equation

C=12+0+22=25 o 2?4y’ —2+4y—-20=0 <

‘When you encounter an equation of form (3), you will know immediately that its graphis a

circle; its center and radins can then be found from the constants that appear in the equation:

N2 y N2
(x — x)? + (y — y0) - r2
'-..'\:..n‘c‘oi(l;;d‘in_atc.of the éeritér:\ié xbv ‘ : )%&(‘J'ordirlzabé:of the -:.;eme-t‘i's. yo rad:us squared

Example 6

EQUATION GOF A CIRCLE

CENTER (xg, ¥p) RADIUS r

(x-2)%+(y-5%=9 (2.5) 3
E+DP+p+1)?=16 7,~1) 4
24y =25 (0, 0) 5
=4 +y?=5 V5

(4, 0)

: <

The circle x* + y? = 1, which is centered at the origin and has radius 1, is of special
importance; it is called the unit circle (Figire D.6).

An alternative version of Equation (3)_ canbe obtained by squaring the terms and simplifying.
This yields an equation of the form ‘

x2+y2‘+dx+ey+f=‘-0- 4)
where d, e, and f are constants. (See the final equations in Examples 4 and 5.)

Still another version of the equation of a circle can be obtained by multiplying both sides
of (4) by a nonzero constant A. This yields an equation of the form

Ax* + AY* + Dx + Ey+F =0 (5)
where A, D, E, and F are constants and A # 0.
. Ifthe equation of a circle is given by (4) or (5), then the center and radius can be found by
first rewriting the equation in standard form, then reading off the center and radius from that
equation. The following example shows how to do this using the technique of completing
the square. In preparation for the example, recall that completing the square is a method
for rewriting an expression of the form.

x* 4 bx
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DEGENERATE CASES OF A CIRCLE
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as a difference of two squares. The procedure is to take half the coefficient of x, square it,
and then add and subtract that result from the original expression to obtain

1% 4 bx = x? + bix + B2 — (b/2? = [x + B/2)P — (B/2)

P

Example 7 Find the center and radius of the circle with equation

(@) x% +y* —8x +2y+8=0 () 2x2 +2y* + 24x — 81 =0
Solution (a). First, group the x-terms, group the y-terms, and take the constant to the right
side:

(x* — 8x) + (* +2y) = -8 |
Next we want to add the appropriate constant within each set of parentheses to complete
the square, and subtract the same constant outside the parentheses to maintain equality. The
appropriate constant is obtained by taking half the coefficient of the first-degree term and
squaring it. This yields

(> ~8x+16)— 16+ (2 +2y+1) ~1=—8
from which we obtain

=4+ O+ =-8+164+1 of (-4 +@+1)?=9
Thus from (3), the circle has center (4, —1) and radius 3.
Solution (b). The given equation is of form (5) with A = 2. We will first divide through
by 2 (the coefficient of the squared terms) to reduce the equation to form (4). Then we will
proceed as in part (a) of this example. The computatxons are as follows: '

A4y -%=0

P2 +yt=Y

(2 + 122 +36) + 3% = Y 436 | Vie compieted th squae. |
(+6)7+y* =12

From (3), the circle has center (-6, 0) and radius JB ’53 <«

There is no guarantee that an equation of form (5) represents a circle. For example, suppose
that we divide both sides of (5) by A, then complete the squares to obtain '

= x0 + (=) =k
Depending on the value of k, the following situations occur:

e (k> 0) The graph isa circle with center (xo, yo) and radius v/%.
e (k=0) Theonly solution of the equation is x = xg, y = yj, so the graph is the single
point (xo, yo).

e (k< 0) Theequationhas no real solutions and,cdnsequently no graph.

Example 8 Describe the graphs of
@ G-+ +8*=-9 O x=12+G+4>=0

Solution (a). There are no real values of x and y that will make the Ieft side of the equation
negative. Thus, the solution set of the equation is empty, and the equation has no graph.

‘Solution (b). The only Valdes of x and y that will make the left side of the equation O are

x =1, y = —4. Thus, the graph of the equation is the single point {1, —4). |
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The following theorem summarizes our observations.

| D3 THEOREM. An equation of the form

©) |

{ where A # 0, represents a circle, or a point, or else has no graph.

? REMARK.  The last two cases in Theorem D.3 are called degenerate cases. In spite of

5 ‘the fact that these degenerate cases can occur, (6) is often called the general equation of a
i circle.

An equation of the form
y=ax*+bx+c (@#£0) , : (N

is called a quadratic equation in x. Depending on whether a is positive or negative, the
graph, which is called a parabola, has one of the two forms shown in Figure D.7. In both
cases the parabola is symmetric about a vertical line parallel to the y-axis. This line of
symmetry cuts the parabola at a point called the vertex. The vertex is the low point on the
curve if a > O and the high point if a <0

~.

AY Ay
‘fyertex
Py
{ !
/ i .
|
[ \\
| Vertex . - i ' x
~b/(2a) il | —bi(2a) ]
{y=ad+brec] y%axzébx-ﬁc
G?Q ! a<0

Figure D.7 »

- In the exercises (Exercise 78) we will help the reader show that the x-coordinate of the
vertex is given by the formula

®

Wlth the a1d of this formula, a reasonably accurate graph of a quadratic equauon in x can
be obtained by plotting the vertex and two points on each side of it.

Example 9 Sketch the graph of
@y=x"-2x-2 (b)) y=-x2+4x-5

Solutwn (@), The equation is of form (7) witha =1, b = =2, and ¢ = —2, 50 by (8) the
x-coordinate of the vertex is
b
X = ——— =

2 |
Using this value and two additional values on each side, we obtain Figure D 8.
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Solution (B). The equation is of form (7) witha = —1,b =4, and ¢ = —5, s0 by (8) the

x-coordinate of the vertex is

__b _.
r=—s =2
Using this value and two additional values on each sxde, we obtain the table and graph in

Figure D9. <

Quite often the intercepts of a parabola y = ax® + bx + ¢ are important to know.

‘The y-intercept, y = ¢, results immediately by setting x = (. However, in order to obtain

the x-mtercepts if any, we must set y = 0 and then solve the resulting quadratic equation
ax*+bx+e=0.

Example 10 Solve the inequality
X —2x-250

Solution. Because the left side of the inequality does not have readily discernible factors,
the test-value method illustrated in Example 4 of Appendix A is not convenient to- use.
Instead, we will give a graphmal solution. The given inequality is satisfied for those values
of x where the graph of y = x2 — 2x — 2 is above the x-axis. From Figure D.8 those are
the values of x to the left of the smaller intercept or to the right of the larger intercept. To
find these intercepts we set y = 0 to obtain

=2 -2=0
Solving by the quadratic formula gives
—~btbr—dac 24 4/12 o
_ Vb 4ac= if:liﬁ'
2a 2
Thiis, the x-intercepts are

x=1+v3%27 and x=1-+3~-07
and the solution set of the inequality is :
(~a0, 1 = V/3) U (1 4 +/3, 40) | <

* REMARK. Nofte that the decimal approximations of the intercepts calculated in the preced-
i ing example agree with the graph in Figure D.8. Observe, however, that we nsed the exact
t values of the intercepts to express the solution. The choice of exact versus approximate
values is often a matter of judgment that depends on the purpose for which the values are to
¢ be used. Numerical approximations often provide a sense of size that exact values do. not,
¢ but they can introduce severe errors if not used with care.

Exampl’e' 11 From Figure D.9 we see. that the parabola y = —x2 + 4x — 5 has no
x-intercepts. This can also be seen algebraically by solving for the x-intercepts, Setting
¥ == 0 and solving the resulting equation

—x’44x~5=0
by the quadratic formula yields
—4+ 416 —20 )
Because the solutions are not real numbers, there are no x-intercepts. «

Example 12 A ball isthrown straight up from the surface of the Barth at time ¢ = 0's
with an initial" velocxty of 24.5 m/s. If air resistance 1is ignored, it can be shown that the
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distance s (in meters) of the ball above the ground after ¢ seconds is given by

5§ = 24.5¢t — 4.9¢ - . : (9)
(a)  Graph s versus ¢, making the #-axis horizontal and the s-axis vertical.
(b) How high does the ball rise above the ground? g

Solution (a). Equation (9) is of form (7) with g = —4. 9, b == 24 5,and ¢ = 0, so by (8)
the t-coordinate of the vertex is

b 24.5
P T T Taag) T2

and consequently the s-coordinate of the vertex is
§ =24.5Q2.5) — 4.9(2.5)* = 30.625m
 The factored form of (9) is
5 =495 1)

so the graph has z-intercepts ¢ = Q-and ¢ == 5. From the vertex and the intercepts we obtain
the graph shown in Figure D.10.

Solution (b) From the s-coordinate of the vertex we deduce that the ball rises 30,625 '
above the ground. |

If x and y are interchanged in (7), the resuling equation,
X = ay2‘+ by+c

is called a quadratic equation in y. The graph of such an equation is a parabola withits line
of symmetry parallel to the x-axis and its vertex at the point with y-coordinate y = —&/ (2a)
(Figure D.11). Some problems relating to such equations appear in the exercises.
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Figure D.11

on»uo.eoauunsaoooouavﬁoquon-vcunuw.tw.«!»nn.mvuno%aouaqwqaew.vcwovoﬁu@uavﬂc»~ucw¢

1. Where in this section did we use the fact that the same scale 4. A(2,0), B(-3, 6) 5. A(=2, —6), B{-17, 44)

was used on both coordinate axes‘?

InExercises 6-10, use the distance formula to solve the given

- In Exercises 2-5, find | problem.
(a) the distance between A and B | e
(b) the midpoint of the Jine segment ]ommg A and B. v 6. Provethat (1, 1), (—2, ~8), and (4, 10) lie on a straight line.

2. AQ,5), B(~1,1)

; ™ 7. Prove that the triangle with vertices (5, —2), (6, 5), (2.2) is
3, AT, 1), B (1, 9) isosceles.




8. Prove that (1, 3), (4, 2), and (—2, —6) are vertices of a right
triangle and then Specxfy the vertex at which the right angle
occurs.

9. Prove that (0, —2), (—4, 8), and (3, 1) lie on a circle with
center (—2, 3).

10. Prove that forall values of ¢ the point (£, 2r —
tant from (0, 4) and (8, 0).

11. Findk, g‘iven that (2, k) is equidistant from (3, 7) and (9, 1).

12. Find x and yif 4, —5) is the mldpomt of f.he line segment
Jommg (—3 2) and (x, y)

6) is-equidis-

In Exerczses 13 and 14, find an equauon of the given line.

13. The line is the perpendxcu!ar bisector of the line segment
joining (2, 8) and (-4, 6).

14. The line is the perpendicular bisector of the line segment
Jjoining (5, 1) and (4, 8).

15. Find the point on the line 4x — 2y + 3 = 0 that is equidis-
tant from (3, 3) and (7, —3). [Hint: First find an equation of
the line that is the perpendicular bisector of the line segment
joining (3,3) and (7, -3).]

16. Find the distance from the point (3, —2) to the line
(@) y=4 ®) x=-1.

17. Find the distance from (2, 1) to the line 4x — 3y + 10 = 0.
[Hint: Find the foot of the perpendicular dropped from the
point to the line.]

18. Find the distance from (8, 4) to the line 5x + 12y — 36 = 0.
[Hint: See the bint in Exercise 17.]

19. Use the method: described in Bxercise 17 to prove that the
distance d from (xo, yo) to the line Ax + By + C = 0is

|Axo + Byo + C|

VA 4+ B?

20, Use the formula in Exercise 19 to solve Exercise 17.

d =

21. Use the formula in Exercise 19 to solve Exercise 18.

22. Prove: For any triangle, the perpendicular bisectors of the
sides meet at a point. [Hint: Position the triangle with one
vertex on the y-axis and the oppesite side on the x-axis, so
that the vemces are (0, a), (b 0), and (¢, 0).]

In EX&I‘CISCS 23 and 24, ﬁnd the center and ra.dlus of each
cn‘cle

23. () x*+y2 =125
®) x— 12+ —4>=16
© E+1D?+ G +3P=
(@ P+ +27? =1

24. (@) ¥*+y*=9

(®) (x =3+ (y ~5)% =36 v -

© +42+ G +1D2 =8
@ G+ 12452 =1

- 47. Graph

. () x*+ 3y —6x +'4y =13; P(4,3).
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In Exercises 25-32, find the standard equation of the circle
sausfymg the given conditions. :

25. Center (3 —2); 1adius =
26. Center (1, 0); diameter = «/Sw
27. Center (—4, 8); circle is tangent to the x-axis.

~ 28. Center (5, 8); circle is tangent to the y-axis.
29. Center (—3,
30. Center (4, —5); circle passes through (1, 3).

~4); circle passes through the origin.

31. A diameter has endpoints (2, 0) and (0, 2).
32. A diameter has endpoints (6 l) and( 2 3)

| In Exercxses 33~—44 determine whether the equat:on repre— :
| sents a citcle, 2 point, or na graph. If the equation represents |
2 cucle, find the center and radxus f

—

33 r 4y —2x—~4dy—11=0
3. 2 +y +8x+8=0
35. 27+ 2% +dx —4y =0
36, 6x% + 6y? — 6x + 6y =3
37. 22+ + 2 +2y+2=0
38 x4y —dx~6y+13=0
39, 9% 49y2 =1
40. (x*/4) + */4) =1
41 22+ y2 410y +26 =0
42, x>+ y* =~ 10x — 2y +29 =0
43. 16x2 +16y* +40x + 16y —7=0
44, 4x* +4y? — 16x ~ 24y =0
45, Find an equation of _
(@) thebottom half of the cixcle x* + y* = 16
(b) the top half of the circle x2 + y? -+ 2x —4y + 1 =0.
46. Find an equation of
(a) the right half of the circle x* +y2 = 9
(b) the left half of the circle x2 4+ y? — 4x +3 =90,
(@) y=

V5= %2 () y = /5 +4x — 22
(@) x=—/4d—y? by x =3+/4—y.

49. Find an eguation of the line that is tangent to the circle
gyt =25 |
at the point (3, 4).on the circle.

50. Find an equation of the line that is tangent to the circle at
the point P on the circle
@ 2> +y*+2x =9; P2,—1)

51. For the circle x* + y* = 20 and the point P(—1, 2):
-(a) Is P inside, outside, or on the circle?
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(b) Find the largest and smallest distances between P and

points on the circle,
52. Follow the directions of Exercise 51 for the circle
x4y =2y —4=0
~ and the point P (3, ).
53. Referring to the accompanying figure, find the coordinates

of the points T and 7", where the lines L and L’ are tangent
to the circle of radius 1 with center at the origin.

s
-

Rigure Ex-53

54. A point (x, y) moves so that its distance to (2,0) is /2
times its distance to (0, 1).
-(a} Show that the point moves along a circle.

(b) Find the center and radius.

A point (x, y) moves so that the sum of the squares of its
distances from (4, 1) and (2, —5) i8 45,

(a) Show that the point moves along a circle.

(b) Find the center and radius.
56. Find all values of ¢ for which the system of equations

55,

»

fx*~y*=0

has 0, 1,2, 3, or 4 solutions. [Hinz: Sketch a graph.]

AXES.
57. y=x"+2 58, y=x"~3
59 y=x24+2x -3 60. y=x2-3x—4
6L y=—x>4+4x+5 62. y=—x*+x
63. )' = (x —2)? 64. y=(3+x)?

66. x> +8x+8y =0
68 y=x+x+2
70. x = yz'—4‘y +5

65. x* — 2% + y=0
67. y=3x*-2x +1
69, x'=—y>+2y+2
71. Find an equation of

(a) the right half of the parabola y = 3 — x2

(b) the left half of the parabola y =x?% ~2x.
72. Find an equation of

(a) the upper half of the parabola x = y -5

(b) the lower half of the parabola X = y —y—2

73. Graph
@ y=vx+5 (b) x==y2-y.

In Bxercises 57-70, graph the parabola.and label the coordi-
. nates of the vertex and. the intersections with the coordinate |

a4, Graph

(a) y==,1+.«/4ﬁx' () x =3+ /3.

75. 1f a ball is thrown straight up with an initial velocity of
32.ft/s, then after ¢ seconds the distance s above its starting
height, in feet, is given by s = 32t — 1662,

(a) Graph this equation in a fs-coordinate system (z-axis

horizontal),
(by At what time ¢ will the hall be at its. hlghest point, and
how high will it rise?

76, A rectangular field is to be enclosed with 500t of fencing

along three sides and by a straight stream o the fourth side.,
Let x be the length of each side perpendicular to the stream,
and et y be the length of thie side parallel to the stream

(2) Express y in'terms of x.

(b) Express'the area A of the field in terms of x.

(c) What is the largest area that can be enclosed?

77. Arectangular plot of land is to be enclosed using two kinds
of fencing. Two opposite sides will have heavy-duty fenc-
ing costing $3/ft, and the other two.sides will have standard
fencing costing $2/ft. A total of $600 is available for the
fencing. Let x be the length of each side with the heavy-
duty fencing, and let y be the length of each side with the
standard fencing.

(a) Express y in terms of x.

(b) Find a formula for the area A of the rectangular plot in
terms of x.

{c) What is the largest area that can be enclosed?

78. (a) By completing the square, show that the quadraticequa-

tion y = ax* 4 bx + ¢ can be rewritten as

N ( b 2 ) n?
.yﬁtl_(x+§;) +(_.4:)

ifas£0.

(b) Use-the result in part (a) to show that the graph of the
quadratic equation y = ax?+ bx + ¢ has its high point
at x = —b/(2a) if a < 0 and its low point there if
a> Q.

rs s iy

i

|

In Exercises’ 79 and 80 solve the glven mequahty

79. (8) 2% +5x-1<0
80. (8 x*+x-1>0

(b) 3 -2x+3>0
®) x*—4x +6 <0

81. Attimet = ( a ball is thrown straight up from 2 height of
5 ft above the ground. After ¢ seconds.its distance s, in feet,
above the ground is given by s = 5 + 40¢ — 1682, :
(a) Find the maximum height of the ball above the ground.
{b) Find, to the nearest tenth of a second, the time when the

‘ball strikes the ground.
(¢) Find, fo the nearest tenth of a second, how long the ball
will bemore than 12.ft above the ground,

82. Find all values of x at which points on the parabola y = x*
lie below the line y = x + 3,




