DO NOW, please:

1. Read the paragraphs and exam questions.

2. Circle the words that you think would be an obstacle to an English Language Learner's ability to comprehend these passages.

3. Be prepared to **share**.

SIOP in the Secondary Science Classroom: Effective Instruction

for English Language Learners

Changing Suburbs Institute 2013 Educational Forum Manhattanville College March 5, 2013

Bedford Central School District

- Adrienne Viscardi
 Director of ESOL Programs
- Andrea Abt ESOL teacher, Fox Lane High School
- Rita Sanchez
 ESOL teacher,
 Fox Lane Middle School

Objectives

We will

- describe one district's approach to the implementation of the Sheltered Instruction Observation Protocol (SIOP);
- describe the program design and delivery model for ELLs in science, grades 6-12;
- explain and demonstrate effective strategies for teaching ELLs in the science classroom.

Professional development: SIOP

- Pilot began in 2006
- 5-6 day training modules

- Training, planning, and coaching
- Introduced through induction process

Distribution of 75+ teachers trained in Bedford CSD

What SIOP is...

- a **model** of instruction that integrates content and language instruction
- an instrument for planning, delivery, and assessment
- for ESL teachers, content-area teachers, co-teachers, and collaborative teams
- excellent instruction for all that has particular benefits for ELLs

What SIOP isn't...

• for English language learners only

o for content-area teachers only

• for ESL teachers only

• a model that requires cookie-cutter lessons

• just "good teaching"

Components of SIOP

- Content and language objectives
- Building background
- Comprehensible input
- Interaction

	ELLs in Science, grades 6-12
Middle School	High School
ESL Science	ESL Science Literacy
ESOL teacher	ESOL teacher
Beginning/intermediate	Beginning (ESL 1)
Grades 6-8	Grade 9/newcomers
SIOP Science 7	ESL Science
Science teacher/ESOL teacher	Science teacher/ESOL teacher
Intermediate+	Intermediate (ESL 2)
Grade 7	Grades 9-10
SIOP Science 8	Living Environment Regents
Science teacher/ESOL teacher	Science teacher with
Intermediate+	instructional assistant
Grade 8	Grades 10-12

SIOP in the Science Classroom

Who Are We?

Rita Sanchez

ESOL Teacher Fox Lane Middle School, BCSD

Class Description: 8th grade Physical Science

> 24 students: 6 ELLs: int./adv. - 2 newcomers 1 Special Education 15 English-Only & Former ELLs

Need to be ready for: New York State Science test - spring

SIOP in the Science Classroom

Who Are We?

Andrea Abt ESOL Teacher Fox Lane High School, BCSD

Class Description:

ESL 2 Science - 9th /10th graders Living environment content Credit bearing 19 students: -beginner &intermediate ELLs -12 SIFE -2 newcomers

Need to be ready for:

Living Environment mainstream class Regents exam –June

SIOP in the Science Classroom

S

To successfully learn science content ELLs need ...

SIOP in the Science Classroom

science content-specific words

general academic words

Science Content- Specific Vocabulary	General Academic Vocabulary	Multiple Meanings
electromagnetic	determine	table
mitosis	represent	mass
sodium chloride	attribute	wave
organelles	approximate	property

FIGURE 1.1	Hiebert's Challenges and	Assets of Learning Scien	ce Vocabulary (Hiebert, 200	8)
------------	--------------------------	--------------------------	-----------------------------	----

Challenges	Assets
 Dense Conceptually difficult Central to text General academic vocabulary Not much time for science instruction 	 Clear delineation of vocabulary Build-up of ideas Concepts can be taught thematically Many clear Spanish cognates Potential for high levels of engagement
 6. Lack of background knowledge 7. SIFE 8. Lack of dedicated time for labs 9. Overlap with math concepts 	 6. Lab experiences promote interaction 7. Overlap with math concepts

(Short, Vogt, and Echevarria, 2011)

Key SIOP Components Help Students Achieve Academically in Science

Lesson Preparation: • Collaborative planning

- Content and language objectives
- Enlarge/adapted textdifferentiated material
- Alternate materials
- Scaffolded notes key concepts and units
- Weekly vocabulary /homework
- Review and reteaching concepts
- Opportunities for interaction

Objectives are key!

Content Objective:
 SWBAT identify the SWBAT creative of properties of protons, of terms with neutrons, and electrons.

• Language Objective: SWBAT create a glossary of terms with original sentences.

SIOP in the Science Classroom

Building Background Knowledge

Explicit vocabulary instruction and multiple exposures are essential!

* personal glossaries:

terms, illustrations and definitions

- Frayer model
- Word walls
- Power writing

SIOP in the Science Classroom

- $\boldsymbol{\bigstar}$ Vocabulary cards in key rings
- Word wall, signal words posters
- ✤ Video clips <u>and animations</u>
- ✤ <u>Quizlet</u>
- ✤ Features of text genres
- ✤ <u>Science magazines</u>

Frayer Model

Comprehensible Input

- Hands-on activities
- Interactive SmartBoard slides
- Frayer models
- Leveled texts

SIOP in the Science Classroom

- Scaffolded notes
 - Framed outlines
 - Visuals
- Graphic organizers
 - Key words
- Differentiated labs
- Conversational approach leading to content-specific words

Scaffolded Notes Academic Vocabulary

Graphic Organizers Key Words

» ENDOPLASMIC RETICULUM

-system of fluid-filled canals or	
-paths for the transport of materials through the cell.	

Rough ER -

Smooth ER-

Fill in the blank with a preposition:

Rough ER has ribocomes and provide a pathway ______ proteins being made.
Smooth ER does not have any ribocomes ______ its surface.

• RIBOSOMES Small particles - site for _____ synthesis.

MR. H. STRANGER

LIFE PROCESSES	KEY WORD	EXAMPLE
METABOLISM		
REGULATION		
HOMEOSTASIS		
SYNTHESIS		
TRANSPORT		
RESPIRATION		
ASSIMILATION		
NUTRITION		
GROWTH		
EXCRETION		
REPRODUCTION		

Scaffolded Notes Academic Vocabulary

endoplasmic reticulum (ER)
-system of fluid-filled canals or
Rough ER- and with attached aborance
Smooth ER- NO ribosomes
Endoplasmic Reticulum
Fill in the blank with a preposition:
Rough ER has ribosomes and provide a pathway for proteins being made
Smooth ER does not have any ribosomes its surface.
" attached" free " (floating) RIBOSOMES
Small particles -jsite for protein synthesis.

Graphic Organizers Key Words

Term	Key Word Definition	Example of Process
Metabolism	All	"SKenny boy"
Regulation	Cartral	shiver of you're cold Broth
Homeostasis**	Coretent	temporature
Synthesis		photosuntees
Transport	movement	blod moving 1
Respiration .		petmhondra
Assimilation	oncorportation	food
Nutrition	token en	eting
Growth	- PHOTRASO	body -+ boy
Excretion	at	

Differentiated Labs

Nome:

Dete:

ESU 2 Science - Lions

LAB: ATOMS, IONS, AND ISOTOPES

Introduction:

An atom is the building block of all matter. Matter that is composed of only one type of atom is called an element. We can find information on chemical elements in the periodic table of elements.

An atom consists of a central nucleus (positive protons and neutral neutrons) surrounded by one or more electrons (negative charge).

The charge of an atom is neutral because it has the same number of protons and electrons, which means the same number of positive and negative charges. An atom becomes an ion if it gains or loses an electron (negative charge).

Atoms that have the same number of protons are atoms of the same element. For example, ALL ATOMS with an ATOMIC NUMBER OF 6 (6 protons) are CARBON ATOMS.

SIOP in the Science Classroom

Name:

Date:

LAB: ATOMS, IONS, AND ISOTOPES

Introduction:

An atom is the building block of all matter. Matter that is composed of only one type of atom is called an element. We can find information on chemical elements in the periodic table of elements.

An atom consists of a central nucleus (positive protons and neutral neutrons) surrounded by one or more electrons (negative charge)

The charge of an atom is neutral because it has the same number of protons and electrons, which means the same number of positive and negative charges. An atom becomes an ion if it gains or loses an electron (negative charge).

Atoms that have the same number of protons are atoms of the same element. For example, ALL ATOMS with an ATOMIC NUMBER OF 6 (6 protons) are CARBON ATOMS. So, carbon atoms always have the same number of protons, but not all carbon atoms have the same number of neutrons. ATOMS OF THE SAME ELEMENT WITH THE SAME NUMBER OF PROTONS BUT DIFFERENT NUMBER OF NEUTRONS ARE CALLED ISOTOPES.

For example, some carbon atoms have 6 neutrons (we call these carbon atoms *Carbon 12*), and some have 8 neutrons (we call these carbon atoms *Carbon 14*). These are isotopes of Carbon. Isotopes are identified by their element name and their mass number. The mass number of an atom is equal to the number of protons plus the number of neutrons. Therefore, Carbon 14 has a mass number of 14 amu (atomic mass unit) because it has 6 protons and 8 neutrons.

ESL 2 Science - Chestaho

Interaction

- Total participation technique
- Small-group work
- Manipulatives
- Concept circles with partners
- Opportunities for students to clarify key concepts in L1 as needed
- Group projects
- Lab partners heterogeneous and homogeneous

For Additional Information:

- The SIOP Model for Teaching Science to English Learners by Short, Vogt and Echevarria (2011)
- Making Science Accessible to English Learners by Carr, Sexton and Lagunoff (2007)
- Inside Words by Janet Allen (2007)

www. bcsdny.org

Rita Sanchez rsanchez3201@bcsdny.org Andrea Abt aabt2822@bcsdny.org