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C H A P T E R  2

Motion Along a Straight Line

2-1  POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

What Is Physics?
One purpose of physics is to study the motion of objects—how fast they move, for 
example, and how far they move in a given amount of time. NASCAR engineers 
are fanatical about this aspect of physics as they determine the performance 
of their cars before and during a race. Geologists use this physics to measure 
tectonic-plate motion as they attempt to predict earthquakes. Medical researchers 
need this physics to map the blood flow through a patient when diagnosing a par-
tially closed artery, and motorists use it to determine how they might slow suf-
ficiently when their radar detector sounds a warning. There are countless other 
examples. In this chapter, we study the basic physics of motion where the object 
(race car, tectonic plate, blood cell, or any other object) moves along a single axis. 
Such motion is called one-dimensional motion.

Key Ideas 
● The position x of a particle on an x axis locates the par-
ticle with respect to the origin, or zero point, of the axis.

● The position is either positive or negative, according 
to which side of the origin the particle is on, or zero if the 
particle is at the origin. The positive direction on an axis is 
the direction of increasing positive numbers; the opposite 
direction is the negative direction on the axis.

● The displacement Δx of a particle is the change in its 
position:

Δx = x2 − x1.

● Displacement is a vector quantity. It is positive if the 
particle has moved in the positive direction of the x axis and 
negative if the particle has moved in the negative direction.

● When a particle has moved from position x1 to position 
x2 during a time interval Δt = t2 − t1, its average velocity 
during that interval is

vavg =
Δx
Δt

=
x2 − x1

t2 − t1
.

● The algebraic sign of vavg indicates the direction of 
motion (vavg is a vector quantity). Average velocity does 
not depend on the actual distance a particle moves, but 
instead depends on its original and final positions. 

● On a graph of x versus t, the average velocity for a time 
interval Δt is the slope of the straight line connecting 
the points on the curve that represent the two ends of 
the interval. 

● The average speed savg of a particle during a time 
interval Δt depends on the total distance the particle 
moves in that time interval: 

savg =
total distance

Δt
.

Learning Objectives 
After reading this module, you should be able to . . . 

2.01 Identify that if all parts of an object move in the 
same direction and at the same rate, we can treat the 
object as if it were a (point-like) particle. (This chapter 
is about the motion of such objects.)

2.02 Identify that the position of a particle is its location 
as read on a scaled axis, such as an x axis.

2.03 Apply the relationship between a particle’s 
displacement and its initial and final positions.

2.04 Apply the relationship between a particle’s average 
velocity, its displacement, and the time interval for that 
displacement.

2.05 Apply the relationship between a particle’s average 
speed, the total distance it moves, and the time inter-
val for the motion.

2.06 Given a graph of a particle’s position versus time, 
determine the average velocity between any two par-
ticular times. 
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Motion
The world, and everything in it, moves. Even seemingly stationary things, such as a 
roadway, move with Earth’s rotation, Earth’s orbit around the Sun, the Sun’s orbit 
around the center of the Milky Way galaxy, and that galaxy’s migration relative to 
other galaxies. The classification and comparison of motions (called kinematics) is 
often challenging. What exactly do you measure, and how do you compare?

Before we attempt an answer, we shall examine some general properties of 
motion that is restricted in three ways.

1.	 The motion is along a straight line only. The line may be vertical, horizontal, 
or slanted, but it must be straight.

2.	 Forces (pushes and pulls) cause motion but will not be discussed until  
Chapter 5. In this chapter we discuss only the motion itself and changes in 
the motion. Does the moving object speed up, slow down, stop, or reverse 
direction? If the motion does change, how is time involved in the change?

3.	 The moving object is either a particle (by which we mean a point-like object 
such as an electron) or an object that moves like a particle (such that every 
portion moves in the same direction and at the same rate). A stiff pig slipping 
down a straight playground slide might be considered to be moving like a par-
ticle; however, a tumbling tumbleweed would not.

Position and Displacement
To locate an object means to find its position relative to some reference point, 
often the origin (or zero point) of an axis such as the x axis in Fig. 2-1. The positive 
direction of the axis is in the direction of increasing numbers (coordinates), which 
is to the right in Fig. 2-1. The opposite is the negative direction.

For example, a particle might be located at x = 5 m, which means it is 5 m in 
the positive direction from the origin. If it were at x = −5 m, it would be just as far 
from the origin but in the opposite direction. On the axis, a coordinate of −5 m 
is less than a coordinate of −1 m, and both coordinates are less than a coordinate 
of +5 m. A plus sign for a coordinate need not be shown, but a minus sign must 
always be shown.

A change from position x1 to position x2 is called a displacement Δx, where

	 Δx = x2 − x1.	 (2-1)

(The symbol Δ, the Greek uppercase delta, represents a change in a quantity, 
and it means the final value of that quantity minus the initial value.) When 
numbers are inserted for the position values x1 and x2 in Eq. 2-1, a displacement 
in the positive direction (to the right in Fig. 2-1) always comes out positive, and 
a displacement in the opposite direction (left in the figure) always comes out 
negative. For example, if the particle moves from x1 = 5 m to x2 = 12 m, then 
the displacement is Δx = (12 m) − (5 m) = +7 m. The positive result indicates 
that the motion is in the positive direction. If, instead, the particle moves from 
x1 = 5 m to x2 = 1 m, then Δx = (1 m) − (5 m) = −4 m. The negative result indi-
cates that the motion is in the negative direction.

The actual number of meters covered for a trip is irrelevant; displacement 
involves only the original and final positions. For example, if the particle moves 
from x = 5 m out to x = 200 m and then back to x = 5 m, the displacement from 
start to finish is Δx = (5 m) − (5 m) = 0.

Signs.  A plus sign for a displacement need not be shown, but a minus sign 
must always be shown. If we ignore the sign (and thus the direction) of a displace-
ment, we are left with the magnitude (or absolute value) of the displacement. For 
example, a displacement of Δx = −4 m has a magnitude of 4 m.

Figure 2-1  Position is determined on an 
axis that is marked in units of length (here 
meters) and that extends indefinitely in 
opposite directions. The axis name, here x, 
is always on the positive side of the origin.
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Displacement is an example of a vector quantity, which is a quantity that has 
both a direction and a magnitude. We explore vectors more fully in Chapter 3, 
but here all we need is the idea that displacement has two features: (1) Its mag-
nitude is the distance (such as the number of meters) between the original and 
final positions. (2) Its direction, from an original position to a final position, can 
be represented by a plus sign or a minus sign if the motion is along a single axis.

Here is the first of many checkpoints where you can check your understanding 
with a bit of reasoning. The answers are in the back of the book.

2-1  POSITION, DISPLACEMENT, AND AVERAGE VELOCITY

  Checkpoint 1
Here are three pairs of initial and final positions, respectively, along an x axis. Which 
pairs give a negative displacement: (a) −3 m, +5 m; (b) −3 m, −7 m;  (c) 7 m, −3 m?

Average Velocity and Average Speed
A compact way to describe position is with a graph of position x plotted as a func-
tion of time t—a graph of x(t). (The notation x(t) represents a function x of t, not 
the product x times t.) As a simple example, Fig. 2-2 shows the position function 
x(t) for a stationary armadillo (which we treat as a particle) over a 7 s time inter-
val. The animal’s position stays at x = −2 m.

Figure 2-3 is more interesting, because it involves motion. The armadillo 
is apparently first noticed at t = 0 when it is at the position x = −5 m. It moves 

Figure 2-2  The graph of 
x(t) for an armadillo that 
is stationary at x = −2 m. 
The value of x is −2 m 
for all times t.
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Figure 2-3  The graph of x(t) for a moving armadillo. The path associated with the graph is also shown, at three times.
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Figure 2-4  Calculation of the 
average velocity between t = 1 s 
and t = 4 s as the slope of the line 
that connects the points on the 
x(t) curve representing those times. 
The swirling icon indicates that a 
figure is available in WileyPLUS 
as an animation with voiceover.
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toward x = 0, passes through that point at t = 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2-3 also depicts the straight-line motion 
of the armadillo (at three times) and is something like what you would see. The 
graph in Fig. 2-3 is more abstract, but it reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One 
of them is the average velocity vavg, which is the ratio of the displacement Δx that  
occurs during a particular time interval Δt to that interval:

	 vavg =
Δx
Δt

=
x2 − x1

t2 − t1
.	 (2-2)

The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the 
problems, but they are always in the form of length/time.

Graphs.  On a graph of x versus t, vavg is the slope of the straight line that 
connects two particular points on the x(t) curve: one is the point that corresponds 
to x2 and t2, and the other is the point that corresponds to x1 and t1. Like displace-
ment, vavg has both magnitude and direction (it is another vector quantity). Its 
magnitude is the magnitude of the line’s slope. A positive vavg (and slope) tells us 
that the line slants upward to the right; a negative vavg (and slope) tells us that the 
line slants downward to the right. The average velocity vavg always has the same 
sign as the displacement Δx because Δt in Eq. 2-2 is always positive.

Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t = 1 s to t = 4 s. 
We draw the straight line that connects the point on the position curve at the begin-
ning of the interval and the point on the curve at the end of the interval. Then we find 
the slope Δx/Δt of the straight line. For the given time interval, the average velocity is

vavg =
6 m
3 s

= 2 m/s.

Average speed savg is a different way of describing “how fast” a particle 
moves. Whereas the average velocity involves the particle’s displacement Δx, the 
average speed involves the total distance covered (for example, the number of 
meters moved), independent of direction; that is,

	 savg =
total distance

Δt
.	 (2-3)

Because average speed does not include direction, it lacks any algebraic sign. 
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the 
two can be quite different.
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Calculation:  Here we find

	  vavg =
Δx
Δt

=
10.4 km
0.62 h

	  = 16.8 km/h ≈ 17 km/h.	 (Answer)

To find vavg graphically, first we graph the function x(t) as 
shown in Fig. 2-5, where the beginning and arrival points on 
the graph are the origin and the point labeled as “Station.” 
Your average velocity is the slope of the straight line connecting 
those points; that is, vavg is the ratio of the rise (Δx = 10.4 km) 
to the run (Δt = 0.62 h), which gives us vavg = 16.8 km/h.

(d)  Suppose that to pump the gasoline, pay for it, and walk 
back to the truck takes you another 45 min. What is your 
average speed from the beginning of your drive to your 
return to the truck with the gasoline?

KEY IDEA

Your average speed is the ratio of the total distance you 
move to the total time interval you take to make that move.

Calculation:  The total distance is 8.4 km + 2.0 km + 2.0 km 
= 12.4 km. The total time interval is 0.12 h + 0.50 h + 0.75 h 
= 1.37 h. Thus, Eq. 2-3 gives us

	 savg =
12.4 km
1.37 h

= 9.1 km/h.
	

(Answer)

Sample Problem 2.01 Average velocity, beat‑up pickup truck

You drive a beat-up pickup truck along a straight road 
for 8.4 km at 70 km/h, at which point the truck runs out of 
gasoline and stops. Over the next 30 min, you walk another 
2.0 km farther along the road to a gasoline station.

(a)  What is your overall displacement from the beginning 
of your drive to your arrival at the station?

KEY IDEA

Assume, for convenience, that you move in the positive 
direction of an x axis, from a first position of x1 = 0 to a second 
position of x2 at the station. That second position must be at  
x2 = 8.4  km + 2.0 km = 10.4 km. Then your displacement Δx 
along the x axis is the second position minus the first position. 

Calculation:  From Eq. 2-1, we have

	 Δx = x2 − x1 = 10.4 km − 0 = 10.4 km.	 (Answer)

Thus, your overall displacement is 10.4 km in the positive 
direction of the x axis.

(b)  What is the time interval Δt from the beginning of your 
drive to your arrival at the station?

KEY IDEA

We already know the walking time interval Δtwlk (= 0.50 h), 
but we lack the driving time interval Δtdr. However, we 
know that for the drive the displacement Δxdr is 8.4 km and 
the average velocity vavg,dr is 70  km/h. Thus, this average 
velocity is the ratio of the displacement for the drive to the 
time interval for the drive.

Calculations:  We first write

vavg,dr =
Δxdr

Δtdr
.

Rearranging and substituting data then give us

Δtdr =
Δxdr

vavg,dr
=

8.4 km
70 km/h

= 0.12 h.

So,	 Δt = Δtdr + Δtwlk

	 = 0.12 h + 0.50 h = 0.62 h. 	 (Answer)

(c)  What is your average velocity vavg from the beginning of 
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that vavg for the entire trip is the ratio 
of the displacement of 10.4 km for the entire trip to the time 
interval of 0.62 h for the entire trip. 

Additional examples, video, and practice available at WileyPLUS

Figure 2-5  The lines marked “Driving” and “Walking” are the 
position–time plots for the driving and walking stages. (The plot 
for the walking stage assumes a constant rate of walking.) The 
slope of the straight line joining the origin and the point labeled 
“Station” is the average velocity for the trip, from the beginning 
to the station.
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Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average 
velocity and average speed, both of which are measured over a time interval Δt. 
However, the phrase “how fast” more commonly refers to how fast a particle is 
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking 
the time interval Δt closer and closer to 0. As Δt dwindles, the average velocity 
approaches a limiting value, which is the velocity at that instant:

	 v = lim
Δt→0

 
Δx
Δt

=
dx
dt

 .	 (2-4)

Note that v is the rate at which  position x is changing with time at a given instant; 
that is, v is the derivative of x with respect to t. Also note that v at any instant is 
the slope of the position–time curve at the point representing that instant. Veloc-
ity is another vector quantity and thus has an associated direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been 
stripped of any indication of direction, either in words or via an algebraic sign. 
(Caution: Speed and average speed can be quite different.) A velocity of +5 m/s 
and one of −5 m/s both have an associated speed of 5 m/s. The speedometer in a 
car measures speed, not velocity (it cannot determine the direction).

2-2  INSTANTANEOUS VELOCITY AND SPEED 
Learning Objectives 
After reading this module, you should be able to . . .

2.07 Given a particle’s position as a function of 
time, calculate the instantaneous velocity for any 
particular time.

2.08 Given a graph of a particle’s position versus time, deter-
mine the instantaneous velocity for any particular time. 

2.09 Identify speed as the magnitude of the instantaneous 
velocity. 

  Checkpoint 2
The following equations give the position x(t) of a particle in four situations (in each 
equation, x is in meters, t is in seconds, and t > 0): (1) x = 3t − 2; (2) x = −4t2 − 2;  
(3) x = 2/t2; and (4) x = −2. (a) In which situation is the velocity v of the particle 
constant? (b) In which is v in the negative x direction?

Calculations: The slope of x(t), and so also the velocity, is 
zero in the intervals from 0 to 1 s and from 9 s on, so then 
the cab is stationary. During the interval bc, the slope is 
constant and nonzero, so then the cab moves with constant 
velocity. We calculate the slope of x(t) then as

	
Δx
Δt

= v =
24 m − 4.0 m
8.0 s − 3.0 s

= +4.0 m/s.	 (2-5)

Sample Problem 2.02 Velocity and slope of x versus t, elevator cab

Figure 2-6a is an x(t) plot for an elevator cab that is initially 
stationary, then moves upward (which we take to be the 
positive direction of x), and then stops. Plot v(t).

KEY IDEA

We can find the velocity at any time from the slope of the 
x(t) curve at that time. 

Key Ideas 
● The instantaneous velocity (or simply velocity) v of a 
moving particle is 

	 v = lim
Δt→0

 
Δx
Δt

=
dx
dt

 ,

where Δx = x2 − x1 and Δt = t2 − t1.

●  The instantaneous velocity (at a particular time) may be 
found as the slope (at that particular time) of the graph of 
x versus t. 

● Speed is the magnitude of instantaneous velocity.
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Figure 2-6  (a) The x(t) curve for an elevator cab 
that moves upward along an x axis. (b) The v(t) 
curve for the cab. Note that it is the derivative 
of the x(t) curve (v = dx/dt). (c) The a(t) curve 
for the cab. It is the derivative of the v(t) curve 
(a = dv/dt). The stick figures along the bottom 
suggest how a passenger’s body might feel dur-
ing the accelerations.

Additional examples, video, and practice available at WileyPLUS

The plus sign indicates that the cab is moving in the positive 
x  direction. These intervals (where v = 0 and v = 4  m/s) 
are plotted in Fig. 2-6b. In addition, as the cab initially 
begins to move and then later slows to a stop, v varies as 
indicated in the intervals 1 s to 3 s and 8 s to 9  s. Thus, 
Fig. 2-6b is the required plot. (Figure 2-6c is considered in 
Module 2-3.)

Given a v(t) graph such as Fig. 2-6b, we could “work 
backward” to produce the shape of the associated x(t) graph 
(Fig. 2-6a). However, we would not know the actual val-
ues for x at various times, because the v(t) graph indicates 
only changes in x. To find such a change in x during any 
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interval, we must, in the language of calculus, calculate the 
area “under the curve” on the v(t) graph for that interval. 
For example, during the interval 3 s to 8 s in which the cab 
has a velocity of 4.0 m/s, the change in x is

	 Δx = (4.0 m/s)(8.0 s − 3.0 s) = +20 m.	 (2-6)

(This area is positive because the v(t) curve is above the 
t axis.) Figure 2-6a shows that x does indeed increase by 
20 m in that interval. However, Fig. 2-6b does not tell us 
the values of x at the beginning and end of the interval. For 
that, we need additional information, such as the value of x 
at some instant.
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Acceleration
When a particle’s velocity changes, the particle is said to undergo acceleration 
(or to accelerate). For motion along an axis, the average acceleration aavg over a 
time interval Δt is

	 aavg =
v2 − v1

t2 − t1
=

Δv
Δt

,	 (2-7)

where the particle has velocity v1 at time t1 and then velocity v2 at time t2. The 
instantaneous acceleration (or simply acceleration) is

	 a =
dv
dt

.	 (2-8)

In words, the acceleration of a particle at any instant is the rate at which its velocity 
is changing at that instant. Graphically, the acceleration at any point is the slope of 
the curve of v(t) at that point. We can combine Eq. 2-8 with Eq. 2-4 to write

	 a =
dv
dt

=
d
dt ( dx

dt ) =
d 2x
dt2 .� (2-9)

In words, the acceleration of a particle at any instant is the second derivative of 
its position x(t) with respect to time.

A common unit of acceleration is the meter per second per second: m/(s ⋅ s) 
or m/s2. Other units are in the form of length/(time ⋅ time) or length/time2. Accel-
eration has both magnitude and direction (it is yet another vector quantity). Its 
algebraic sign represents its direction on an axis just as for displacement and 
velocity; that is, acceleration with a positive value is in the positive direction of 
an axis, and acceleration with a negative value is in the negative direction.

Figure 2-6 gives plots of the position, velocity, and acceleration of an el-
evator moving up a shaft. Compare the a(t) curve with the v(t) curve — each 
point on the a(t) curve shows the derivative (slope) of the v(t) curve at the 
corresponding time. When v is constant (at either 0 or 4 m/s), the derivative is 
zero and so also is the acceleration. When the cab first begins to move, the v(t) 

2-3  ACCELERATION
Learning Objectives 
After reading this module, you should be able to . . . 

2.12 Given a graph of a particle’s velocity versus time, 
determine the instantaneous acceleration for any par-
ticular time and the average acceleration between any 
two particular times. 

● Average acceleration is the ratio of a change in velocity 
Δv to the time interval Δt in which the change occurs:

aavg =
Δv
Δt

.

The algebraic sign indicates the direction of aavg.

● Instantaneous acceleration (or simply acceleration) a 
is the first time derivative of velocity v(t) and the second 
time derivative of position x(t):

a =
dv
dt

=
d2x
dt2 .

● On a graph of v versus t, the acceleration a at any time t 
is the slope of the curve at the point that represents t. 

2.10 Apply the relationship between a particle’s average  
acceleration, its change in velocity, and the time 
interval for that change.

2.11 Given a particle’s velocity as a function of time, calcu-
late the instantaneous acceleration for any particular time.

Key Ideas 
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curve has a positive derivative (the slope is positive), which means that a(t) 
is positive. When the cab slows to a stop, the derivative and slope of the v(t) 
curve are negative; that is, a(t) is negative.

Next compare the slopes of the v(t) curve during the two acceleration pe-
riods. The slope associated with the cab’s slowing down (commonly called 
“deceleration”) is steeper because the cab stops in half the time it took to get 
up to speed. The steeper slope means that the magnitude of the deceleration is 
larger than that of the acceleration, as indicated in Fig. 2-6c.

Sensations.  The sensations you would feel while riding in the cab of  
Fig. 2-6 are indicated by the sketched figures at the bottom. When the cab first 
accelerates, you feel as though you are pressed downward; when later the cab is 
braked to a stop, you seem to be stretched upward. In between, you feel nothing 
special. In other words, your body reacts to accelerations (it is an accelerometer) 
but not to velocities (it is not a speedometer). When you are in a car traveling at 
90 km/h or an airplane traveling at 900 km/h, you have no bodily awareness of the 
motion. However, if the car or plane quickly changes velocity, you may become 
keenly aware of the change, perhaps even frightened by it. Part of the thrill of an 
amusement park ride is due to the quick changes of velocity that you undergo 
(you pay for the accelerations, not for the speed). A more extreme example is 
shown in the photographs of Fig. 2-7, which were taken while a rocket sled was 
rapidly accelerated along a track and then rapidly braked to a stop.�

g Units.  Large accelerations are sometimes expressed in terms of g units, with

	 1g = 9.8 m/s2      (g unit).� (2-10)

(As we shall discuss in Module 2-5, g is the magnitude of the acceleration of a 
falling object near Earth’s surface.) On a roller coaster, you may experience brief 
accelerations up to 3g, which is (3)(9.8 m/s2), or about 29 m/s2, more than enough 
to justify the cost of the ride.

Signs.  In common language, the sign of an acceleration has a nonscientific 
meaning: positive acceleration means that the speed of an object is increasing, and 
negative acceleration means that the speed is decreasing (the object is decelerat-
ing). In this book, however, the sign of an acceleration indicates a direction, not 
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Courtesy U.S. Air Force

Figure 2-7   
Colonel J. P. Stapp 
in a rocket sled as it 
is brought up to high 
speed (acceleration 
out of the page) and 
then very rapidly 
braked (acceleration 
into the page).
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whether an object’s speed is increasing or decreasing. For example, if a car with an 
initial velocity v = −25 m/s is braked to a stop in 5.0 s, then aavg = +5.0 m/s2. The ac-
celeration is positive, but the car’s speed has decreased. The reason is the difference 
in signs: the direction of the acceleration is opposite that of the velocity.

Here then is the proper way to interpret the signs:

  Checkpoint 3
A wombat moves along an x axis. What is the sign of its acceleration if it is moving 
(a) in the positive direction with increasing speed, (b) in the positive direction with 
decreasing speed, (c) in the negative direction with increasing speed, and (d) in the 
negative direction with decreasing speed?

Reasoning:  We need to examine the expressions for x(t), 
v(t), and a(t).

At t = 0, the particle is at x(0) = +4 m and is moving with 
a velocity of v(0) = −27 m/s—that is, in the negative direction 
of the x axis. Its acceleration is a(0) = 0 because just then the 
particle’s velocity is not changing (Fig. 2-8a).

For 0 < t < 3 s, the particle still has a negative velocity, 
so it continues to move in the negative direction. However, 
its acceleration is no longer 0 but is increasing and positive. 
Because the signs of the velocity and the acceleration are 
opposite, the particle must be slowing (Fig. 2-8b).

Indeed, we already know that it stops momentarily at 
t = 3 s. Just then the particle is as far to the left of the origin 
in Fig. 2-1 as it will ever get. Substituting t = 3 s into the 
expression for x(t), we find that the particle’s position just 
then is x = −50 m (Fig. 2-8c). Its acceleration is still positive.

For t > 3 s, the particle moves to the right on the axis.  
Its acceleration remains positive and grows progressively 
larger in magnitude. The velocity is now positive, and it too 
grows progressively larger in magnitude (Fig. 2-8d).

Sample Problem 2.03 Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2-1 is given by

x = 4 − 27t + t3,

with x in meters and t in seconds.

(a)  Because position x depends on time t, the particle must 
be moving. Find the particle’s velocity function v(t) and 
acceleration function a(t).

KEY IDEAS

(1) To get the velocity function v(t), we differentiate the 
position function x(t) with respect to time. (2) To get the 
acceleration function a(t), we differentiate the velocity func-
tion v(t) with respect to time. 

Calculations:  Differentiating the position function, we find

	 v = −27 + 3t2,	 (Answer)

with v in meters per second. Differentiating the velocity 
function then gives us

	 a = +6t,	 (Answer)

with a in meters per second squared.

(b)  Is there ever a time when v = 0?

Calculation:  Setting v(t) = 0 yields

0 = −27 + 3t2,

which has the solution

	 t = ±3 s.	 (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the 
clock reads 0.

(c)  Describe the particle’s motion for t ≥ 0. Figure 2-8  Four stages of the particle’s motion.

x
−50 m

t = 3 s
v = 0
a pos

reversing
(c)

t = 4 s
v pos
a pos

speeding up

(d )

0  4 m
t = 0
v neg
a = 0

leftward
motion

(a)

t = 1 s
v neg
a pos

slowing

(b)

Additional examples, video, and practice available at WileyPLUS

�If the signs of the velocity and acceleration of a particle are the same, the speed  
of the particle increases. If the signs are opposite, the speed decreases.
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Constant Acceleration: A Special Case
In many types of motion, the acceleration is either constant or approximately 
so. For example, you might accelerate a car at an approximately constant rate 
when a traffic light turns from red to green. Then graphs of your position, veloc-
ity, and acceleration would resemble those in Fig. 2-9. (Note that a(t) in Fig. 2-9c 
is constant, which requires that v(t) in Fig. 2-9b have a constant slope.) Later 
when you brake the car to a stop, the acceleration (or deceleration in common 
language) might also be approximately constant.

Such cases are so common that a special set of equations has been derived 
for dealing with them. One approach to the derivation of these equations is given 
in this section. A second approach is given in the next section. Throughout both 
sections and later when you work on the homework problems, keep in mind that 
these equations are valid only for constant acceleration (or situations in which you 
can approximate the acceleration as being constant).

First Basic Equation.  When the acceleration is constant, the average accel-
eration and instantaneous acceleration are equal and we can write Eq. 2-7, with 
some changes in notation, as

a = aavg =
v − v0

t − 0
.

Here v0 is the velocity at time t = 0 and v is the velocity at any later time t. We can 
recast this equation as

	 v = v0 + at.	 (2-11)

As a check, note that this equation reduces to v = v0 for t = 0, as it must. As a fur-
ther check, take the derivative of Eq. 2-11. Doing so yields dv/dt = a, which is the 
definition of a. Figure 2-9b shows a plot of Eq. 2-11, the v(t) function; the function 
is linear and thus the plot is a straight line.

Second Basic Equation.  In a similar manner, we can rewrite Eq. 2-2 (with a 
few changes in notation) as

vavg =
x − x0

t − 0

2-4  CONSTANT ACCELERATION
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After reading this module, you should be able to . . . 

2.13 For constant acceleration, apply the relationships 
between position, displacement, velocity, acceleration, 
and elapsed time (Table 2-1). 

2.14 Calculate a particle’s change in velocity by integrat-
ing its acceleration function with respect to time.

2.15 Calculate a particle’s change in position by integrat-
ing its velocity function with respect to time. 

● The following five equations describe the motion of a particle with constant acceleration:

v = v0 + at,	 x − x0 = v0t + 
1
2

at2,

v2 = v2
0 + 2a(x − x0),	 x − x0 = 

1
2

(v0 + v)t,                x − x0 = vt − 
1
2

at2.

These are not valid when the acceleration is not constant. 

Learning Objectives 

Key Idea 

Figure 2-9  (a) The position x(t) of a 
particle moving with constant acceleration. 
(b) Its velocity v(t), given at each point by 
the slope of the curve of x(t). (c) Its (con-
stant) acceleration, equal to the (constant) 
slope of the curve of v(t).
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and then as

	 x = x0 + vavgt,� (2-12)

in which x0 is the position of the particle at t = 0 and vavg is the average velocity 
between t = 0 and a later time t.

For the linear velocity function in Eq. 2-11, the average velocity over any time 
interval (say, from t = 0 to a later time t) is the average of the velocity at the be-
ginning of the interval (= v0) and the velocity at the end of the interval (= v). For 
the interval from t = 0 to the later time t then, the average velocity is

	 vavg = 1
2 (v0 + v).� (2-13)

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement,

	 vavg = v0 + 1
2 at.� (2-14)

Finally, substituting Eq. 2-14 into Eq. 2-12 yields

	 x − x0 = v0t + 1
2 at2.	 (2-15)

As a check, note that putting t = 0 yields x = x0, as it must. As a further check, tak-
ing the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-9a shows 
a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Three Other Equations. Equations 2-11 and 2-15 are the basic equations for 
constant acceleration; they can be used to solve any constant acceleration prob-
lem in this book. However, we can derive other equations that might prove useful 
in certain specific situations. First, note that as many as five quantities can pos-
sibly be involved in any problem about constant acceleration—namely, x − x0, v, 
t, a, and v0. Usually, one of these quantities is not involved in the problem, either 
as a given or as an unknown. We are then presented with three of the remaining 
quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the 
same four. In Eq. 2-11, the “missing ingredient” is the displacement x − x0. In Eq. 
2-15, it is the velocity v. These two equations can also be combined in three ways 
to yield three additional equations, each of which involves a different “missing 
variable.” First, we can eliminate t to obtain

	 v2 = v0
2 + 2a(x − x0).� (2-16)

This equation is useful if we do not know t and are not required to find it. Second, 
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an 
equation in which a does not appear:

	 x − x0 = 1
2(v0 + v)t.� (2-17)

Finally, we can eliminate v0, obtaining

	 x − x0 = vt − 1
2 at2.� (2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the 
initial velocity v0; the other involves the velocity v at time t.

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15) as 
well as the specialized equations that we have derived. To solve a simple constant 
acceleration problem, you can usually use an equation from this list (if you have the 
list with you). Choose an equation for which the only unknown variable is the vari-
able requested in the problem. A simpler plan is to remember only Eqs. 2-11 and 
2-15, and then solve them as simultaneous equations whenever needed. 

Table 2-1  Equations for Motion with 
Constant Accelerationa

Equation 		  Missing 
Number	 Equation	 Quantity

	 2-11	 v = v0 + at	 x − x0

	 2-15	 x − x0 = v0t + 1
2at2	 v

	 2-16	 v2 = v0
2 + 2a(x − x0)	 t

	 2-17	 x − x0 = 1
2 (v0 + v)t	 a

	 2-18	 x − x0 = vt −  12at2	 v0

aMake sure that the acceleration is indeed  
constant before using the equations in this table.
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  Checkpoint 4
The following equations give the position x(t) of a particle in four situations: (1) x =  
3t − 4; (2) x = −5t3 + 4t2 + 6; (3) x = 2/t2 − 4/t; (4) x = 5t2 − 3. To which of these 
situations do the equations of Table 2-1 apply?

choose any initial numbers because we are looking for the 
elapsed time, not a particular time in, say, the afternoon, but 
let’s stick with these easy numbers.) We want the car to pass 
the motorcycle, but what does that mean mathematically?

It means that at some time t, the side-by-side vehicles 
are at the same coordinate: xc for the car and the sum 
xm1 + xm2 for the motorcycle. We can write this statement 
mathematically as

	 xc = xm1 + xm2.	 (2-19) 

(Writing this first step is the hardest part of the problem. 
That is true of most physics problems. How do you go from 
the problem statement (in words) to a mathematical expres-
sion? One purpose of this book is for you to build up that 
ability of writing the first step — it takes lots of practice just 
as in learning, say, tae-kwon-do.) 

Now let’s fill out both sides of Eq. 2-19, left side first. 
To reach the passing point at xc, the car accelerates from rest. 
From Eq. 2-15 (x − x0 = v0t + 1

2at2), with x0 and v0 = 0, we have 

	 xc = 1
2act

2.	 (2-20)

To write an expression for xm1 for the motorcycle, we 
first find the time tm it takes to reach its maximum speed 
vm, using Eq. 2-11 (v = v0 + at). Substituting v0 = 0, v = 
vm = 58.8 m/s, and a = am = 8.40 m/s2, that time is

	  tm =
vm

am
	 (2-21)

	  =
58.8 m/s
8.40 m/s2 = 7.00 s.

To get the distance xm1 traveled by the motorcycle during 
the first stage, we again use Eq. 2-15 with x0 = 0 and v0 = 0, 
but we also substitute from Eq. 2-21 for the time. We find

	 xm1 = 1
2amtm

2 = 1
2am( vm

am
)2

=
1
2

 
vm

2

am
.	  (2-22) 

For the remaining time of t − tm, the motorcycle trav-
els at its maximum speed with zero acceleration. To get the 
distance, we use Eq. 2-15 for this second stage of the motion, 
but now the initial velocity is v0 = vm (the speed at the end
of the first stage) and the acceleration is a = 0. So, the dis-
tance traveled during the second stage is

	 xm2 = vm(t − tm) = vm(t − 7.00 s).	  (2-23)

Sample Problem 2.04 Drag race of car and motorcycle 

A popular web video shows a jet airplane, a car, and a motor-
cycle racing from rest along a runway (Fig. 2-10). Initially the 
motorcycle takes the lead, but then the jet takes the lead, and 
finally the car blows past the motorcycle. Here let’s focus on 
the car and motorcycle and assign some reasonable values to 
the motion. The motorcycle first takes the lead because its 
(constant) acceleration am = 8.40 m/s2 is greater than the car’s 
(constant) acceleration ac = 5.60 m/s2, but it soon loses to the 
car because it reaches its greatest speed vm = 58.8 m/s before 
the car reaches its greatest speed vc = 106 m/s. How long does 
the car take to reach the motorcycle?

KEY IDEAS

We can apply the equations of constant acceleration to both 
vehicles, but for the motorcycle we must consider the motion 
in two stages: (1) First it travels through distance xm1 with 
zero initial velocity and acceleration am = 8.40 m/s2, reaching 
speed vm = 58.8 m/s. (2) Then it travels through distance xm2 
with constant velocity vm = 58.8 m/s and zero acceleration 
(that, too, is a constant acceleration). (Note that we symbol-
ized the distances even though we do not know their values. 
Symbolizing unknown quantities is often helpful in solving 
physics problems, but introducing such unknowns some-
times takes physics courage.) 

Calculations:  So that we can draw figures and do calcula-
tions, let’s assume that the vehicles race along the positive 
direction of an x axis, starting from x = 0 at time t = 0. (We can 

Figure 2-10  A jet airplane, a car, and a motorcycle just after  
accelerating from rest. 
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Additional examples, video, and practice available at WileyPLUS

Another Look at Constant Acceleration*
The first two equations in Table 2-1 are the basic equations from which the others 
are derived. Those two can be obtained by integration of the acceleration with 
the condition that a is constant. To find Eq. 2-11, we rewrite the definition of ac-
celeration (Eq. 2-8) as

dv = a dt.

We next write the indefinite integral (or antiderivative) of both sides:

∫ dv = ∫ a dt.

Since acceleration a is a constant, it can be taken outside the integration. We obtain

∫ dv = a∫ dt

or	 v = at + C.	 (2-25)

To evaluate the constant of integration C, we let t = 0, at which time v = v0. 
Substituting these values into Eq. 2-25 (which must hold for all values of t, 
including t = 0) yields

v0 = (a)(0) + C = C.

Substituting this into Eq. 2-25 gives us Eq. 2-11.
To derive Eq. 2-15, we rewrite the definition of velocity (Eq. 2-4) as

dx = v dt

and then take the indefinite integral of both sides to obtain

∫ dx = ∫ v dt.

that at t = 7.00 s the plot for the motorcycle switches from 
being curved (because the speed had been increasing) to 
being straight (because the speed is thereafter constant).

*This section is intended for students who have had integral calculus.

Figure 2-11  Graph of position versus time for car and motorcycle. 
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To finish the calculation, we substitute Eqs. 2-20, 2-22, and  
2-23 into Eq. 2-19, obtaining

	 1
2act

2 =
1
2

 
vm

2

am
+ vm(t − 7.00 s).	 (2-24)

This is a quadratic equation. Substituting in the given 
data, we solve the equation (by using the usual quadratic-
equation formula or a polynomial solver on a calculator), 
finding t = 4.44 s and t = 16.6 s.

But what do we do with two answers? Does the car pass 
the motorcycle twice? No, of course not, as we can see in 
the video. So, one of the answers is mathematically correct 
but not physically meaningful. Because we know that the 
car passes the motorcycle after the motorcycle reaches its 
maximum speed at t = 7.00 s, we discard the solution with 
t < 7.00 s as being the unphysical answer and conclude that 
the passing occurs at

	 t = 16.6 s	 (Answer)

Figure 2-11 is a graph of the position versus time for 
the two vehicles, with the passing point marked. Notice 
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Next, we substitute for v with Eq. 2-11:

∫ dx = ∫ (v0 + at) dt.

Since v0 is a constant, as is the acceleration a, this can be rewritten as

∫ dx = v0∫ dt + a∫ t dt.

Integration now yields

	 x = v0t + 1
2 at2 + C′,� (2-26)

where C′ is another constant of integration. At time t = 0, we have x = x0. Sub-
stituting these values in Eq. 2-26 yields x0 = C′. Replacing C′ with x0 in Eq. 2‑26 
gives us Eq. 2-15.

Free-Fall Acceleration
If you tossed an object either up or down and could somehow eliminate the 
effects of air on its flight, you would find that the object accelerates downward 
at a certain constant rate. That rate is called the free-fall acceleration, and its 
magnitude is represented by g. The acceleration is independent of the object’s 
characteristics, such as mass, density, or shape; it is the same for all objects.

Two examples of free-fall acceleration are shown in Fig. 2-12, which is a se-
ries of stroboscopic photos of a feather and an apple. As these objects fall, they 
accelerate downward—both at the same rate g. Thus, their speeds increase at the 
same rate, and they fall together.

The value of g varies slightly with latitude and with elevation. At sea level 
in Earth’s midlatitudes the value is 9.8 m/s2 (or 32 ft/s2), which is what you 
should use as an exact number for the problems in this book unless otherwise 
noted.

The equations of motion in Table 2-1 for constant acceleration also apply 
to free fall near Earth’s surface; that is, they apply to an object in vertical flight, 
either up or down, when the effects of the air can be neglected. However, note 
that for free fall: (1) The directions of motion are now along a vertical y axis 
instead of the x axis, with the positive direction of y upward. (This is important 
for later chapters when combined horizontal and vertical motions are examined.) 
(2) The free-fall acceleration is negative—that is, downward on the y axis, to-
ward Earth’s center—and so it has the value −g in the equations.

Figure 2-12  A feather and an apple free 
fall in vacuum at the same magnitude of 
acceleration g. The acceleration increases 
the distance between successive images. In 
the absence of air, the feather and apple 
fall together.

© Jim Sugar/CORBIS
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Learning Objectives 
After reading this module, you should be able to . . .

2.16 Identify that if a particle is in free flight (whether  
upward or downward) and if we can neglect the  
effects of air on its motion, the particle has a constant 

downward acceleration with a magnitude g that we 
take to be 9.8 m/s2.

2.17 Apply the constant-acceleration equations 
(Table 2-1) to free-fall motion. 

Key Idea 
● An important example of straight-line motion with con-
stant acceleration is that of an object rising or falling freely 
near Earth’s surface. The constant acceleration equations 
describe this motion, but we make two changes in notation: 

(1) we refer the motion to the vertical y axis with +y verti-
cally up; (2) we replace a with −g, where g is the magnitude 
of the free-fall acceleration. Near Earth’s surface, 

g = 9.8 m/s2 = 32 ft/s2.
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  Checkpoint 5
(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the ascent, 
from the release point to the highest point? (b) What is it for the descent, from the high-
est point back to the release point? (c) What is the ball’s acceleration at its highest point?

or	 5.0 m = (12 m/s)t − (1
2)(9.8 m/s2)t2.�

If we temporarily omit the units (having noted that they are 
consistent), we can rewrite this as

4.9t2 − 12t + 5.0 = 0.

Solving this quadratic equation for t yields

	 t = 0.53 s    and    t = 1.9 s.� (Answer)

There are two such times! This is not really surprising 
because the ball passes twice through y = 5.0 m, once on the 
way up and once on the way down.

Sample Problem 2.05 Time for full up‑down flight, baseball toss

In Fig. 2-13, a pitcher tosses a baseball up along a y axis, with 
an initial speed of 12 m/s.�

(a)  How long does the ball take to reach its maximum height?

KEY IDEAS

(1) Once the ball leaves the pitcher and before it returns to 
his hand, its acceleration is the free-fall acceleration a = −g. 
Because this is constant, Table  2‑1 applies to the motion.  
(2) The velocity v at the maximum height must be 0. 

Calculation:  Knowing v, a, and the initial velocity  
v0 = 12 m/s, and seeking t, we solve Eq. 2‑11, which contains 
those four variables. This yields

	
t =

v − v0

a
=

0 − 12 m/s
−9.8 m/s2 = 1.2 s.

�
(Answer)

(b) What is the ball’s maximum height above its release point?

Calculation:  We can take the ball’s release point to be y0 = 0. 
We can then write Eq. 2-16 in y notation, set y − y0 = y and 
v = 0 (at the maximum height), and solve for y. We get

	 y =
v2 − v0

2

2a
=

0 − (12 m/s)2

2(−9.8 m/s2)
= 7.3 m.� (Answer)

(c) How long does the ball take to reach a point 5.0 m above 
its release point?

Calculations:  We know v0, a = −g, and displacement 
y − y0 = 5.0 m, and we want t, so we choose Eq. 2-15. Rewrit-
ing it for y and setting y0 = 0 give us

y = v0t − 1
2 gt2,

Figure 2-13  A pitcher tosses a 
baseball straight up into the air. 
The equations of free fall apply 
for rising as well as for falling 
objects, provided any effects 
from the air can be neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Suppose you toss a tomato directly upward with an initial (positive) velocity v0 
and then catch it when it returns to the release level. During its free-fall flight (from 
just after its release to just before it is caught), the equations of Table 2-1 apply to its 
motion. The acceleration is always a = −g = −9.8 m/s2, negative and thus downward. 
The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the as-
cent, the magnitude of the positive velocity decreases, until it momentarily becomes 
zero. Because the tomato has then stopped, it is at its maximum height. During the 
descent, the magnitude of the (now negative) velocity increases.

Additional examples, video, and practice available at WileyPLUS

�The free-fall acceleration near Earth’s surface is a = −g = −9.8 m/s2, and the 
magnitude of the acceleration is g = 9.8 m/s2. Do not substitute −9.8 m/s2 for g.
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2-6  GRAPHICAL INTEGRATION IN MOTION ANALYSIS 

After reading this module, you should be able to . . . 

2.18 Determine a particle’s change in velocity by graphi-
cal integration on a graph of acceleration versus time.

2.19 Determine a particle’s change in position by graphi-
cal integration on a graph of velocity versus time. 

● On a graph of acceleration a versus time t, the change 
in the velocity is given by 

v1 − v0 = ∫
t1

t0

a dt.

The integral amounts to finding an area on the graph:

∫
t1

t0

a dt = (area between acceleration curve
and time axis, from t0 to t1

) .

● On a graph of velocity v versus time t, the change in the 
position is given by

x1 − x0 = ∫
t1

t0

v dt.

where the integral can be taken from the graph as 

∫
t1

t0

v dt = (area between velocity curve
and time axis, from t0 to t1

) .

Learning Objectives 

Key Ideas 

Graphical Integration in Motion Analysis
Integrating Acceleration.  When we have a graph of an object’s acceleration a 
versus time t, we can integrate on the graph to find the velocity at any given time. 
Because a is defined as a = dv/dt, the Fundamental Theorem of Calculus tells us that

	
v1 − v0 = ∫

t1

t0

a dt.� (2-27)

The right side of the equation is a definite integral (it gives a numerical result rather 
than a function), v0 is the velocity at time t0, and v1 is the velocity at later time t1. The 
definite integral can be evaluated from an a(t) graph, such as in Fig. 2‑14a. In particular,

	 ∫
t1

t0

a dt = (area between acceleration curve
and time axis, from t0 to t1

) .� (2-28)

If a unit of acceleration is 1 m/s2 and a unit of time is 1 s, then the correspond-
ing unit of area on the graph is

(1 m/s2)(1 s) = 1 m/s,

which is (properly) a unit of velocity. When the acceleration curve is above the time 
axis, the area is positive; when the curve is below the time axis, the area is negative.

Integrating Velocity. Similarly, because velocity v is defined in terms of the 
position x as v = dx/dt, then

	
x1 − x0 = ∫

t1

t0

v dt,� (2-29)

where x0 is the position at time t0 and x1 is the position at time t1. The definite 
integral on the right side of Eq. 2-29 can be evaluated from a v(t) graph, like that 
shown in Fig. 2-14b. In particular,

	 ∫
t1

t0

v dt = (area between velocity curve
and time axis, from t0 to t1

) .� (2-30)

If the unit of velocity is 1 m/s and the unit of time is 1 s, then the corre
sponding unit of area on the graph is

(1 m/s)(1 s) = 1 m,

which is (properly) a unit of position and displacement. Whether this area is posi-
tive or negative is determined as described for the a(t) curve of Fig. 2-14a.

Figure 2-14  The area between a plotted 
curve and the horizontal time axis, from 
time t0 to time t1, is indicated for (a) a 
graph of acceleration a versus t and (b) a 
graph of velocity v versus t.

a

t0
tt1

Area

(a)

v

t0
tt1

Area

(b)

This area gives the
change in velocity.

This area gives the
change in position.



30 CHAPTER 2  MOTION ALONG A STRAIGHT LINE

Combining Eqs. 2-27 and 2-28, we can write

	 v1 − v0 = (area between acceleration curve
and time axis, from t0 to t1

) .	 (2-31)

For convenience, let us separate the area into three regions 
(Fig. 2-15b). From 0 to 40 ms, region A has no area:

areaA = 0.

From 40 ms to 100 ms, region B has the shape of a triangle, 
with area

areaB = 1
2(0.060 s)(50 m/s2) = 1.5 m/s.

From 100 ms to 110 ms, region C has the shape of a rect-
angle, with area

areaC = (0.010 s)(50 m/s2) = 0.50 m/s.

Substituting these values and v0 = 0 into Eq. 2-31 gives us

v1 − 0 = 0 + 1.5 m/s + 0.50 m/s,

or	 v1 = 2.0 m/s = 7.2 km/h.	 (Answer)

Comments:  When the head is just starting to move forward, 
the torso already has a speed of 7.2 km/h. Researchers argue 
that it is this difference in speeds during the early stage of a 
rear-end collision that injures the neck. The backward whip-
ping of the head happens later and could, especially if there is 
no head restraint, increase the injury.

Sample Problem 2.06 Graphical integration a versus t, whiplash injury

“Whiplash injury” commonly occurs in a rear-end collision 
where a front car is hit from behind by a second car. In the 
1970s, researchers concluded that the injury was due to the 
occupant’s head being whipped back over the top of the seat 
as the car was slammed forward. As a result of this finding, 
head restraints were built into cars, yet neck injuries in rear-
end collisions continued to occur.

In a recent test to study neck injury in rear-end colli-
sions, a volunteer was strapped to a seat that was then moved 
abruptly to simulate a collision by a rear car moving at 
10.5 km/h. Figure 2-15a gives the accelerations of the volun-
teer’s torso and head during the collision, which began at time 
t = 0. The torso acceleration was delayed by 40 ms because 
during that time interval the seat back had to compress against 
the volunteer. The head acceleration was delayed by an addi-
tional 70 ms. What was the torso speed when the head began 
to accelerate?�

KEY IDEA

We can calculate the torso speed at any time by finding an 
area on the torso a(t) graph. 

Calculations:  We know that the initial torso speed is v0 = 0 
at time t0 = 0, at the start of the “collision.” We want the 
torso speed v1 at time t1 = 110 ms, which is when the head 
begins to accelerate.

Figure 2-15  (a) The a(t) curve of the torso and head of a volunteer 
in a simulation of a rear-end collision. (b) Breaking up the region 
between the plotted curve and the time axis to calculate the area.

Additional examples, video, and practice available at WileyPLUS

Position    The position x of a particle on an x axis locates the par-
ticle with respect to the origin, or zero point, of the axis. The position 
is either positive or negative, according to which side of the origin 
the particle is on, or zero if the particle is at the origin. The positive 
direction on an axis is the direction of increasing positive numbers; 
the opposite direction is the negative direction on the axis.

Displacement    The displacement Δx of a particle is the change 
in its position:
	 Δx = x2 − x1.	 (2-1)

Displacement is a vector quantity. It is positive if the particle has 
moved in the positive direction of the x axis and negative if the 
particle has moved in the negative direction.

Review & Summary

Average Velocity    When a particle has moved from position x1 
to position x2 during a time interval Δt = t2 − t1, its average velocity 
during that interval is

	 vavg =
Δx
Δt

=
x2 − x1

t2 − t1
.	 (2-2)

The algebraic sign of vavg indicates the direction of motion (vavg is 
a vector quantity). Average velocity does not depend on the actual 
distance a particle moves, but instead depends on its original and 
final positions.

On a graph of x versus t, the average velocity for a time interval 
Δt is the slope of the straight line connecting the points on the curve 
that represent the two ends of the interval.

a 
(m

/s
2 ) Head

0 40 80 120 160

50

100

t (ms)
(a)

Torso

50

(b)
A

B C

a

t
40 100 110

The total area gives the
change in velocity.
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Average Speed    The average speed savg of a particle during a 
time interval Δt depends on the total distance the particle moves 
in that time interval:

	
savg =

total distance
Δt

.
	

(2-3)

Instantaneous Velocity    The instantaneous velocity (or sim-
ply velocity) v of a moving particle is

	 v = lim
Δt→0

 
Δx
Δt

=
dx
dt

,	 (2-4)

where Δx and Δt are defined by Eq. 2-2. The instantaneous velocity 
(at a particular time) may be found as the slope (at that particular 
time) of the graph of x versus t. Speed is the magnitude of instan-
taneous velocity.

Average Acceleration    Average acceleration is the ratio of a 
change in velocity Δv to the time interval Δt in which the change occurs:

	 aavg =
Δv
Δt

.	 (2-7)

The algebraic sign indicates the direction of aavg.

Instantaneous Acceleration    Instantaneous acceleration (or 
simply acceleration) a is the first time derivative of velocity v(t) 

and the second time derivative of position x(t):

	 a =
dv
dt

=
d2x

dt2 .
	

(2-8, 2-9)

On a graph of v versus t, the acceleration a at any time t is the slope 
of the curve at the point that represents t.

Constant Acceleration    The five equations in Table 2-1 
describe the motion of a particle with constant acceleration:

	 v = v0 + at,	 (2-11)

	 x − x0 = v0t + 1
2at2,

	
(2-15)

	 v2 = v0
2 + 2a(x − x0),	 (2-16)

	 x − x0 = 1
2(v0 + v)t,

	
(2-17)

	 x − x0 = vt − 1
2at2.

	
(2-18)

These are not valid when the acceleration is not constant.

Free-Fall Acceleration    An important example of straight-
line motion with constant acceleration is that of an object rising or 
falling freely near Earth’s surface. The constant acceleration equa-
tions describe this motion, but we make two changes in notation: 
(1) we refer the motion to the vertical y axis with +y vertically up; 
(2) we replace a with −g, where g is the magnitude of the free-fall 
acceleration. Near Earth’s surface, g = 9.8 m/s2 (= 32 ft/s2).

Questions

1    Figure 2-16 gives the velocity of 
a particle moving on an x axis. What 
are (a) the initial and (b) the final 
directions of travel? (c) Does the 
particle stop momentarily? (d) Is the 
acceleration positive or negative? 
(e) Is it constant or varying?

2    Figure 2-17 gives the accelera-
tion a(t) of a Chihuahua as it  chases 
a German shepherd along an axis. In 
which of the time periods indicated 
does the Chihuahua move at constant  speed?

what is the sign of the particle’s 
position? Is the particle’s velocity 
positive, negative, or 0 at (b) t = 1 s, 
(c) t = 2 s, and (d) t = 3 s? (e) How 
many times does the particle go 
through the point x = 0?

5    Figure 2-20 gives the velocity 
of a particle moving along an axis. 
Point 1 is at the highest point on the 
curve; point 4 is at the lowest point; 
and points 2 and 6 are at the same 
height. What is the direction of 
travel at (a) time t = 0 and (b) point 
4? (c) At which of the six numbered 
points does the particle reverse its 
direction of travel? (d) Rank the six 
points according to the magnitude 
of the acceleration, greatest first.

6    At t = 0, a particle moving along 
an x axis is at position x0 = −20 m. The 
signs of the particle’s initial velocity v0 
(at time t0) and constant acceleration 
a are, respectively, for four situations: 
(1) +, +; (2) +, −; (3) −, +; (4) −, −. In 
which situations will the particle (a) 
stop momentarily, (b) pass through the 
origin, and (c) never pass through the 
origin?

7    Hanging over the railing of a 
bridge, you drop an egg (no initial 
velocity) as you throw a second egg 
downward. Which curves in Fig. 2-21 

a

A B C D E F G H

t

Figure 2-17  Question 2.
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Figure 2-19  Question 4.
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Figure 2-16  Question 1.
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Figure 2-20  Question 5.

3    Figure 2-18 shows four paths along 
which objects move from a starting 
point to a final point, all in the same 
time interval. The paths pass over a 
grid of equally spaced straight lines. 
Rank the paths according to (a) the 
average velocity of the objects and (b) 
the average speed of the objects, great-
est first.

4    Figure 2-19 is a graph of a par-
ticle’s position along an x axis versus time. (a) At time t = 0, 
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4

Figure 2-18  Question 3.

Figure 2-21  Question 7.
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apple’s release, the balloon is accelerating upward with a magni-
tude of 4.0 m/s2 and has an upward velocity of magnitude 2 m/s. 
What are the (a) magnitude and (b) direction of the acceleration of 
the apple just after it is released? (c) Just then, is the apple moving 
upward or downward, or is it stationary? (d) What is the magni-
tude of its velocity just then? (e) In the next few moments, does the 
speed of the apple increase, decrease, or remain constant? 

11    Figure 2-23 shows that a particle moving along an x axis 
undergoes three periods of acceleration. Without written com-
putation, rank the acceleration periods according to the increases 
they produce in the particle’s velocity, greatest first.

“Cogito ergo zoom!” (I think, therefore I go fast!). In 2001, Sam 
Whittingham beat Huber’s record by 19.0 km/h. What was Whit-
tingham’s time through the 200 m?

••7    Two trains, each having a speed of 30 km/h, are headed at 
each other on the same straight track. A bird that can fly 60 km/h 
flies off the front of one train when they are 60 km apart and heads 
directly for the other train. On reaching the other train, the (crazy) 
bird flies directly back to the first train, and so forth. What is the 
total distance the bird travels before the trains collide?

••8   Panic escape. Figure 2-24 shows a general situation 
in which a stream of people attempt to escape through an exit door 
that turns out to be locked. The people move toward the door at 
speed vs = 3.50 m/s, are each d = 0.25 m in depth, and are sepa-
rated by L = 1.75 m. The 
arrangement in Fig. 2-24 
occurs at time t = 0. (a) At 
what average rate does the 
layer of people at the door 
increase? (b) At what time 
does the layer’s depth reach 
5.0 m? (The answers reveal 
how quickly such a situation 
becomes dangerous.)

••9 ILW  In 1 km races, runner 1 on track 1 (with time 2 min, 27.95 s) 
appears to be faster than runner 2 on track 2 (2 min, 28.15 s). How-
ever, length L2 of track 2 might be slightly greater than length L1 
of track 1. How large can L2 − L1 be for us still to conclude that 
runner 1 is faster?

Module 2-1    Position, Displacement, and Average Velocity
•1    While driving a car at 90 km/h, how far do you move while 
your eyes shut for 0.50 s during a hard sneeze?

•2    Compute your average velocity in the following two cases: 
(a) You walk 73.2 m at a speed of 1.22 m/s and then run 73.2 m at a 
speed of 3.05 m/s along a straight track. (b) You walk for 1.00 min 
at a speed of 1.22 m/s and then run for 1.00 min at 3.05 m/s along a 
straight track. (c) Graph x versus t for both cases and indicate how 
the average velocity is found on the graph.

•3 SSM  WWW  An automobile travels on a straight road for 
40 km at 30 km/h. It then continues in the same direction for 
another 40 km at 60 km/h. (a) What is the average velocity of the 
car during the full 80 km trip? (Assume that it moves in the posi-
tive x direction.) (b) What is the average speed? (c) Graph x versus 
t and indicate how the average velocity is found on the graph.

•4    A car moves uphill at 40 km/h and then back downhill at 
60 km/h. What is the average speed for the round trip?

•5 SSM  The position of an object moving along an x axis is given 
by x = 3t − 4t2 + t3, where x is in meters and t in seconds. Find the 
position of the object at the following values of t: (a) 1 s, (b) 2 s, 
(c) 3 s, and (d) 4 s. (e) What is the object’s displacement between t = 0 
and t = 4 s? (f) What is its average velocity for the time interval 
from t = 2 s to t = 4 s? (g) Graph x versus t for 0 ≤ t ≤ 4 s and indi-
cate how the answer for (f) can be found on the graph.

•6    The 1992 world speed record for a bicycle (human‑powered 
vehicle) was set by Chris Huber. His time through the measured 
200 m stretch was a sizzling 6.509 s, at which he commented, 

Locked
door

L L L

d d d

Figure 2-24  Problem 8.

give the velocity v(t) for (a) the dropped egg 
and (b) the thrown egg? (Curves A and B are 
parallel; so are C, D, and E; so are F and G.)

8    The following equations give the velocity 
v(t) of a particle in four situations: (a) v = 3; (b) 
v = 4t2 + 2t − 6; (c)  v  = 3t − 4; (d) v = 5t2 − 3. 
To which of these situations do the equations of 
Table 2-1 apply?

9    In Fig. 2-22, a cream tangerine is thrown 
directly upward past three evenly spaced win-
dows of equal heights. Rank the windows 
according to (a) the average speed of the cream 
tangerine while passing them, (b) the time the 
cream tangerine takes to pass them, (c) the 
magnitude of the acceleration of the cream tan-
gerine while passing them, and (d) the change 
Δv in the speed of the cream tangerine during 
the passage, greatest first.

10    Suppose that a passenger intent on lunch 
during his first ride in a hot-air balloon accidently drops an apple 
over the side during the balloon’s liftoff. At the moment of the 
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Figure 2-23  Question 11.

         	 Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM   	 Worked-out solution available in Student Solutions Manual

• – •••  	Number of dots indicates level of problem difficulty

	 Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW  Worked-out solution is at

   ILW    Interactive solution is at 
http://www.wiley.com/college/halliday

Problems
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••10  To set a speed record in a measured (straight-line) distance 
d, a race car must be driven first in one direction (in time t1) and then 
in the opposite direction (in time t2). (a) To eliminate the effects of the 
wind and obtain the car’s speed vc in a windless situation, should we 
find the average of d/t1 and d/t2 (method 1) or should we divide d by 
the average of t1 and t2? (b) What is the fractional difference in the two 
methods when a steady wind blows along the car’s route and the ratio 
of the wind speed vw to the car’s speed vc is 0.0240?

••11  You are to drive 300 km to an interview. The inter-
view is at 11:15 a.m. You plan to drive at 100 km/h, so you leave 
at 8:00 a.m. to allow some extra time. You drive at that speed for 
the first 100 km, but then construction work forces you to slow to 
40 km/h for 40 km. What would be the least speed needed for the 
rest of the trip to arrive in time for the interview?

•••12  Traffic shock wave. An abrupt slowdown in concen-
trated traffic can travel as a pulse, termed a shock wave, along the 
line of cars, either downstream (in the traffic direction) or upstream, 
or it can be stationary. Figure 2-25 shows a uniformly spaced line 
of cars moving at speed v = 25.0 m/s toward a uniformly spaced 
line of slow cars moving at speed vs = 5.00 m/s. Assume that each 
faster car adds length L = 12.0 m (car length plus buffer zone) to the 
line of slow cars when it joins the line, and assume it slows abruptly 
at the last instant. (a) For what separation distance d between the 
faster cars does the shock wave remain stationary? If the separa-
tion is twice that amount, what are the (b) speed and (c) direction 
(upstream or downstream) of the shock wave?

Car Buffer

dL dL L L L

v vs

Figure 2-25  Problem 12.

•••13 ILW  You drive on Interstate 10 from San Antonio to Houston, 
half the time at 55 km/h and the other half at 90 km/h. On the way 
back you travel half the distance at 55 km/h and the other half at  
90 km/h. What is your average speed (a) from San Antonio to Hous-
ton, (b) from Houston back to San Antonio, and (c) for the entire trip? 
(d) What is your average velocity for the entire trip? (e) Sketch x ver-
sus t for (a), assuming the motion is all in the positive x direction. Indi-
cate how the average velocity can be found on the sketch.

Module 2-2    Instantaneous Velocity and Speed
•14  An electron moving along the x axis has a position given 
by x = 16te−t m, where t is in seconds. How far is the electron from 
the origin when it momentarily stops?

•15  (a) If a particle’s position is given by x = 4 − 12t + 3t2 
(where t is in seconds and x is in meters), what is its velocity at 
t = 1 s? (b) Is it moving in the positive or negative direction 
of x just then? (c) What is its speed just then? (d) Is the speed 
increasing or decreasing just then? (Try answering the next two 
questions without further calculation.) (e) Is there ever an instant 
when the velocity is zero? If so, give the time t; if not, answer no. 
(f) Is there a time after t = 3 s when the particle is moving in the 
negative direction of x? If so, give the time t; if not, answer no.

•16    The position function x(t) of a particle moving along an 
x axis is x = 4.0 − 6.0t2, with x in meters and t in seconds. (a) At 
what time and (b) where does the particle (momentarily) stop? At 
what (c) negative time and (d) positive time does the particle pass 
through the origin? (e) Graph x versus t for the range −5 s to +5 s. 

(f) To shift the curve rightward on the graph, should we include the 
term +20t or the term −20t in x(t)? (g) Does that inclusion increase 
or decrease the value of x at which the particle momentarily stops?

••17    The position of a particle moving along the x axis is given in 
centimeters by x = 9.75 + 1.50t3, where t is in seconds. Calculate (a) 
the average velocity during the time interval t = 2.00 s to t = 3.00 s; 
(b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous 
velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and 
(e) the instantaneous velocity when the particle is midway between 
its positions at t = 2.00 s and t = 3.00 s. (f) Graph x versus t and indi-
cate your answers graphically.

Module 2-3    Acceleration
•18    The position of a particle moving along an x axis is given by  
x = 12t2 − 2t3, where x is in meters and t is in seconds. Determine (a) 
the position, (b) the velocity, and (c) the acceleration of the particle 
at t = 3.0 s. (d) What is the maximum positive coordinate reached by 
the particle and (e) at what time is it reached? (f) What is the maxi-
mum positive velocity reached by the particle and (g) at what time is 
it reached? (h) What is the acceleration of the particle at the instant 
the particle is not moving (other than at t = 0)? (i) Determine the 
average velocity of the particle between t = 0 and t = 3 s.

•19 SSM  At a certain time a particle had a speed of 18 m/s in 
the positive x direction, and 2.4 s later its speed was 30 m/s in the 
opposite direction. What is the average acceleration of the particle 
during this 2.4 s interval?

•20    (a) If the position of a particle is given by x = 20t − 5t3, 
where x is in meters and t is in seconds, when, if ever, is the par-
ticle’s velocity zero? (b) When is its acceleration a zero? (c) For 
what time range (positive or negative) is a negative? (d) Positive? 
(e) Graph x(t), v(t), and a(t).

••21    From t = 0 to t = 5.00 min, a man stands still, and from  
t = 5.00 min to t = 10.0 min, he walks briskly in a straight line at a 
constant speed of 2.20 m/s. What are (a) his average velocity vavg 
and (b) his average acceleration aavg in the time interval 2.00 min to 
8.00 min? What are (c) vavg and (d) aavg in the time interval 3.00 min 
to 9.00 min? (e) Sketch x versus t and v versus t, and indicate how 
the answers to (a) through (d) can be obtained from the graphs.

••22    The position of a particle moving along the x axis depends on 
the time according to the equation x = ct2 − bt3, where x is in meters 
and t in seconds. What are the units of (a) constant c and (b) con-
stant b? Let their numerical values be 3.0 and 2.0, respectively. (c) 
At what time does the particle reach its maximum positive x posi-
tion? From t = 0.0 s to t = 4.0 s, (d) what distance does the particle 
move and (e) what is its displacement? Find its velocity at times (f) 
1.0 s, (g) 2.0 s, (h) 3.0 s, and (i) 4.0 s. Find its acceleration at times (j) 
1.0 s, (k) 2.0 s, (l) 3.0 s, and (m) 4.0 s.

Module 2-4    Constant Acceleration
•23 SSM  An electron with an 
initial velocity v0 = 1.50 × 105 m/s 
enters a region of length 
L = 1.00 cm where it is electrically 
accelerated (Fig. 2-26). It emerges 
with v = 5.70 × 106 m/s. What is its 
acceleration, assumed constant?

•24  Catapulting mush-
rooms. Certain mushrooms launch 
their spores by a catapult mecha-
nism. As water condenses from  

Nonaccelerating
region

Accelerating
region

Path of
electron

L

Figure 2-26  Problem 23.
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Figure 2-27  Problems 34 and 35.

••35    Figure 2-27 shows a red car 
and a green car that move toward 
each other. Figure 2-28 is a graph of 
their motion, showing the positions 
xg0 = 270 m and xr0 = −35.0 m at time 
t  = 0. The green car has a constant 
speed of 20.0 m/s and the red car 
begins from rest. What is the accel-
eration magnitude of the red car?

••36    A car moves along an x axis through a distance of 900 m, start-
ing at rest (at x = 0) and ending at rest (at x = 900 m). Through the 
first 1

4 of that distance, its acceleration is +2.25 m/s2. Through the rest 
of that distance, its acceleration is −0.750 m/s2. What are (a) its travel 
time through the 900 m and (b) its maximum speed? (c) Graph posi-
tion x, velocity v, and acceleration a versus time t for the trip.

••37    Figure 2-29 depicts the motion 
of a particle moving along an x axis with 
a constant acceleration. The figure’s 
vertical scaling is set by xs = 6.0 m. What 
are the (a) magnitude and (b) direction 
of the particle’s acceleration?

••38    (a) If the maximum accelera-
tion that is tolerable for passengers in 
a subway train is 1.34 m/s2 and subway 
stations are located 806 m apart, what 
is the maximum speed a subway train 
can attain between stations? (b) What is 
the travel time between stations? (c) If 
a subway train stops for 20 s at each station, what is the maximum 
average speed of the train, from one start-up to the next? (d) Graph x, 
v, and a versus t for the interval from one start-up to the next.

••39    Cars A and B move in 
the same direction in adjacent 
lanes. The position x of car 
A is given in Fig. 2-30, from 
time t = 0 to t = 7.0 s. The fig-
ure’s vertical scaling is set by 
xs = 32.0  m. At t = 0, car B 
is at x = 0, with a velocity of 
12 m/s and a negative constant 
acceleration aB. (a) What must 
aB be such that the cars are 
(momentarily) side by side (momentarily at the same value of x) at 
t = 4.0 s? (b) For that value of aB, how many times are the cars side by 
side? (c) Sketch the position x of car B versus time t on Fig. 2-30. How 
many times will the cars be side by side if the magnitude of accelera-
tion aB is (d) more than and (e) less than the answer to part (a)?

••40  You are driving toward a traffic signal when it turns yel-
low. Your speed is the legal speed limit of v0 = 55 km/h; your best 
deceleration rate has the magnitude a = 5.18 m/s2. Your best reac-
tion time to begin braking is T = 0.75 s. To avoid having the front of 
your car enter the intersection after the light turns red, should you 
brake to a stop or continue to move at 55 km/h if the distance to 

the air onto a spore that is attached to the mushroom, a drop grows 
on one side of the spore and a film grows on the other side. The 
spore is bent over by the drop’s weight, but when the film reaches 
the drop, the drop’s water suddenly spreads into the film and the 
spore springs upward so rapidly that it is slung off into the air. Typi-
cally, the spore reaches a speed of 1.6 m/s in a 5.0 μm launch; its 
speed is then reduced to zero in 1.0 mm by the air. Using those data 
and assuming constant accelerations, find the acceleration in terms 
of g during (a) the launch and (b) the speed reduction.

•25    An electric vehicle starts from rest and accelerates at a rate 
of 2.0 m/s2 in a straight line until it reaches a speed of 20 m/s. The 
vehicle then slows at a constant rate of 1.0 m/s2 until it stops. (a) 
How much time elapses from start to stop? (b) How far does the 
vehicle travel from start to stop?

•26    A muon (an elementary particle) enters a region with a speed 
of 5.00 × 106 m/s and then is slowed at the rate of 1.25 × 1014 m/s2. 
(a) How far does the muon take to stop? (b) Graph x versus t and v 
versus t for the muon.

•27    An electron has a constant acceleration of +3.2 m/s2. At a 
certain instant its velocity is +9.6 m/s. What is its velocity (a) 2.5 s 
earlier and (b) 2.5 s later?

•28    On a dry road, a car with good tires may be able to brake 
with a constant deceleration of 4.92 m/s2. (a) How long does such 
a car, initially traveling at 24.6 m/s, take to stop? (b) How far does 
it travel in this time? (c) Graph x versus t and v versus t for the 
deceleration.

•29 ILW  A certain elevator cab has a total run of 190 m and a 
maximum speed of 305 m/min, and it accelerates from rest and 
then back to rest at 1.22 m/s2. (a) How far does the cab move while 
accelerating to full speed from rest? (b) How long does it take to 
make the nonstop 190 m run, starting and ending at rest?

•30    The brakes on your car can slow you at a rate of 5.2 m/s2. (a) 
If you are going 137 km/h and suddenly see a state trooper, what is 
the minimum time in which you can get your car under the 90 km/h 
speed limit? (The answer reveals the futility of braking to keep 
your high speed from being detected with a radar or laser gun.) 
(b) Graph x versus t and v versus t for such a slowing.

•31  SSM  Suppose a rocket ship in deep space moves with con-
stant acceleration equal to 9.8 m/s2, which gives the illusion of nor-
mal gravity during the flight. (a) If it starts from rest, how long will 
it take to acquire a speed one-tenth that of light, which travels at 
3.0 × 108 m/s? (b) How far will it travel in so doing? 

•32  A world’s land speed record was set by Colonel John 
P. Stapp when in March 1954 he rode a rocket-propelled sled that 
moved along a track at 1020 km/h. He and the sled were brought 
to a stop in 1.4 s. (See Fig. 2-7.) In terms of g, what acceleration did 
he experience while stopping?

•33  SSM  ILW  A car traveling 56.0 km/h is 24.0 m from a barrier 
when the driver slams on the brakes. The car hits the barrier 2.00 s 
later. (a) What is the magnitude of the car’s constant acceleration 
before impact? (b) How fast is the car traveling at impact?

••34  In Fig. 2-27, a red car and a green car, identical except for 
the color, move toward each other in adjacent lanes and parallel to 
an x axis. At time t = 0, the red car is at xr = 0 and the green car is 
at xg = 220 m. If the red car has a constant velocity of 20 km/h, the 
cars pass each other at x = 44.5 m, and if it has a constant velocity of 
40 km/h, they pass each other at x = 76.6 m. What are (a) the initial 
velocity and (b) the constant acceleration of the green car?
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Figure 2-28  Problem 35.
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the intersection and the duration of the yellow light are (a) 40 m and 
2.8 s, and (b) 32 m and 1.8 s? Give an answer of brake, continue, either 
(if either strategy works), or neither (if neither strategy works and the 
yellow duration is inappropriate).

••41  As two trains move 
along a track, their conduc-
tors suddenly notice that they 
are headed toward each other. 
Figure 2‑31 gives their veloci-
ties v as functions of time t as the 
conductors slow the trains. The 
figure’s vertical scaling is set by 
vs = 40.0 m/s. The slowing pro-
cesses begin when the trains are 200 m apart. What is their separation 
when both trains have stopped?

•••42  You are arguing over a cell phone while trailing an 
unmarked police car by 25 m; both your car and the police car 
are traveling at 110 km/h. Your argument diverts your attention 
from the police car for 2.0 s (long enough for you to  look at the 
phone and yell, “I won’t do that!”). At the beginning of that 2.0 s, 
the police officer begins braking suddenly at 5.0 m/s2. (a) What is 
the separation between the two cars when your attention finally 
returns? Suppose that you take another 0.40 s to realize your dan-
ger and begin braking. (b) If you too brake at 5.0 m/s2, what is your 
speed when you hit the police car?

•••43  When a high-speed passenger train traveling at 
161 km/h rounds a bend, the engineer is shocked to see that a 
locomotive has improperly entered onto the track from a siding 
and is a distance D = 676 m ahead (Fig. 2-32). The locomotive is 
moving at 29.0 km/h. The engineer of the high-speed train imme-
diately applies the brakes. (a) What must be the magnitude of the 
resulting constant deceleration if a collision is to be just avoided? 
(b) Assume that the engineer is at x = 0 when, at t = 0, he first 

•46    Raindrops fall 1700 m from a cloud to the ground. (a) If they 
were not slowed by air resistance, how fast would the drops be 
moving when they struck the ground? (b) Would it be safe to walk 
outside during a rainstorm?

•47 SSM  At a construction site a pipe wrench struck the ground 
with a speed of 24 m/s. (a) From what height was it inadvertently 
dropped? (b) How long was it falling? (c) Sketch graphs of y, v, and 
a versus t for the wrench.

•48    A hoodlum throws a stone vertically downward with an ini-
tial speed of 12.0 m/s from the roof of a building, 30.0 m above the 
ground. (a) How long does it take the stone to reach the ground? 
(b) What is the speed of the stone at impact?

•49 SSM  A hot-air balloon is ascending at the rate of 12 m/s and 
is 80 m above the ground when a package is dropped over the side. 
(a) How long does the package take to reach the ground? (b) With 
what speed does it hit the ground?

••50    At time t = 0, apple 1 is dropped from a bridge onto a road-
way beneath the bridge; somewhat later, apple 2 is thrown down 
from the same height. Figure 2-33 gives the vertical positions y of 
the apples versus t during the falling, until both apples have hit the 
roadway. The scaling is set by ts = 2.0 s. With approximately what 
speed is apple 2 thrown down?
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Figure 2-31  Problem 41.
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Figure 2-33  Problem 50.

••51    As a runaway scientific bal-
loon ascends at 19.6 m/s, one of its 
instrument packages breaks free of 
a harness and free-falls. Figure 2-34 
gives the vertical velocity of the 
package versus time, from before it 
breaks free to when it reaches the 
ground. (a) What maximum height 
above the break-free point does it 
rise? (b) How high is the break-free 
point above the ground?

••52  A bolt is dropped from a bridge under construction, fall-
ing 90 m to the valley below the bridge. (a) In how much time 
does it pass through the last 20% of its fall? What is its speed (b) 
when it begins that last 20% of its fall and (c) when it reaches the 
valley beneath the bridge?

••53 SSM  ILW  A key falls from a bridge that is 45 m above the 
water. It falls directly into a model boat, moving with constant 
velocity, that is 12 m from the point of impact when the key is 
released. What is the speed of the boat?

••54  A stone is dropped into a river from a bridge 43.9 m 
above the water. Another stone is thrown vertically down 1.00 s 
after the first is dropped. The stones strike the water at the same 
time. (a) What is the initial speed of the second stone? (b) Plot 
velocity versus time on a graph for each stone, taking zero time as 
the instant the first stone is released.

Figure 2-34  Problem 51.
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Module 2-5    Free-Fall Acceleration
•44    When startled, an armadillo will leap upward. Suppose it 
rises 0.544 m in the first 0.200 s. (a) What is its initial speed as it 
leaves the ground? (b) What is its speed at the height of 0.544 m? 
(c) How much higher does it go?

•45 SSM  WWW  (a) With what speed must a ball be thrown ver-
tically from ground level to rise to a maximum height of 50 m? 
(b) How long will it be in the air? (c) Sketch graphs of y, v, and a 
versus t for the ball. On the first two graphs, indicate the time at 
which 50 m is reached.

spots the locomotive. Sketch x(t) curves for the locomotive and 
high-speed train for the cases in which a collision is just avoided 
and is not quite avoided.
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Figure 2-37  Problem 66.

••55 SSM  A ball of moist clay falls 15.0 m to the ground. It is 
in contact with the ground for 20.0 ms before stopping. (a) What is 
the magnitude of the average acceleration of the ball during the time 
it is in contact with the ground? (Treat the ball as a particle.) (b) Is 
the average acceleration up or down?

••56  Figure 2-35 
shows the speed v versus 
height y of a ball tossed 
directly upward, along a y 
axis. Distance d is 0.40 m. 
The speed at height yA is 
vA. The speed at height yB 
is 13vA. What is speed vA?

••57    To test the quality 
of a tennis ball, you drop 
it onto the  floor from a 
height of 4.00 m. It rebounds to a height of 2.00 m. If the ball is in con-
tact with the floor for 12.0 ms, (a) what is the magnitude of its average 
acceleration during that contact and (b) is the average acceleration up 
or down?

••58    An object falls a distance h from rest. If it travels 0.50h 
in the last 1.00 s, find (a) the time and (b) the height of its fall. 
(c) Explain the physically unacceptable solution of the quadratic 
equation in t that you obtain.

••59    Water drips from the nozzle of a shower onto the floor 
200 cm below. The drops fall at regular (equal) intervals of time, 
the first drop striking the floor at the instant the fourth drop begins 
to fall. When the first drop strikes the floor, how far below the 
nozzle are the (a) second and (b) third drops?

••60  A rock is thrown vertically upward from ground level at 
time t = 0. At t = 1.5 s it passes the top of a tall tower, and 1.0 s later 
it reaches its maximum height. What is the height of the tower?

•••61  A steel ball is dropped from a building’s roof and passes 
a window, taking 0.125 s to fall from the top to the bottom of 
the window, a distance of 1.20 m. It then falls to a sidewalk and 
bounces back past the window, moving from bottom to top in 
0.125 s. Assume that the upward flight is an exact reverse of the 
fall. The time the ball spends below the bottom of the window is 
2.00 s. How tall is the building?

•••62  A basketball player grabbing a rebound jumps 
76.0 cm vertically. How much total time (ascent and descent) does 
the player spend (a) in the top 15.0 cm of this jump and (b) in the 
bottom 15.0 cm? (The player seems to hang in the air at the top.)

•••63  A drowsy cat spots a flowerpot that sails first up and then 
down past an open window. The pot is in view for a total of 0.50 s, and 
the top-to-bottom height of the window is 2.00 m. How high above the 
window top does the  flowerpot go?

•••64    A ball is shot vertically 
upward from the surface of another 
planet. A plot of y versus t for the ball 
is shown in Fig. 2-36, where y is the 
height of the ball above its starting 
point and t = 0 at the instant the ball 
is shot. The figure’s vertical scaling is 
set by ys

 = 30.0 m. What are the mag-
nitudes of (a) the free-fall accelera-
tion on the planet and (b) the initial 
velocity of the ball?

Module 2-6    Graphical Integration in Motion Analysis
•65  Figure 2‑15a gives the acceleration of a volunteer’s head 
and torso during a rear‑end collision. At maximum head accelera-
tion, what is the speed of (a) the head and (b) the torso?

••66  In a forward punch in karate, the fist begins at rest 
at the waist and is brought rapidly forward until the arm is fully 
extended. The speed v(t) of the fist is given in Fig. 2-37 for some-
one skilled in karate. The vertical scaling is set by vs = 8.0 m/s. How 
far has the fist moved at (a) time t = 50 ms and (b) when the speed 
of the fist is maximum?

••67    When a soc-
cer ball is kicked 
toward a player and 
the  player deflects 
the ball by “head-
ing” it, the accel-
eration of  the head 
during the collision 
can be significant. 
Figure 2-38 gives the 
measured acceleration a(t) of a soccer player’s head for a bare head 
and a helmeted head, starting from rest. The scaling on the vertical 
axis is set by as = 200 m/s2. At time t = 7.0 ms, what is the difference 
in the speed acquired by the bare head and the speed acquired by the 
helmeted head?

••68  A salamander of the genus Hydromantes captures prey 
by launching its tongue as a 
projectile: The skeletal part 
of the tongue is shot for-
ward, unfolding the rest of 
the tongue, until the outer 
portion lands on the prey, 
sticking to it. Figure 2-39 
shows the acceleration mag-
nitude a versus time t for the 
acceleration phase of the 
launch in a typical situation. 
The indicated accelerations are 
a2 = 400 m/s2 and a1 = 100 m/s2. 
What is the outward speed of 
the tongue at the end of the 
acceleration phase?

••69 ILW  How far does the run-
ner whose velocity–time graph is 
shown in Fig. 2-40 travel in 16 s? 
The figure’s vertical scaling is set 
by vs = 8.0 m/s.
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•••70    Two particles move along an x axis. The position of particle 
1 is given by x = 6.00t2 + 3.00t + 2.00 (in meters and seconds); the 
acceleration of particle 2 is given by a = −8.00t (in meters per second 
squared and seconds) and, at t = 0, its velocity is 20 m/s. When the 
velocities of the particles match, what is their velocity?

Additional Problems
71    In an arcade video game, a spot is programmed to move 
across the screen according to x = 9.00t − 0.750t3, where x is dis-
tance in centimeters measured from the left edge of the screen and 
t is time in seconds. When the spot reaches a screen edge, at either  
x = 0 or x = 15.0 cm, t is reset to 0 and the spot starts moving again 
according to x(t). (a) At what time after starting is the spot instan-
taneously at rest? (b) At what value of x does this occur? (c) What 
is the spot’s acceleration (including sign) when this occurs? (d) Is 
it moving right or left just prior to coming to rest? (e) Just after? 
(f) At what time t > 0 does it first reach an edge of the screen?

72    A rock is shot vertically upward from the edge of the top of a 
tall building. The rock reaches its maximum height above the top of 
the building 1.60 s after being shot. Then, after barely missing the 
edge of the building as it falls downward, the rock strikes the ground 
6.00 s after it is launched. In SI units: (a) with what upward veloc-
ity is the rock shot, (b) what maximum height above the top of the 
building is reached by the rock, and (c) how tall is the building?

73  At the instant the traffic light turns green, an automobile 
starts with a constant acceleration a of 2.2 m/s2. At the same instant 
a truck, traveling with a constant speed of 9.5 m/s, overtakes and 
passes the automobile. (a) How far beyond the traffic signal will 
the automobile overtake the truck? (b) How fast will the automo-
bile be traveling at that instant?

74    A pilot flies horizontally at 1300 km/h, at height h = 35 m 
above initially level ground. However, at time t = 0, the pilot 
begins to fly over ground sloping upward at angle θ  = 4.3°  
(Fig. 2-41). If the pilot does not change the airplane’s heading, at 
what time t does the plane strike the ground?

θ

h

Figure 2-41  Problem 74.

75  To stop a car, first you require a certain reaction time to 
begin braking; then the car slows at a constant rate. Suppose that 
the total distance moved by your car during these two phases is 
56.7 m when its initial speed is 80.5 km/h, and 24.4 m when its ini-
tial speed is 48.3 km/h. What are (a) your reaction time and (b) the 
magnitude of the acceleration?

76   Figure 2-42 shows part of a street where traffic flow is 
to be controlled to allow a platoon of cars to move smoothly along 
the street. Suppose that the platoon leaders have just reached 
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Figure 2-42  Problem 76.

intersection 2, where the green appeared when they were distance 
d from the intersection. They continue to travel at a certain speed 
vp (the speed limit) to reach intersection 3, where the green appears 
when they are distance d from it. The intersections are separated 
by distances D23 and D12. (a) What should be the time delay of the 
onset of green at intersection 3 relative to that at intersection 2 to 
keep the platoon moving smoothly?

Suppose, instead, that the platoon had been stopped by a red 
light at intersection 1. When the green comes on there, the leaders 
require a certain time tr to respond to the change and an additional 
time to accelerate at some rate a to the cruising speed vp. (b) If the 
green at intersection 2 is to appear when the leaders are distance d 
from that intersection, how long after the light at intersection 
1 turns green should the light at intersection 2 turn green?

77 SSM  A hot rod can accelerate from 0 to 60 km/h in 5.4 s. (a) What 
is its average acceleration, in m/s2, during this time? (b) How far will it 
travel during the 5.4 s, assuming its acceleration is constant? (c) From 
rest, how much time would it require to go a distance of 0.25 km if its 
acceleration could be maintained at the value in (a)?

78  A red train traveling at 72 km/h and a green train traveling 
at 144 km/h are headed toward each other along a straight, level 
track. When they are 950 m apart, each engineer sees the other’s 
train and applies the brakes. The brakes slow each train at the rate 
of 1.0 m/s2. Is there a collision? If so, answer yes and give the speed 
of the red train and the speed of the green train at impact, respec-
tively. If not, answer no and give the separation between the trains 
when they stop.

79  At time t = 0, a rock 
climber accidentally allows a 
piton to fall freely from a high 
point on the rock wall to the 
valley below him. Then, after 
a short delay, his climbing 
partner, who is 10 m higher on 
the wall, throws a piton down-
ward. The positions y of the 
pitons versus t during the fall-
ing are given in Fig. 2-43. With 
what speed is the second piton thrown?

80    A train started from rest and moved with constant accelera-
tion. At one time it was traveling 30 m/s, and 160 m farther on it 
was traveling 50 m/s. Calculate (a) the acceleration, (b) the time 
required to travel the 160 m mentioned, (c)  the time required to 
attain the speed of 30 m/s, and (d) the distance moved from rest to 
the time the train had a speed of 30 m/s. (e) Graph x versus t and v 
versus t for the train, from rest.

81 SSM  A particle’s acceleration along an x axis is a = 5.0t, with t 
in seconds and a in meters per 
second squared. At t = 2.0 s, 
its velocity is +17 m/s. What is 
its velocity at t = 4.0 s?

82    Figure 2-44 gives the 
acceleration a versus time t 
for a particle moving along 
an x axis. The a-axis scale 
is  set by as  = 12.0 m/s2. At 
t = −2.0 s, the particle’s 
velocity is 7.0 m/s. What is its 
velocity at t = 6.0 s?
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Figure 2-43  Problem 79.
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Figure 2-44  Problem 82.
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83    Figure 2-45 shows a simple device for measuring your 
reaction time. It consists of a cardboard strip marked with a 
scale and two large dots. A friend holds the strip vertically, with 
thumb and forefinger at the dot on the right in Fig. 2-45. You 
then position your thumb and forefinger at the other dot (on the 
left in Fig. 2-45), being careful not to touch the strip. Your friend 
releases the strip, and you try to pinch it as soon as possible after 
you see it begin to fall. The mark at the place where you pinch 
the strip gives your reaction time. (a) How far from the lower dot 
should you place the 50.0 ms mark? How much higher should you 
place the marks for (b) 100, (c) 150, (d) 200, and (e) 250 ms? (For 
example, should the 100 ms marker be 2 times as far from the dot 
as the 50 ms marker? If so, give an answer of 2 times. Can you 
find any pattern in the answers?)

the acceleration of the particle at t = 5.0 s? (d) What is the average 
velocity of the particle between t = 1.0 s and t = 5.0 s? (e) What is the 
average acceleration of the particle between t = 1.0 s and t = 5.0 s?

91    A rock is dropped from a 100-m-high cliff. How long does it 
take to fall (a) the first 50 m and (b) the second 50 m?

92    Two subway stops are separated by 1100 m. If a subway train 
accelerates at +1.2 m/s2 from rest through the first half of the dis-
tance and decelerates at −1.2 m/s2 through the second half, what 
are (a) its travel time and (b) its maximum speed? (c) Graph x, v, 
and a versus t for the trip.

93    A stone is thrown vertically upward. On its way up it passes 
point A with speed v, and point B, 3.00 m higher than A, with speed 
1
2 v. Calculate (a) the speed v and (b) the maximum height reached 
by the stone above point B.

94    A rock is dropped (from rest) from the top of a 60-m-tall 
building. How far above the ground is the rock 1.2 s before it 
reaches the ground?

95 SSM  An iceboat has a constant velocity toward the east when 
a sudden gust of wind causes the iceboat to have a constant accel-
eration toward the east for a period of 3.0 s. A plot of x versus t is 
shown in Fig. 2-47, where t = 0 is taken to be the instant the wind 
starts to blow and the positive x axis is toward the east. (a) What is 
the acceleration of the iceboat during the 3.0 s interval? (b) What is 
the velocity of the iceboat at the end of the 3.0 s interval? (c) If the 
acceleration remains constant for an additional 3.0 s, how far does 
the iceboat travel during this second 3.0 s interval?
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Figure 2-45  Problem 83.

84  A rocket-driven sled running on a straight, level track is 
used to investigate the effects of large accelerations on humans. 
One such sled can attain a speed of 1600 km/h in 1.8 s, starting from 
rest. Find (a) the acceleration (assumed constant) in terms of g and 
(b) the distance traveled.

85    A mining cart is pulled up a hill at 20 km/h and then pulled 
back down the hill at 35 km/h through its original level. (The time 
required for the cart’s reversal at the top of its climb is negligible.) 
What is the average speed of the cart for its round trip, from its 
original level back to its original level?

86    A motorcyclist who is moving along an x axis directed 
toward the east has an acceleration given by a = (6.1 − 1.2t) m/s2 
for 0 ≤ t ≤ 6.0 s. At t = 0, the velocity and position of the cyclist 
are 2.7 m/s and 7.3 m. (a) What is the maximum speed achieved 
by the cyclist? (b) What total distance does the cyclist travel 
between t = 0 and 6.0 s?

87 SSM  When the legal speed limit for the New York Thruway 
was increased from 55 mi/h to 65 mi/h, how much time was saved 
by a motorist who drove the 700 km between the Buffalo entrance 
and the New York City exit at the legal speed limit?

88    A car moving with constant acceleration covered the distance 
between two points 60.0 m apart in 6.00 s. Its speed as it passed 
the second point was 15.0 m/s. (a) What was the speed at the first 
point? (b) What was the magnitude of the acceleration? (c) At 
what prior distance from the first point was the car at rest? (d) Graph 
x versus t and v versus t for the car, from rest (t = 0).

89 SSM   A certain juggler usually tosses balls vertically to 
a height H. To what height must they be tossed if they are to spend 
twice as much time in the air?

90    A particle starts from the origin 
at t = 0 and moves along the posi-
tive x axis. A graph of the velocity 
of the particle as a function of the 
time is shown in Fig. 2-46; the v-axis 
scale is set by vs = 4.0 m/s. (a) What 
is the coordinate of the particle at  
t = 5.0 s? (b) What is the velocity of 
the particle at t = 5.0 s? (c) What is 

Figure 2-47  Problem 95.
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Figure 2-46  Problem 90.

96    A lead ball is dropped in a lake from a diving board 5.20 m 
above the water. It hits the water with a certain velocity and then 
sinks to the bottom with this same constant velocity. It reaches the 
bottom 4.80 s after it is dropped. (a) How deep is the lake? What 
are the (b) magnitude and (c) direction (up or down) of the aver-
age velocity of the ball for the entire fall? Suppose that all the water 
is drained from the lake. The ball is now thrown from the diving 
board so that it again reaches the bottom in 4.80 s. What are the 
(d) magnitude and (e) direction of the initial velocity of the ball?

97    The single cable supporting an unoccupied construction ele-
vator breaks when the elevator is at rest at the top of a 120-m-high 
building. (a) With what speed does the elevator strike the ground? 
(b) How long is it falling? (c) What is its speed when it passes the 
halfway point on the way down? (d) How long has it been falling 
when it passes the halfway point?

98    Two diamonds begin a free fall from rest from the same 
height, 1.0 s apart. How long after the first diamond begins to fall 
will the two diamonds be 10 m apart?

99    A ball is thrown vertically downward from the top of 
a  36.6-m-tall building. The ball passes the top of a window that 
is 12.2 m above the ground 2.00 s after being thrown. What is the 
speed of the ball as it passes the top of the window?
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100    A parachutist bails out and freely falls 50 m. Then the para-
chute opens, and thereafter she decelerates at 2.0 m/s2. She reaches 
the ground with a speed of 3.0 m/s. (a) How long is the parachutist 
in the air? (b) At what height does the fall begin?

101    A ball is thrown down vertically with an initial speed of v0 
from a height of h. (a) What is its speed just before it strikes the 
ground? (b) How long does the ball take to reach the ground? 
What would be the answers to (c) part a and (d) part b if the ball 
were thrown upward from the same height and with the same initial 
speed? Before solving any equations, decide whether the answers 
to (c) and (d) should be greater than, less than, or the same as in 
(a) and (b).

102    The sport with the fastest moving ball is jai alai, where 
measured speeds have reached 303 km/h. If a professional jai 
alai player faces a ball at that speed and involuntarily blinks, he 
blacks out the scene for 100 ms. How far does the ball move dur-
ing the blackout?

103    If a baseball pitcher throws a fastball at a horizontal speed of 
160 km/h, how long does the ball take to reach home plate 18.4 m  
away?

104    A proton moves along the x axis according to the equation 
x = 50t + 10t2, where x is in meters and t is in seconds. Calculate (a) 
the average velocity of the proton during the first 3.0 s of its motion, 
(b) the instantaneous velocity of the proton at t = 3.0 s, and (c) the 
instantaneous acceleration of the proton at t = 3.0 s. (d) Graph x 
versus t and indicate how the answer to (a) can be obtained from the 
plot. (e) Indicate the answer to (b) on the graph. (f) Plot v versus t 
and indicate on it the answer to (c).

105    A motorcycle is moving at 30 m/s when the rider applies the 
brakes, giving the motorcycle a constant deceleration. During the 3.0 s  
interval immediately after braking begins, the speed decreases to 
15 m/s. What distance does the motorcycle travel from the instant 
braking begins until the motorcycle stops?

106    A shuffleboard disk is accelerated at a constant rate from rest 
to a speed of 6.0 m/s over a 1.8 m distance by a player using a cue. At 
this point the disk loses contact with the cue and slows at a constant 
rate of 2.5 m/s2 until it stops. (a) How much time elapses from when 
the disk begins to accelerate until it stops? (b) What total distance 
does the disk travel?

107    The head of a rattlesnake can accelerate at 50 m/s2 in striking 
a victim. If a car could do as well, how long would it take to reach a 
speed of 100 km/h from rest?

108    A jumbo jet must reach a speed of 360 km/h on the runway for 
takeoff. What is the lowest constant acceleration needed for takeoff 
from a 1.80 km runway?

109    An automobile driver increases the speed at a constant rate 
from 25 km/h to 55 km/h in 0.50 min. A bicycle rider speeds up at a 
constant rate from rest to 30 km/h in 0.50 min. What are the magni-
tudes of (a) the driver’s acceleration and (b) the rider’s acceleration?

110    On average, an eye blink lasts about 100 ms. How far does a 
MiG-25 “Foxbat” fighter travel during a pilot’s blink if the plane’s 
average velocity is 3400 km/h?

111    A certain sprinter has a top speed of 11.0 m/s. If the sprinter 
starts from rest and accelerates at a constant rate, he is able to 
reach his top speed in a distance of 12.0 m. He is then able to main-
tain this top speed for the remainder of a 100 m race. (a) What is 
his time for the 100 m race? (b) In order to improve his time, the 
sprinter tries to decrease the distance required for him to reach his 

top speed. What must this distance be if he is to achieve a time of 
10.0 s for the race?

112    The speed of a bullet is measured to be 640 m/s as the bullet 
emerges from a barrel of length 1.20 m. Assuming constant accelera-
tion, find the time that the bullet spends in the barrel after it is fired.

113    The Zero Gravity Research Facility at the NASA Glenn 
Research Center includes a 145 m drop tower. This is an evacuated ver-
tical tower through which, among other possibilities, a 1-m-diameter 
sphere containing an experimental package can be dropped. (a) 
How long is the sphere in free fall? (b) What is its speed just as it 
reaches a catching device at the bottom of the tower? (c) When 
caught, the sphere experiences an average deceleration of 25g as its 
speed is reduced to zero. Through what distance does it travel during 
the deceleration?

114  A car can be braked to a stop from the autobahn-like 
speed of 200 km/h in 170 m. Assuming the acceleration is constant, 
find its magnitude in (a) SI units and (b) in terms of g. (c) How much 
time Tb is required for the braking? Your reaction time Tr is the time 
you require to perceive an emergency, move your foot to the brake, 
and begin the braking. If Tr = 400 ms, then (d) what is Tb in terms 
of Tr, and (e) is most of the full time required to stop spent in react-
ing or braking? Dark sunglasses delay the visual signals sent from 
the eyes to the visual cortex in the brain, increasing Tr. (f) In the 
extreme case in which Tr is increased by 100 ms, how much farther 
does the car travel during your reaction time?

115    In 1889, at Jubbulpore, India, a tug-of-war was finally won 
after 2 h 41 min, with the winning team displacing the center of the 
rope 3.7 m. In centimeters per minute, what was the magnitude of 
the average velocity of that center point during the contest?

116    Most important in an investigation of an airplane crash by 
the U.S. National Transportation Safety Board is the data stored 
on the airplane’s flight-data recorder, commonly called the “black 
box” in spite of its orange coloring and reflective tape. The recorder 
is engineered to withstand a crash with an average deceleration of 
magnitude 3400g during a time interval of 6.50 ms. In such a crash, 
if the recorder and airplane have zero speed at the end of that time 
interval, what is their speed at the beginning of the interval? 

117    From January 26, 1977, to September 18, 1983, George 
Meegan of Great Britain walked from Ushuaia, at the southern tip 
of South America, to Prudhoe Bay in Alaska, covering 30 600 km. In 
meters per second, what was the magnitude of his average velocity 
during that time period?

118    The wings on a stonefly do not flap, and thus the insect cannot 
fly. However, when the insect is on a water surface, it can sail across 
the surface by lifting its wings into a breeze. Suppose that you time 
stoneflies as they move at constant speed along a straight path of a 
certain length. On average, the trips each take 7.1 s with the wings 
set as sails and 25.0 s with the wings tucked in. (a) What is the ratio 
of the sailing speed vs to the nonsailing speed vns? (b) In terms of vs, 
what is the difference in the times the insects take to travel the first 
2.0 m along the path with and without sailing?

119    The position of a particle as it moves along a y axis is given by

y = (2.0 cm) sin (πt/4),

with t in seconds and y in centimeters. (a) What is the average veloc-
ity of the particle between t = 0 and t = 2.0 s? (b) What is the instan-
taneous velocity of the particle at t = 0, 1.0, and 2.0 s? (c) What is 
the average acceleration of the particle between t = 0 and t = 2.0 s? 
(d) What is the instantaneous acceleration of the particle at t = 0, 
1.0, and 2.0 s? 

PROBLEMS
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