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2

We begin our study of physics with mechanics, the 
area of physics most apparent to us in our everyday 

lives. Every time you raise an arm, stand up or sit down, throw 

a ball, or open a door, your actions are governed by the laws of 
mechanics. In this chapter we focus on kinematics—the basic 
properties of motion—in one dimension.

One-Dimensional  
Kinematics

▲  These sprinters provide a good illustration of one-dimensional, straight-line motion. They 
accelerated as they left the starting blocks, and now they maintain a constant velocity as 
they approach the finish line.

Big  
Ideas
1 �Position is measured  

relative to a coordinate 
system.

2 �Velocity is the rate of  
change of position  
with time.

3 �Acceleration is the rate  
of change of velocity with 
time.

4 �Speed increases (decreases) 
when velocity and  
acceleration are in the same 
(opposite) direction.

5 �Equations of motion  
relate position, velocity,  
acceleration, and time.

6 �Free fall is motion with a  
constant downward  
acceleration of magnitude g.
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20    CHAPTER 2    One-Dimensional Kinematics 

2-1  Position, Distance, and Displacement
In physics, the terms position, distance, and displacement have specific meanings. This 
section gives the physics definitions of these terms and shows how they are used to 
describe the motion of a particle.

Position  The first step in describing the motion of a particle is to set up a coordinate 
system that defines its location—that is, its position. An example of a coordinate 
system in one dimension is shown in FIGURE 2-1. This is simply an x axis, with an origin 
(where x = 0) and an arrow pointing in the positive direction—the direction in which 
x increases. In setting up a coordinate system, we are free to choose the origin and the 
positive direction as we like, but once we make a choice, we must be consistent with it 
throughout any calculations that follow.

x =  0

x

xi xf

Origin
(where x =  0)

Initial (xi) and �nal (xf)
positions of person

Arrowhead indicates
positive direction.

▶  FIGURE 2-1  A one-dimensional 
coordinate system  You are free to choose 
the origin and positive direction as you 
like, but once your choice is made, stick 
with it.

The “particle” in Figure 2-1 is a person who has moved to the right from an initial 
position, xi, to a final position, xf. Because the positive direction is to the right, it fol-
lows that xf  is greater than xi; that is, xf 7 xi.

Distance  Now that we’ve seen how to set up a coordinate system, let’s use one to 
investigate the situation shown in FIGURE 2-2. Suppose you leave your house, drive to 
the grocery store, and then return home. The distance you’ve covered in your trip is 
4.3 mi + 4.3 mi = 8.6 mi. In general, distance is defined as the length of a trip:

Definition of Distance

distance = total length of travel

SI unit: meter, m

Using SI units, we find that the distance in this case is

	 8.6 mi = 18.6 mi2a1609 m
1 mi

b = 1.4 * 104 m	

2.1 mi

4.3 mi

Friend’s house Your house

x =  0

x

▶  FIGURE 2-2  One-dimensional 
coordinates  The locations of your house, 
your friend’s house, and the grocery store 
in terms of a one-dimensional coordinate 
system.

In a car, the distance traveled is indicated by the odometer. Distance is always positive, 
and is a scalar quantity (see Chapter 1) with no associated direction.

Displacement  Another useful way to characterize a particle’s motion is in terms of its 
displacement, ∆x, which is simply the change in position:
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2-1  Position, Distance, and Displacement    21

PHYSICS  
IN CONTEXT
Looking Back

In this chapter we make extensive use of 
the sign conventions for one-dimensional 
vectors introduced in Chapter 1—positive 
for one direction, negative for the opposite 
direction.

Big Idea 1 Position and dis-
placement are measured relative to 
a coordinate system. The coordinate 
system must include an origin and 
a positive direction. Displacement 
has a direction and a magnitude, and 
hence it is a vector. Distance has only 
a numerical value, and hence it is a 
scalar.

Definition: Displacement, 𝚫x

displacement = change in position = final position - initial position

displacement = ∆x = xf - xi		  2-1

SI unit: meter, m

The SI units of displacement are meters—the same as for distance—but displacement 
and distance are really quite different. For example, in the round trip from your house 
to the grocery store and back, the distance traveled is 8.6 mi, whereas the displacement 
is zero because xf = xi = 2.1 mi, and hence ∆x = xf - xi = 0.

Notice that we use the delta notation, ∆x, as a convenient shorthand for the 
quantity xf - xi. (See Appendix A for a complete discussion of delta notation.) Also, 
notice that ∆x can be positive (if the final position is to the right of the initial position, 
xf 7 xi), negative (if the final position is to the left of the initial position, xf 6 xi), or 
zero (if the final and initial positions are the same, xf = xi). In fact, the displacement 
is a one-dimensional vector, as defined in Chapter 1, and its direction (right or left) is 
given by its sign (positive or negative, respectively).

For example, suppose you go from your house to the grocery store and then to your 
friend’s house in Figure 2-2. On this trip the distance is 10.7 mi, but the displacement is

	 ∆x = xf - xi = 102 - 12.1 mi2 = -2.1 mi	

The minus sign means your displacement is in the negative direction; that is, to the left.

QUICK EXAMPLE 2-1 � DISPLACEMENT AND DISTANCE �
  Predict/Calculate
Referring to Figure 2-2, suppose you take a trip from your friend’s house to the grocery store 
and then to your house. (a) Is the displacement for this trip positive, negative, or zero? Ex-
plain. (b) Find the displacement for this trip. (c) What is the distance covered in this trip?

REASONING AND SOLUTION
Displacement is the final position minus the initial position; it can be positive or negative. 
Distance is the length of travel, which is always positive.

1.	 Part (a) The displacement is positive because the final position is to the right (posi-
tive direction) of the initial position.

2.	 Part (b) Determine the initial 	 xi = 0 
position for the trip, using Figure 2-2:

3.	 Determine the final position for the 	 xf = 2.1 mi 
trip, using Figure 2-2:

4.	 Subtract xi from xf  to find the 	 ∆x = xf - xi = 2.1 mi - 0 = 2.1 mi 
displacement. Notice that the result  
is positive, as expected:

5.	 Part (c) Add the distances for the 	 2.1 mi + 4.3 mi + 4.3 mi = 10.7 mi 
various parts of the trip:

Enhance Your Understanding	 (Answers given at the end of the chapter)

1.	 For each of the following questions, give an example if your answer is yes. Explain 
why not if your answer is no. (a) Is it possible to take a trip in which the distance cov-
ered is less than the magnitude of the displacement? (b) Is it possible to take a trip in 
which the distance covered is greater than the magnitude of the displacement?

Section Review
•	 Distance is the total length of a trip.

•	 Displacement is the change in position; displacement = ∆x = xf - xi.
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22    CHAPTER 2    One-Dimensional Kinematics 

2-2  Average Speed and Velocity
The next step in describing motion is to consider how rapidly an object moves. For ex-
ample, how much time does it take for a major-league fastball to reach home plate? How 
far does an orbiting satellite travel in one hour? These are examples of some of the most 
basic questions regarding motion, and in this section we learn how to answer them.

Average Speed  The simplest way to characterize the rate of motion is with the 
average speed:

	 average speed =
distance

elapsed time
	 2-2

The dimensions of average speed are distance per time or, in SI units, meters per second, 
m>s. Both distance and elapsed time are positive; thus average speed is always positive.

EXAMPLE 2-2		  DOG RUN

A dog trots back to its owner with an average speed of 1.40 m>s from a distance of 2.3 m. How much time does it take 
for the dog to reach its owner?

PICTURE THE PROBLEM
The dog moves in a straight line through a distance of d = 2.3 m. 
The average speed of the dog is v = 1.40 m>s.

REASONING AND STRATEGY

Equation 2-2 aaverage speed =
distance

elapsed time
b  relates average

speed, distance, and elapsed time. We can solve for the elapsed 
time by rearranging this equation.

Known	 Average speed, v = 1.40 m>s; distance, d = 2.3 m.
Unknown	 Elapsed time = ?

SOLUTION

1.	 Rearrange Equation 2-2 to solve for the elapsed time:	 elapsed time =
distance

average speed
=

d
v

2.	 Substitute numerical values to find the time:	 elapsed time =
2.3 m

1.40 m > s
=

2.3
1.40

 s = 1.6 s

INSIGHT
As this example shows, Equation 2-2 is not just a formula for calculating the average speed. It relates speed, time, and 
distance. Any one of these quantities can be determined if the other two are known.

PRACTICE PROBLEM
A dog trots with an average speed of 1.44 m>s for 1.9 s. What is the distance it covers?
[Answer: distance = 1average speed2 1elapsed time2 = 11.44 m > s2 11.9 s2 = 2.7 m]

Some related homework problems: Problem 11, Problem 13

d

v

Next, we calculate the average speed for a trip consisting of two parts of equal 
length, each traveled with a different speed.

CONCEPTUAL EXAMPLE 2-3    AVERAGE SPEED	 PREDICT/EXPLAIN

You drive 4.00 mi at 30.0 mi>h and then another 4.00 mi at 50.0 mi>h. (a) Is your average speed for the 8.00-mi trip greater 
than, less than, or equal to 40.0 mi>h? (b) Which of the following is the best explanation for your prediction?

I.	 The average of 30.0 mi>h and 50.0 mi>h is 40.0 mi>h, and hence this is the average speed for the trip.

II.	 You go farther during the 50.0 mi>h part of the trip, and hence your average speed is greater than 40.0 mi>h.

III.	 You spend more time during your trip traveling at 30.0 mi>h, and hence your average speed is less than 40.0 mi>h.
	 CONTINUED
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2-2  Average Speed and Velocity    23

4.00 mi 4.00 mi

t1

30.0 mi>h 50.0 mi>h

t2

To confirm the conclusion of Conceptual Example 2-3, we simply apply the defi-
nition of average speed to find its value for the entire trip. We already know that the 
distance traveled is 8.00 mi; what we need now is the total elapsed time. The elapsed 
time on the first 4.00 mi is

	 t1 =
4.00 mi

30.0 mi >  h
= a4.00

30.0
b  h = 0.133 h	

The time required to cover the second 4.00 mi is

	 t2 =
4.00 mi

50.0 mi >  h
= a4.00

50.0
b  h = 0.0800 h	

Therefore, the elapsed time for the entire trip is

	 t1 + t2 = 0.133 h +  0.0800 h = 0.213 h	

This gives the following average speed:

	 average speed =
8.00 mi
0.213 h

= 37.6 mi>h 6 40.0 mi>h	

It’s important to note that a “guess” will never give a detailed result like 37.6 mi>h; a 
systematic, step-by-step calculation is required.

Average Velocity  There is another physical quantity that is often more useful than 
the average speed. It is the average velocity, vav, and it is defined as displacement 
per time:

Definition: Average Velocity, vav

average velocity =
displacement

elapsed time

vav =
∆x
∆t

=
xf - xi

tf - ti
		  2-3

SI unit: meter per second, m>s

Not only does the average velocity tell us, on average, how fast something is moving, 
it also tells us the direction the object is moving. For example, if an object moves in the 
positive direction, then xf 7 xi and the average velocity is positive, vav 7 0. On the 
other hand, if an object moves in the negative direction, then xf 6 xi and vav 6 0. As 
with displacement, the average velocity is a one-dimensional vector, and its direction 

REASONING AND DISCUSSION
At first glance it might seem that the average speed is definitely 40.0 mi>h. On further reflection, however, it is clear that it 
takes more time to travel 4.00 mi at 30.0 mi>h than it does to travel 4.00 mi at 50.0 mi>h. Therefore, you will be traveling 
at the lower speed for a greater period of time, and hence your average speed will be less than 40.0 mi>h—that is, closer to 
30.0 mi>h than to 50.0 mi>h.

ANSWER
(a) The average speed is less than 40.0 mi>h. (b) The best explanation is III.

P R O B L E M - S O L V I N G  N O T E

“Coordinate” the Problem

The first step in solving a physics problem 
is to produce a simple sketch of the system. 
Your sketch should include a coordinate 
system, along with an origin and a posi-
tive direction. Next, you should identify 
quantities that are given in the problem, 
such as initial position, initial velocity, ac-
celeration, and so on. These preliminaries 
will help you produce a mathematical rep-
resentation of the problem.

Balls Take High and Low Tracks
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24    CHAPTER 2    One-Dimensional Kinematics 

Graphical Interpretation of Average Velocity
It’s often useful to “visualize” a particle’s motion by sketching its position as a function 
of time. For example, suppose a particle moves back and forth along the x axis, with 
the positions and times listed in Table 2-1. This data is plotted in FIGURE 2-3 (a), which is 
certainly a better way to “see” the motion than a table of numbers.

Even so, this way of showing a particle’s position and time is a bit messy, so let’s replot 
the same information with a different type of graph. In FIGURE 2-3 (b) we again plot the 
motion shown in Figure 2-3 (a), but this time with the vertical axis representing the posi-
tion, x, and the horizontal axis representing time, t. This is referred to as an x-versus-t 
graph, and it makes it much easier to visualize a particle’s motion, as we shall see.

TABLE 2-1  Time and Position Values for 
Figure 2-3

t (s) x (m)

0 1

1 3

2 4

3 2

4 -1

EXAMPLE 2-4	 	 SPRINT TRAINING

An athlete sprints in a straight line for 50.0 m in 8.00 s, and then walks slowly back to the starting line in 40.0 s. If the 
“sprint direction” is taken to be positive, what are (a) the average sprint velocity, (b) the average walking velocity, and 
(c) the average velocity for the complete round trip?

PICTURE THE PROBLEM
In our sketch we set up a coordinate system with the sprint going 
in the positive x direction, as described in the problem. For conve-
nience, we choose the origin to be at the starting line. The finish 
line, then, is at x = 50.0 m.

REASONING AND STRATEGY
In each part of the problem we are asked for the average veloc-
ity, and we are given information for times and distances. All that 
is needed, then, is to determine ∆x = xf - xi and ∆t = tf - ti in

each case, and to apply Equation 2-3 Avav = ∆x
∆t B

Known	 �Sprint distance = 50.0 m; sprint time = 8.00 s; walk-
ing distance = 50.0 m; walking time = 40.0 s.

Unknown	 �(a) Average sprint velocity, vav = ? (b) Average walking ve-
locity, vav = ? (c) Average velocity for round trip, vav = ?

SOLUTION

Part (a)

1.	 Apply vav =
∆x
∆t

 to the sprint, with 	  

xf = 50.0 m, xi = 0, tf = 8.00 s, and ti = 0:

Part (b)

2.	 Apply vav =
∆x
∆t

 to the walk. In this case,  

xf = 0, xi = 50.0 m, tf = 48.0 s, and ti = 8.00 s:

Part (c)

3.	 For the round trip, xf = xi = 0; thus ∆x = 0:	 vav =
∆x
∆t

=
0

48.0 s
= 0

INSIGHT
The sign of the velocities in parts (a) and (b) indicates the direction of motion: positive for motion to the right, negative 
for motion to the left. In addition, notice that the average speed for the entire 100.0-m trip 1100.0 m>48.0 s = 2.08 m>s2 
is nonzero, even though the average velocity vanishes.

PRACTICE PROBLEM
If the average velocity during the walk is -1.50 m>s, how much time does it take the athlete to walk back to the starting line?
[Answer: ∆t = ∆x>vav = 1-50.0 m2  > 1-1.50 m>s2 = 33.3 s]

Some related homework problems: Problem 9, Problem 14, Problem 16

x =  0 50.0 m

x

Sprint

x =  0 50.0 m

x

Walk

vav =
∆x
∆t

=
xf - xi

tf - ti
=

50.0 m - 0
8.00 s - 0

=
50.0
8.00

 m > s = 6.25 m > s

vav =
xf - xi

tf - ti
=

0 - 50.0 m
48.0 s - 8.00 s

= -
50.0
40.0

 m>s = -1.25 m>s

is given by its sign. Average velocity gives more information than average speed; hence 
it is used more frequently in physics.

In the next Example, pay close attention to the sign of each quantity.
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2-2  Average Speed and Velocity    25

The particle moves in the positive x direction for 2 s,
then reverses direction.

The particle moves in the positive 
direction for two seconds c

cthen moves
in the negative
direction.

x axis

4 mO
x

3 m 5 m1 m

1 s
2 s

t =  0

-3 m -2 m -1 m 2 m

3 s4 s

Po
si

ti
on

, x
 (m

)

Time, t (s)

(a) The particle’s path shown on a coordinate axis (b) The same path as a graph of position x versus time t

1

-1

-2

2

3

4

5

4O 31 2

▲  FIGURE 2-3   Two ways to visualize one-dimensional motion  (a) Position plotted for different times. Although the path is shown with a  
“U” shape for clarity, the particle actually moves straight back and forth along the x axis. (b) Plot of position (vertical) versus time (horizontal).

Slope Is Equal to Average Velocity  An x-versus-t plot leads to a particularly useful 
interpretation of average velocity. To see how, suppose you would like to know the aver-
age velocity of the particle in Figure 2-3 from t = 0 to t = 3 s. From our definition of 
average velocity in Equation 2-3, we know that vav = ∆x  >  ∆t, or vav =  12 m - 1 m2>
13 s - 02 = +0.3 m>s for this particle. To relate this to the x-versus-t plot, draw a 
straight line connecting the position at t = 0 (call this point A) and the position at 
t = 3 s (point B). The result is shown in FIGURE 2-4 (a).

The slope of the straight line from A to B is equal to the rise over the run, which in 
this case is ∆x>∆t. But ∆x>∆t  is the average velocity. Thus, we conclude the following:

The slope of a line connecting two points on an x-versus-t plot is equal to the 
average velocity during that time interval.

As an additional example, let’s calculate the average velocity of this particle 
between times t = 2 s and t = 3 s. A line connecting the corresponding points is 
shown in FIGURE 2-4 (b). The first thing we notice about this line is that it has a nega-
tive slope; thus vav 6 0 and the particle is moving to the left. We can also see that this 
line is inclined more steeply than the line in Figure 2-4 (a); hence the magnitude of 
its slope (its speed) is greater. In fact, if we calculate the slope of this line we find that 
vav = -2 m>s for this time interval.

Thus, connecting points on an x-versus-t plot gives an immediate “feeling” for the 
average velocity over a given time interval. This type of graphical analysis will be par-
ticularly useful in the next section.

When Dx 7  0,
the slope Dx>Dt
is positive.

The slope Dx>Dt is negative when
Dx 6  0, indicating net motion to
the left.

x (m)

Dt

Dx 7  0
1

-1

-2

2

(a) Average velocity between t =  0
and t =  3 s

3

4

B

A

5

4
O t (s)

x (m)

t (s)

31 2

Dt

Dx 6  0

1

-1

-2

2

(b) Average velocity between t =  2 s
and t =  3 s

3

4

5

4
O

31 2

Slope =   =  average velocity from A to B
Dx
Dt

▲  FIGURE 2-4  Average velocity on an    
x-versus-t graph  The slope of a straight 
line between any two points on an  
x-versus-t graph equals the average veloc-
ity between those points. Positive slopes 
indicate net motion to the right; negative 
slopes indicate net motion to the left.

Enhance Your Understanding	 (Answers given at the end of the chapter)

2.	 The position of an object as a function 
of time is shown in FIGURE 2-5. For the 
time intervals between (a) points 1 and 
2, (b) points 2 and 3, and (c) points 3 
and 4, state whether the average veloc-
ity is positive, negative, or zero.

Time

Po
si

ti
on

1

2 3

4

▲  FIGURE 2-5 

Section Review
•	 Average speed is distance divided by time.

•	 Average velocity is displacement divided by time; vav =
∆x
∆t

.

•	 The slope of a line connecting two points on an x-versus-t plot is the average velocity 
between those two points.
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26    CHAPTER 2    One-Dimensional Kinematics 

2-3  Instantaneous Velocity
Though average velocity is a useful way to characterize motion, it can miss a lot. For 
example, suppose you travel by car on a long, straight highway, covering 92 mi in 
2.0 hours. Your average velocity is 46 mi>h. Even so, there may have been only a few 
times during the trip when you were actually driving at 46 mi>h.

To have a more accurate representation of your trip, you should average your velocity 
over shorter periods of time. If you calculate your average velocity every 15 minutes, 
you have a better picture of what the trip was like. An even better, more realistic picture 
of the trip is obtained if you calculate the average velocity every minute or every second. 
Ideally, when you deal with the motion of any particle, it’s desirable to know the veloc-
ity of the particle at each instant of time.

This idea of a velocity corresponding to an instant of time is what is meant by the 
instantaneous velocity. Mathematically, we define the instantaneous velocity as 
follows:

Definition: Instantaneous Velocity, v

v = lim
∆tS0

 
∆x
∆t

� 2-4

SI unit: meter per second, m>s
In this expression the notation lim∆tS0 means “evaluate the average velocity, ∆x>∆t, 
over shorter and shorter time intervals, approaching zero in the limit.” Notice that the 
instantaneous velocity can be positive, negative, or zero, just like the average velocity—
and just like the average velocity, the instantaneous velocity is a one-dimensional vec-
tor. The magnitude of the instantaneous velocity is called the instantaneous speed. 
In a car, the speedometer gives a reading of the vehicle’s instantaneous speed. FIGURE 2-6 
shows a speedometer reading 60 mi>h.

Calculating the Instantaneous Velocity  As ∆t  becomes smaller, ∆x becomes smaller 
as well, but the ratio ∆x>∆t  approaches a constant value. To see how this works, con-
sider first the simple case of a particle moving with a constant velocity of +1 m>s. If the 
particle starts at x = 0 at t = 0, then its position at t = 1 s is x = 1 m, its position at 
t = 2 s is x = 2 m, and so on. Plotting this motion in an x-versus-t plot gives a straight 
line, as shown in FIGURE 2-7.

Now, suppose we want to find the instantaneous velocity at t = 3 s. To do so, we 
calculate the average velocity over small intervals of time centered at 3 s, and let the 
time intervals become arbitrarily small, as shown in the Figure. Because the x-versus-t 
plot is a straight line, it’s clear that ∆x>∆t = ∆x1>∆t1, no matter how small the time 
interval ∆t. As ∆t  becomes smaller, so does ∆x, but the ratio ∆x>∆t  is simply the slope 
of the line, 1 m>s. Thus, the instantaneous velocity at t = 3 s is 1 m>s.

Of course, in this example the instantaneous velocity is 1 m>s for any instant of 
time, not just t = 3 s. Therefore:

When the velocity is constant, the average velocity over any time interval is 
equal to the instantaneous velocity at any time.

In general, a particle’s velocity varies with time, and the x-versus-t plot is not a 
straight line. An example is shown in FIGURE 2-8, with the corresponding numerical 
values of x and t given in Table 2-2.

In this case, what is the instantaneous velocity at, say, t = 1.00 s? As a first 
approximation, let’s calculate the average velocity for the time interval from ti = 0 to 
tf = 2.00 s. Notice that this time interval is centered at t = 1.00 s. From Table 2-2 we 
see that xi = 0 and xf = 27.4 m; thus vav = 13.7 m>s. The corresponding straight line 
connecting these two points is the lowest straight line in Figure 2-8.

The next three lines, in upward progression, refer to time intervals from 0.250 s to 
1.75 s, 0.500 s to 1.50 s, and 0.750 s to 1.25 s, respectively. The corresponding average 
velocities, given in Table 2-3, are 12.1 m>s, 10.9 m>s, and 10.2 m>s. Table 2-3 also gives 
results for even smaller time intervals. In particular, for the interval from 0.900 s to 1.10 s 

▲  FIGURE 2-6  A speedometer indicates 
a car’s instantaneous speed but gives no 
information about its direction. Thus, the 
speedometer is truly a “speed meter,” not 
a velocity meter.

Big Idea 2 Velocity is the rate 
of change of position with time, and 
speed is the magnitude of velocity. 
Velocity has a magnitude and a 
direction, and hence it is a vector; 
speed has only a magnitude, and 
hence it is a scalar.

Motion begins
at x =  0 at time
t =  0.

Constant velocity
results in constant slope.

x (m)

1

2

3

4

5

4O
t (s)

31 2

Dt1

Dx1

Dt

Dx

▲  FIGURE 2-7  Constant velocity 
corresponds to constant slope on an 
x-versus-t graph  The slope ∆x1>∆t1 is 
equal to 14 m - 2 m2>14 s - 2 s2 =
12 m2>(2 s) = 1 m>s. Because the  
x-versus-t plot is a straight line, the slope 
∆x>∆t  is also equal to 1 m>s for any value 
of ∆ t.

TABLE 2-2  x-versus-t  Values for Figure 2-8

t (s) x (m)

0 0

0.25 9.85

0.50 17.2

0.75 22.3

1.00 25.6

1.25 27.4

1.50 28.1

1.75 28.0

2.00 27.4
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O 0.5 1 1.5
Time, t (s)
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 (m
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5

v =  10.0 m>s

vav =  12.1 m>s

vav =  13.7 m>s

◀  FIGURE 2-8  Instantaneous velocity  An 
x-versus-t plot for motion with variable 
velocity. The instantaneous velocity 
at t = 1 s is equal to the slope of the 
tangent line at that time. The average 
velocity for a small time interval centered 
on t = 1 s approaches the instantaneous 
velocity at t = 1 s as the time interval 
goes to zero.

TABLE 2-3  Calculating the Instantaneous Velocity at t ∙ 1 s for Figure 2-8

  t i (s) t f (s) 𝚫t  (s) x i (m) x f (m) 𝚫x  (m) vav ∙ 𝚫x ,𝚫t  (m ,s)

0 2.00 2.00 0 27.4 27.4 13.7

0.250 1.75 1.50 9.85 28.0 18.2 12.1

0.500 1.50 1.00 17.2 28.1 10.9 10.9

0.750 1.25 0.50 22.3 27.4 5.10 10.2

0.900 1.10 0.20 24.5 26.5 2.00 10.0

0.950 1.05 0.10 25.1 26.1 1.00 10.0

CONCEPTUAL EXAMPLE 2-5    INSTANTANEOUS VELOCITY

Referring to Figure 2-8, is the instantaneous velocity at t = 0.500 s (a) greater than, (b) less than, or (c) the same as the in-
stantaneous velocity at t = 1.00 s?

REASONING AND DISCUSSION
From the x-versus-t graph in Figure 2-8 it is clear that the slope of a tangent line drawn at t = 0.500 s is greater than the slope 
of the tangent line at t = 1.00 s. It follows that the particle’s velocity at 0.500 s is greater than its velocity at 1.00 s.

ANSWER
(a) The instantaneous velocity is greater at t = 0.500 s.

the average velocity is 10.0 m>s. Smaller intervals also give 10.0 m>s. Thus, we can con-
clude that the instantaneous velocity at t = 1.00 s is v = 10.0 m>s.

Tangent Lines and the Instantaneous Velocity  The uppermost straight line in  
Figure 2-8 is the tangent line to the x-versus-t curve at the time t = 1.00 s; that is, it is 
the line that touches the curve at just a single point. Its slope is 10.0 m>s. Clearly, the 
average-velocity lines have slopes that approach the slope of the tangent line as the 
time intervals become smaller. This is an example of the following general result:

The instantaneous velocity at a given time is equal to the slope of the tan-
gent line at that point on an x-versus-t graph.

Thus, a visual inspection of an x-versus-t graph gives information not only about the 
location of a particle, but also about its velocity.

In the remainder of the book, when we say velocity it is to be understood that we 
mean instantaneous velocity. If we want to refer to the average velocity, we will specifi-
cally say average velocity.
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Section Review
•	 Instantaneous velocity is the limit of average velocity over shorter and shorter time 

	 intervals; v = lim
∆tS0

 
∆x
∆t

. The magnitude of the instantaneous velocity is the instanta-
neous speed.

•	 The instantaneous velocity on an x-versus-t plot is the slope of a tangent line at a 
given time.

Enhance Your Understanding	 (Answers given at the end of the chapter)

3.	 FIGURE 2-10 shows the position-versus-
time graph for an object. Rank the 
instantaneous velocity of the object 
at points A, B, C, and D in order of in-
creasing velocity, from most negative 
to most positive. Indicate ties where 
appropriate.

Time

A

B

C
D

Po
si

ti
on

▲  FIGURE 2-10 

2-4  Acceleration
Just as velocity is the rate of change of displacement with time, acceleration is the 
rate of change of velocity with time. Thus, an object accelerates whenever its veloc-
ity changes, no matter what the change—it accelerates when its velocity increases, 
it accelerates when its velocity decreases. Of all the concepts discussed in this chap-
ter, perhaps none is more central to physics than acceleration. Galileo, for example, 
showed that falling bodies move with constant acceleration. Newton showed that 
acceleration and force are directly related, as we shall see in Chapter 5. Thus, it is 
particularly important to have a clear, complete understanding of acceleration before 
leaving this chapter.

Average Acceleration  We begin with the definition of average acceleration, 
which is the change in velocity divided by the change in time:

Definition: Average Acceleration, aav

aav =
∆v

∆t
=

vf - vi

tf - ti
� 2-5

SI unit: meter per second per second, m>s2

Notice that the dimensions of average acceleration are the dimensions of velocity per 
time, or (meters per second) per second:

	
meters per second

second
=

m>s
s

=
m
s2

Graphical Interpretation of Average and Instantaneous Velocity
Let’s summarize the graphical interpretations of average and instantaneous velocity 
on an x-versus-t graph:

•	 Average velocity is the slope of the straight line connecting two points correspond-
ing to a given time interval.

•	 Instantaneous velocity is the slope of the tangent line at a given instant of time.

These relationships are illustrated in FIGURE 2-9.

x

O
t

t3t1 t2

Slope =  average velocity
between times t1 and t2

Slope =  average velocity
between times t2 and t3

Slope of tangent
line =  instantaneous
velocity at time t3

▲  FIGURE 2-9  Graphical interpretation of 
average and instantaneous velocity
Average velocities correspond to the slope 
of straight-line segments connecting 
different points on an x-versus-t graph. 
Instantaneous velocities are given by the 
slope of the tangent line at a given time.
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TABLE 2-4  Typical Accelerations 1m ,s22 

Ultracentrifuge 3 * 106

Bullet fired from a rifle 4.4 * 105

Batted baseball 3 * 104

Click beetle righting itself 400

Acceleration required to 
deploy air bags

60

Bungee jump 30

High jump 15

Acceleration of gravity 
on Earth

9.81

Emergency stop in a car 8

Airplane during takeoff 5

An elevator 3

Acceleration of gravity 
on the Moon

1.62

▲  FIGURE 2-11  The space shuttle 
Columbia accelerates upward on the  
initial phase of its journey into orbit.  
The astronauts on board experienced an 
approximately linear acceleration that may 
have been as great as 20 m  >  s2.

Big Idea 3 Acceleration is the 
rate of change of velocity with time. 
Acceleration has both a magnitude 
and a direction, and hence it is a 
vector.

This is generally spoken as “meters per second squared.” For example, the acceleration 
of gravity on the Earth’s surface is approximately 9.81 m>s2, which means that the 
velocity of a falling object changes by 9.81 meters per second (m>s) every second (s). In 
addition, we see that the average acceleration can be positive, negative, or zero. In fact, 
it is a one-dimensional vector, just like displacement, average velocity, and instanta-
neous velocity. Typical magnitudes of acceleration are given in Table 2-4. A real-world 
example of linear acceleration is shown in FIGURE 2-11.

EXERCISE 2-6  AVERAGE ACCELERATION
a.	 A certain car can go from 0 to 60.0 mi>h in 7.40 s. What is the average acceleration of 

this car in meters per second squared?

b.	 An airplane has an average acceleration of 2.19 m>s2 during takeoff. If the airplane 
starts at rest, how much time does it take for it to reach a speed of 174 mi>h?

REASONING AND SOLUTION
(a) � Average acceleration is the change in velocity divided by the elapsed time, aav = ∆v>∆t.

(b) � The equation for average acceleration can be rearranged to solve for the elapsed time, 
∆t = ∆v>aav.

a.	  average acceleration = aav = 160.0 mi>h2  > 17.40 s2

	  = 160.0 mi>h2a1609 m
1 mi

b  a 1 h
3600 s

b> 17.40 s2

	  = 126.8 m>s2  > 17.40 s2 = 3.62 m>s2

b.	  ∆t = ∆v>aav = 1174 mi>h2  a1609 m
1 mi

b a 1 h
3600 s

b> 12.19 m>s22

	  = 177.8 m>s2  > 12.19 m>s22 = 35.5 s

Instantaneous Acceleration  We considered the limit of smaller and smaller time 
intervals to find an instantaneous velocity, and we can do the same to define the 
instantaneous acceleration:

Definition: Instantaneous Acceleration, a

a = lim
∆tS0

 
∆v

∆t
� 2-6

SI unit: meter per second per second, m>s2

As you might expect, the instantaneous acceleration is a vector, just like the average ac-
celeration, and its direction in one dimension is given by its sign. For simplicity, when 
we say acceleration in this text, we are referring to the instantaneous acceleration.

One final note before we go on to some examples. If the acceleration is constant, it 
has the same value at all times. Therefore:

When acceleration is constant, the instantaneous and average accelerations 
are the same.

We shall make use of this fact when we return to the special case of constant accelera-
tion in the next section.

Graphical Interpretation of Acceleration
To see how acceleration can be interpreted graphically, suppose a particle has a con-
stant acceleration of -0.50 m>s2. This means that the velocity of the particle decreases 
by 0.50 m>s each second. Thus, if its velocity is 1.0 m>s at t = 0, then at t = 1 s its 
velocity is 0.50 m>s, at t = 2 s its velocity is 0, at t = 3 s its velocity is -0.50 m>s, and 
so on. This is illustrated by curve I in FIGURE 2-12, where we see that a plot of v versus 

1

-1

2

4
O t (s)

II

I

V
el

oc
it

y,
 v

 (m
>s)

31

a =  -0.50 m>s2

2

Dt

Dt

Dv

Dv

a =  +0.25 m>s2

▶  FIGURE 2-12  v-versus-t plots for motion with constant acceleration  Curve I represents the 
movement of a particle with constant acceleration a = -0.50 m  >  s2. Curve II represents the 
motion of a particle with constant acceleration a = +0.25 m  /  s2.
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v

O
t

t3t1 t2

Slope =  average acceleration
between times t1 and t2

Slope =  average acceleration
between times t2 and t3

Slope of tangent line =  
instantaneous acceleration at t3

▶  FIGURE 2-13  Graphical interpretation 
of average and instantaneous accelera-
tion  Average accelerations correspond to 
the slopes of straight-line segments con-
necting different points on a v-versus-t 
graph. Instantaneous accelerations are 
given by the slope of the tangent line at a 
given time.

EXAMPLE 2-8   ACCELERATION OF A BICYCLE

A cyclist riding in a straight line has an initial velocity of 3.5 m>s, and accelerates at -1.0 m>s2 for 2.0 s. The cyclist then 
coasts with zero acceleration for 3.0 s, and finally accelerates at 1.5 m>s2 for an additional 2.0 s. (a) What is the final 
velocity of the cyclist? (b) What is the average acceleration of the cyclist for these seven seconds?

PICTURE THE PROBLEM
We begin by sketching a v-versus-t plot for the cyclist. The basic idea is that each interval of constant acceleration is 
represented by a straight line of the appropriate slope. Therefore, we draw a straight line with the slope -1.0 m>s2 from 
t = 0 to t = 2.0 s, a line with zero slope from t = 2.0 s to t = 5.0 s, and a line with the slope 1.5 m>s2 from t = 5.0 s to 
t = 7.0 s. The line connecting the initial and final points determines the average acceleration.

CONCEPTUAL EXAMPLE 2-7   SPEED AS A FUNCTION OF TIME

The speed of a particle with the v-versus-t graph shown by curve II in Figure 2-12 increases steadily with time. Consider, in-
stead, a particle whose v-versus-t graph is given by curve I in Figure 2-12. As a function of time, does the speed of this particle 
(a) increase, (b) decrease, or (c) decrease and then increase?

REASONING AND DISCUSSION
Recall that speed is the magnitude of velocity. In curve I of Figure 2-12 the speed starts out at 1.0 m>s, then decreases to 
0 at t = 2 s. After t = 2 s the speed increases again. For example, at t = 3 s the speed is 0.50 m>s, and at t = 4 s the speed 
is 1 m>s.

Did you realize that the particle represented by curve I in Figure 2-12 changes direction at t = 2 s? It certainly does. Be-
fore t = 2 s the particle moves in the positive direction; after t = 2 s it moves in the negative direction. At precisely t = 2 s 
the particle is momentarily at rest. However, regardless of whether the particle is moving in the positive direction, moving 
in the negative direction, or instantaneously at rest, it still has the same constant acceleration. Acceleration has to do only 
with the way the velocity is changing at a given moment.

ANSWER
(c) The speed decreases and then increases.

The graphical interpretations for velocity presented in Figure 2-9 apply equally 
well to acceleration, with just one small change: Instead of an x-versus-t graph, we 
use a v-versus-t graph, as in FIGURE 2-13. Thus, the average acceleration in a v-versus-t 
plot is the slope of a straight line connecting points corresponding to two different 
times. Similarly, the instantaneous acceleration is the slope of the tangent line at a 
particular time.

t results in a straight line with a negative slope. Curve II in Figure 2-12 has a posi-
tive slope, corresponding to a constant acceleration of +0.25 m>s2. Thus, in terms of 
a v-versus-t plot, a constant acceleration results in a straight line with a slope equal to 
the acceleration.

CONTINUED
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Relating the Signs of Velocity and Acceleration to the Change in Speed  In one 
dimension, nonzero velocities and accelerations are either positive or negative, de-
pending on whether they point in the positive or negative direction of the coordinate 
system chosen. Thus, the velocity and acceleration of an object may have the same 
or opposite signs. (Of course, in two or three dimensions the relationship between 
velocity and acceleration can be much more varied, as we shall see in the next several 
chapters.) This leads to the following two possibilities in one dimension:

•	 When the velocity and acceleration of an object have the same sign (point in the 
same direction), the speed of the object increases.

•	 When the velocity and acceleration of an object have opposite signs (point in 
opposite directions), the speed of the object decreases.

These two possibilities are illustrated in FIGURE 2-14. Notice that when a particle’s speed 
increases, it means either that its velocity becomes more positive, as in FIGURE 2-14 (a), or 
more negative, as in FIGURE 2-14 (d). In either case, it is the magnitude of the velocity—the 
speed—that increases. FIGURE 2-15 shows an example where the velocity and the accelera-
tion are definitely in the same direction.

When a particle’s speed decreases, it is often said to be decelerating. A common mis-
conception is that deceleration implies a negative acceleration. This is not true. Decelera-
tion can be caused by a positive or a negative acceleration, depending on the direction 
of the initial velocity. For example, the car in FIGURE 2-14 (b) has a positive velocity and 

REASONING AND STRATEGY
During each period of constant acceleration the change in velocity 
is ∆v = aav∆t = a∆t.

a.	 Adding the individual changes in velocity gives the total change, 
∆v = vf - vi. Because vi is known, this expression can be solved 
for the final velocity, vf = ∆v + vi.

b.	 The average acceleration can be calculated using Equation 2-5, 
aav = ∆v>∆t. Notice that ∆v has been obtained in part (a), and 
the total time interval is ∆t = 7.0 s.

Known	 �Initial velocity, vi = 3.5 m>s; accelerations, a1 = -1.0 m>s2, 
a2 = 0, a3 = 1.5 m>s2.

Unknown	 �(a) Final velocity, vf =  ? (b) Average acceleration, aav = ?

SOLUTION

Part (a)

1.	 Find the change in velocity during each of the 	 ∆v1 = a1∆t1 = 1-1.0 m>s2212.0 s2 = -2.0 m>s 
three periods of constant acceleration:	 ∆v2 = a2∆t2 = 10213.0 s2 = 0
	 ∆v3 = a3∆t3 = 11.5 m>s2212.0 s2 = 3.0 m>s

2.	 Sum the change in velocity for each period to 	  ∆v = ∆v1 + ∆v2 + ∆v3 
obtain the total ∆v:	  = -2.0 m>s + 0 + 3.0 m>s = 1.0 m>s

3.	 Use ∆v to find vf, recalling that vi = 3.5 m>s:	  ∆v = vf - vi

	  vf = ∆v + vi = 1.0 m>s + 3.5 m>s = 4.5 m>s
Part (b)

4.	 The average acceleration is ∆v>∆t:	 aav =
∆v

∆t
=

1.0 m>s
7.0 s

= 0.14 m>s2

INSIGHT
The average acceleration for these seven seconds is not the average of the individual accelerations, -1.0 m>s2, 0, and 
1.5 m>s2. The reason is that different amounts of time are spent with each acceleration.

PRACTICE PROBLEM
What is the average acceleration of the cyclist between t = 3.0 s and t = 6.0 s?
[Answer: aav = ∆v>∆t = 13.0 m>s - 1.5 m>s2  > 16.0 s - 3.0 s2 = 0.50 m>s2]

Some related homework problems: Problem 32, Problem 34

1

2

3

4

4O 31 2

Instantaneous and average acceleration
are equal on straight-line segments.

765

Time, t (s)

V
el

oc
it

y,
 v

 (m
>s)

Slope =  average acceleration
from t =  0 to t =  7 s

1

2

3

Big Idea 4 Speed increases 
when velocity and acceleration are in 
the same direction; speed decreases 
when velocity and acceleration are in 
opposite directions.

PHYSICS  
IN CONTEXT 
Looking Ahead
The distinctions developed in this chapter 
between velocity and acceleration play a 
key role in our understanding of Newton’s 
laws of motion in Chapters 5 and 6.
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a negative acceleration, while the car in FIGURE 2-14 (c) has a negative velocity and a 
positive acceleration. In both cases, the speed of the car decreases. Again, all that is 
required for deceleration in one dimension is that the velocity and acceleration have 
opposite signs; that is, they must point in opposite directions, as in parts (b) and (c) of 
Figure 2-14.

Velocity-versus-time plots for the four situations shown in Figure 2-14 are pre-
sented in FIGURE 2-16. In each of the four plots in Figure 2-16 we assume constant accel-
eration. Be sure to understand clearly the connection between the v-versus-t plots in 
Figure 2-16 and the corresponding physical motions indicated in Figure 2-14.

▶  FIGURE 2-14  Cars accelerating or 
decelerating  A car’s speed increases 
when its velocity and acceleration point 
in the same direction, as in cases (a) and 
(d). When the velocity and acceleration 
point in opposite directions, as in cases 
(b) and (c), the car’s speed decreases.

▶  FIGURE 2-15  The winner of this race 
was traveling at a speed of 313.91 mi>
h at the end of the quarter-mile course. 
The winning time was just 4.607 s, and 
hence the average acceleration during this 
race was approximately three times the 
acceleration of gravity (which is covered in 
Section 2-7).

v

a

(a) Speed increases

x

v

a

(b) Speed decreases

x

v

a

(d) Speed increases

x

v

a

x

(c) Speed decreases

EXAMPLE 2-9   THE FERRY DOCKS

A ferry makes a short run between two docks: one in Anacortes, Washington, the other on Guemes Island. As the ferry 
approaches the Guemes dock (traveling in the positive x direction), its speed is 6.8 m>s. (a) If the ferry slows to a stop in 
13.3 s, what is its average acceleration? (b) As the ferry returns to the Anacortes dock, its speed is 6.1 m>s. If it comes to 
rest in 12.9 s, what is its average acceleration?

PICTURE THE PROBLEM
Our sketch shows the locations of the two docks and the posi-
tive direction indicated in the problem. The distance between 
docks is not given, nor is it needed.

REASONING AND STRATEGY
We are given the initial and final velocities (the ferry comes to 
a stop in each case, so its final speed is zero) and the relevant 
times. Therefore, we can find the average acceleration using aav = ∆v>∆t, being careful to get the signs right.

Known	 �(a) Initial velocity, vi = 6.8 m>s; time to stop, ∆t = 13.3 s. (b) Initial velocity, vi = -6.1 m>s; time to stop, 
∆t = 12.9 s.

Unknown	 (a) Average acceleration, aav = ? (b) Average acceleration, aav = ?

SOLUTION

Part (a)

1.	 Calculate the average acceleration, noting that 	  
vi = 6.8 m>s and vf = 0:

x

Guemes
Island

Anacortes

aav =
∆v

∆t
=

vf - vi

∆t
=

0 - 6.8 m>s
13.3 s

= -0.51 m>s2

CONTINUED
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O t

(a)

(b)
(c)

(d)

v

▲  FIGURE 2-16  v-versus-t plots with  
constant acceleration  Four plots of  
v versus t corresponding to the four situa-
tions shown in Figure 2-14. Notice that the 
speed increases in cases (a) and (d), but 
decreases in cases (b) and (c).

*Real World Physics applications are denoted by the acronym RWP.

2-5  Motion with Constant Acceleration
In this section, we derive equations that describe the motion of particles moving with 
constant acceleration. These “equations of motion” can be used to describe a wide 
range of everyday phenomena. For example, in an idealized world with no air resis-
tance, falling bodies have constant acceleration.

Velocity as a Function of Time  As mentioned in the previous section, if a particle has 
constant acceleration—that is, the same acceleration at every instant of time—then 
its instantaneous acceleration, a, is equal to its average acceleration, aav. Recalling the 
definition of average acceleration (Equation 2-5), we have

	 aav =
vf - vi

tf - ti
= a	

▲  FIGURE 2-17  Integrated circuit ac-
celerometer  Microscopic image of the 
ADXL330, the accelerometer incorporated 
into the Nintendo Wii remote controller. 
When the chip is accelerated in any direc-
tion, it generates an electrical signal that 
is proportional to the magnitude of the 
acceleration. It also indicates the direction 
of acceleration.

RWP* The ability to detect and measure acceleration has become an important ca-
pability of many new technologies. A device that measures acceleration is called an 
accelerometer. In recent years a number of accelerometers have been developed that are 
contained in tiny integrated circuit chips, such as the one shown in FIGURE 2-17. These 
accelerometers allow devices such as smartphones, video game consoles, automotive 
air bag sensors, aircraft flight stabilization systems, and numerous others to detect ac-
celeration and respond accordingly.

Part (b)

2.	 In this case, vi = -6.1 m>s and vf = 0:	 aav =
∆v

∆t
=

vf - vi

∆t
=

0 - (-6.1 m>s)

12.9 s
= 0.47 m>s2

INSIGHT
In each case, the acceleration of the ferry is opposite in sign to its velocity; therefore the ferry decelerates.

PRACTICE PROBLEM
When the ferry leaves Guemes Island, its speed increases from 0 to 4.8 m>s in 9.05 s. What is its average acceleration?
[Answer: aav = -0.53 m>s2]

Some related homework problems: Problem 30, Problem 36

Enhance Your Understanding	 (Answers given at the end of the chapter)

4.	 At a certain time, object 1 has an initial velocity of -2 m>s and an acceleration of 
3 m>s2. At the same time, object 2 has an initial velocity of 5 m>s and an accelera-
tion of -1 m>s2. (a) Is the speed of object 1 increasing or decreasing? Explain. (b) Is 
the velocity of object 1 increasing or decreasing? Explain. (c) Is the speed of object 2 
increasing or decreasing? Explain. (d) Is the velocity of object 2 increasing or decreas-
ing? Explain.

Section Review

•	 The average acceleration is the change in velocity divided by the time; aav =
∆v

∆t
.

•	 The instantaneous acceleration is the average acceleration over shorter and shorter 

time intervals; a = lim
∆tS0

 
∆v

∆t
.

•	 Average acceleration is the slope between two points on a v-versus-t plot; instanta-
neous acceleration is the slope of a tangent line on a v-versus-t plot.
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The initial and final times may be chosen arbitrarily in this equation. For example, let 
ti = 0 for the initial time, and let vi = v0 denote the velocity at time zero.* For the final 
time and velocity we drop the subscripts to simplify the notation; thus we let tf = t  and 
vf = v. With these identifications we have

	 aav =
v - v0

t - 0
= a	

With a slight rearrangement we find

	 v - v0 = a1t - 02 = at 	

This yields our first equation of motion:

Constant-Acceleration Equation of Motion: Velocity as a Function of Time

v = v0 + at � 2-7

Equation 2-7 describes a straight line on a v-versus-t plot. The line crosses the 
velocity axis at the value v0 and has a slope a, in agreement with the graphical inter-
pretations discussed in the previous section. For example, in curve I of Figure 2-12, 
the equation of motion is v = v0 + at = 11 m>s2 + 1-0.5 m>s22t. Also, notice that 
1-0.5 m>s22t  has the units 1m>s22 1s2 = m>s; thus each term in Equation 2-7 has the 
same dimensions (as it must to be a valid physical equation).

EXERCISE 2-10  VELOCITY WITH CONSTANT ACCELERATION
A ball is thrown straight upward with an initial velocity of +7.3 m>s. If the acceleration 
of the ball is downward, with the value -9.81 m>s2, find the velocity of the ball after  
(a) 0.45 s and (b) 0.90 s.

REASONING AND SOLUTION
For constant acceleration, velocity is related to acceleration and time by Equation 2-7 
1v = v0 + at2. Given the initial velocity 1v0 = 7.3 m>s2 and the acceleration 
1a = -9.81 m>s22, the final velocity can be found by substituting the desired time.

a.	 Substituting t = 0.45 s in v = v0 + at  yields

	 v = 7.3 m>s + 1-9.81 m>s2210.45 s2 = 2.9 m>s	

The ball is still moving upward at this time.

b.	 Similarly, using t = 0.90 s in v = v0 + at  gives

	 v = 7.3 m>s + 1-9.81 m>s2210.90 s2 = -1.5 m>s	

The ball is moving downward (negative direction) at this time.

Position as a Function of Time and Velocity  How far does a particle move in a given 
time if its acceleration is constant? To answer this question, recall the definition of av-
erage velocity:

	 vav =
∆x
∆t

=
xf - xi

tf - ti
	

Using the same identifications given previously for initial and final times, and letting 
xi = x0 and xf = x, we have

	 vav =
x - x0

t - 0
	

Multiplying through by (t - 0) gives

	 x - x0 = vav1t - 02 = vavt 	

Finally, a simple rearrangement results in

	 x = x0 + vavt 	 2-8

PHYSICS  
IN CONTEXT 
Looking Back
We are careful to check the dimensional 
consistency of our equations in this 
chapter. This concept was introduced in 
Chapter 1.

*We often use the subscript i to denote the initial value of a quantity, as in vi. In the special case where the 

initial value corresponds to zero time, t = 0, we use the subscript 0 to be more specific, as in v0.
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▶  FIGURE 2-18  Average velocity  (a) When acceleration is constant, the velocity varies linearly 
with time. As a result, the average velocity, vav, is simply the average of the initial velocity, v0, 
and the final velocity, v. (b) The velocity curve for nonconstant acceleration is nonlinear. In this 
case, the average velocity is no longer midway between the initial and final velocities.

Now, Equation 2-8 is fine as it is. In fact, it applies whether the acceleration is con-
stant or not. A more useful expression for the case of constant acceleration is obtained 
by writing vav in terms of the initial and final velocities. This can be done by referring 
to FIGURE 2-18 (a). Here the velocity changes linearly (since a is constant) from v0 at 
t = 0 to v at some later time t. The average velocity during this period of time is simply 
the average of the initial and final velocities—that is, the sum of the two velocities 
divided by two:

Constant-Acceleration Equation of Motion: Average Velocity

vav = 1
21v0 + v2� 2-9

The average velocity is indicated in the figure. Notice that if the acceleration is not 
constant, as in FIGURE 2-18 (b), this simple averaging of initial and final velocities is no 
longer valid.

Substituting the expression for vav from Equation 2-9 into Equation 2-8 yields

Constant-Acceleration Equation of Motion: Position as a Function of Time

x = x0 + 1
21v0 + v2t � 2-10

This equation, like Equation 2-7, is valid only for constant acceleration. The utility of 
Equations 2-7 and  2-10 is illustrated in the next Example.

EXAMPLE 2-11   FULL SPEED AHEAD

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of 1.50 m>s. As soon as it passes 
the breakwater, leaving the marina, it throttles up and accelerates at 2.40 m>s2. (a) How fast is the boat moving after 
accelerating for 5.00 s? (b) How far has the boat traveled in these 5.00 s?

PICTURE THE PROBLEM
In our sketch we choose the origin to be at the breakwater, and 
the positive x direction to be the direction of motion. With this 
choice the initial position is x0 = 0, and the initial velocity is 
v0 = 1.50 m>s.

REASONING AND STRATEGY
The acceleration is constant, so we can use Equations 2-7 to 2-10. 
In part (a) we want to relate velocity to time, so we use Equation 
2-7, v = v0 + at. In part (b) our knowledge of the initial and final 
velocities allows us to relate position to time using Equation 2-10, x = x0 + 1

21v0 + v2t.

Known	 Velocity at time t = 0, v0 = 1.50 m>s; acceleration, a = 2.40 m>s2.
Unknown	 (a) Velocity at t = 5.00 s, v = ? (b) Distance traveled at t = 5.00 s, x = ?

SOLUTION

Part (a)

1.	 Use Equation 2-7 1v = v0 + at2 to find the final 	  v = v0 + at = 1.50 m>s + 12.40 m>s2215.00 s2 
velocity, with v0 = 1.50 m>s and a = 2.40 m>s2:	      = 1.50 m>s + 12.0 m>s = 13.5 m>s

Part (b)

2.	 Apply Equation 2-10 Ax = x0 + 1
21v0 + v2t B  to find 	 x = x0 + 1

21v0 + v2t  
the distance covered, using the result for v obtained  
in part (a): 

 = 0 + 1
211.50 m>s + 13.5 m>s215.00 s2

 = 17.50 m>s215.00 s2 = 37.5 m

CONTINUED

Breakwater
a =  2.40 m>s2

x
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O 5 s
t

t

Area of triangle

v =  13.5 m>s

v

v0 =  1.50 m>s

Total area =  30.0 m +  7.50 m =  37.5 m

∆v

Area of rectangle

=    (13.5 m>s – 1.50 m>s)(5.00 s)1
2

1
2=    (∆v)t

=  30.0 m

=  v0t
=  (1.50 m>s)(5.00 s)
=  7.50 m

▲  FIGURE 2-19 Velocity versus time for the boat in Example 2-11  The distance traveled by 
the boat between t = 0 and t = 5.00 s is equal to the corresponding area under the velocity 
curve.

In this case, the area is the sum of the areas of a rectangle and a triangle. The 
rectangle has a base of 5.00 s and a height of 1.50 m>s, which gives an area of 
15.00 s211.50 m>s2 = 7.50 m. Similarly, the triangle has a base of 5.00 s and a height 
of 113.5 m>s - 1.50 m>s2 = 12.0 m>s, for an area of 1

215.00 s2112.0 m>s2 = 30.0 m. 
Clearly, the total area is 37.5 m, which is the same distance found in Example 2-11.

Staying with Example 2-11 for a moment, let’s repeat the calculation of part (b), 
only this time for the general case. First, we use the final velocity from part (a), cal-
culated with v = v0 + at, in the expression for the average velocity, vav = 1

21v0 + v2. 
Symbolically, this gives the following result:

	 1
21v0 + v2 = 1

2 3v0 + 1v0 + at24 = v0 + 1
2 at 	 (constant acceleration)

Next, we substitute this result into Equation 2-10 Ax = x0 + 1
21v0 + v2t B , which yields

	 x = x0 + 1
21v0 + v2t = x0 + Av0 + 1

2 at Bt 	

Simplifying this expression yields the following result:

Constant-Acceleration Equation of Motion: Position as a Function of Time

x = x0 + v0t + 1
2 at2� 2-11

Position as a Function of Time and Acceleration  The velocity of the boat in Exam-
ple 2-11 is plotted as a function of time in FIGURE 2-19, with the acceleration starting at 
time t = 0 and ending at t = 5.00 s. We will now show that the distance traveled by the 
boat from t = 0 to t = 5.00 s is equal to the corresponding area under the velocity-versus-
time curve. This is a general result, valid for any velocity curve and any time interval:

The distance traveled by an object from a time t1 to a time t2 is equal to the 
area under the velocity curve between those two times.

INSIGHT
The boat has a constant acceleration between t = 0 and t = 5.00 s, and hence its velocity-versus-time curve is linear 
during this time interval. As a result, the average velocity for these 5.00 seconds is the average of the initial and final 
velocities, vav = 1

211.50 m>s + 13.5 m>s2 = 7.50 m>s. Multiplying the average velocity by the time, 5.00 s, gives the dis-
tance traveled—which is exactly what Equation 2-10 does in Step 2.

PRACTICE PROBLEM
At what time is the boat’s speed equal to 10.0 m>s?  [Answer: t = 3.54 s]

Some related homework problems: Problem 40, Problem 43
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EXAMPLE 2-13   PUT THE PEDAL TO THE METAL

A drag racer starts from rest and accelerates at 7.40 m>s2. How far has it traveled in (a) 1.00 s, (b) 2.00 s, (c) 3.00 s?

PICTURE THE PROBLEM
We set up a coordinate system in which the drag racer starts 
at the origin and accelerates in the positive x direction. With 
this choice, it follows that x0 = 0 and a = +7.40 m>s2. Also, 
the racer starts from rest, and hence its initial velocity is zero, 
v0 = 0. Incidentally, the positions of the racer in the sketch have 
been drawn to scale.

REASONING AND STRATEGY
This problem gives the acceleration, which is constant, and asks for a relationship between position and time. Therefore, 
we use Equation 2-11, x = x0 + v0t + 1

2 at2.

Known 	 Velocity at time t = 0, v0 = 0; acceleration, a = 7.40 m>s2.
Unknown	 Distance traveled, x = ?, at (a) t = 1.00 s, (b) t = 2.00 s, (c) t = 3.00 s

SOLUTION
Part (a)

1.	 Evaluate x = x0 + v0t + 1
2 at2 with a = 7.40 m>s2 and t = 1.00 s:	

Part (b)

2.	 From the calculation in part (a), we see that x = x0 + v0t + 1
2 at2 

	 reduces to x = 1
2 at2 in this situation. Evaluate x = 1

2 at2 at t = 2.00 s:

Part (c)

3.	 Evaluate x = 1
2 at2 at t = 3.00 s:	  x = 1

2 at2

	  = 1
217.40 m>s2213.00 s22 = 33.3 m = 913.70 m2

INSIGHT
This Example illustrates one of the key features of accelerated motion—position does not change uniformly with time 
when an object accelerates. In this case, the distance traveled in the first two seconds is 4 times the distance traveled in 
the first second, and the distance traveled in the first three seconds is 9 times the distance traveled in the first second. 
This kind of behavior is a direct result of the fact that x depends on t2 when the acceleration is nonzero.

PRACTICE PROBLEM
We’ve seen that in one second the racer travels 3.70 m. How much time does it take for the racer to travel twice this 
distance, 213.70 m2 = 7.40 m?  [Answer: t = 22 s = 1.41 s]

Some related homework problems: Problem 43, Problem 46

x

t =  0.00 t =  2.00 s t =  3.00 st =  1.00 s

O

 x = x0 + v0t + 1
2 at2 = 0 + 0 + 1

2 at2 = 1
2 at2

 x = 1
217.40 m>s2211.00 s22 = 3.70 m

x = 1
2 at2 = 1

217.40 m>s2212.00 s22 = 14.8 m = 413.70 m2

Here we have an expression for position versus time that is explicitly in terms of the 
acceleration, a.

Notice that each term in Equation 2-11 has the same dimensions, as they must. For 
example, the velocity term, v0t, has the units 1m>s21s2 = m. Similarly, the acceleration 
term, 12 at2, has the units 1m>s221s22 = m.

EXERCISE 2-12  POSITION WITH CONSTANT ACCELERATION
Repeat part (b) of Example 2-11 using Equation 2-11, x = x0 + v0t + 1

2 at2.

REASONING AND SOLUTION
Given the initial position, initial velocity, and acceleration, the position at any given time 
can be found with x = x0 + v0t + 1

2 at2. In this case, we have

	 x = x0 + v0t + 1
2 at2 = 0 + 11.50 m>s215.00 s2 + 1

212.40 m>s2215.00 s22 = 37.5 m

The next Example gives further insight into the physical meaning of Equation 2-11.
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FIGURE 2-20 shows a graph of x versus t for Example 2-13. Notice the parabolic shape 
of the x-versus-t curve, which is due to the 1

2at2 term and is characteristic of constant 
acceleration. In particular, if acceleration is positive 1a 7 02, then a plot of x versus 
t curves upward; if acceleration is negative 1a 6 02, a plot of x versus t curves down-
ward. The greater the magnitude of a, the greater the curvature. In contrast, if a particle 
moves with constant velocity 1a = 02, the t2 dependence vanishes, and the x-versus-t 
plot is a straight line.

Velocity as a Function of Position  Our final equation of motion with constant 
acceleration relates velocity to position. We start by solving for the time, t, in Equa-
tion 2-7 1v = v0 + at2:

	 v = v0 + at or t =
v - v0

a
	

Next, we substitute this result into Equation 2-10, x = x0 + 1
21v0 + v2t, thus eliminat-

ing t:

	 x = x0 + 1
21v0 + v2t = x0 + 1

21v0 + v2av - v0

a
b 	

Noting that 1v0 + v21v - v02 = v0v - v0 

2 + v

2 - vv0 = v

2 - v0 

2, we have

	 x = x0 +
v

2 - v0 

2

2a

Finally, a straightforward rearrangement of terms yields the following:

Constant-Acceleration Equation of Motion: Velocity in Terms of Displacement

v

2 = v0 

2 + 2a1x - x02 = v0 

2 + 2a∆x� 2-12

This equation allows us to relate the velocity at one position to the velocity at another 
position, without knowing how much time is involved. The next Example shows how 
Equation 2-12 is used.

PHYSICS  
IN CONTEXT 
Looking Ahead

The equations developed for motion with 
constant acceleration in this chapter are 
used again with slightly different symbols 
when we study motion in two dimensions 
in Chapter 4 and rotational motion in 
Chapter 10.

10
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▲  FIGURE 2-20  Position versus time for 
Example 2-13  The upward-curving, para-
bolic shape of this x-versus-t plot indicates 
a positive, constant acceleration. The dots 
on the curve show the position of the drag 
racer in Example 2-13 at the times 1.00 s, 
2.00 s, and 3.00 s.

EXAMPLE 2-14   TAKEOFF DISTANCE FOR AN AIRLINER

RWP Jets at John F. Kennedy International Airport accelerate from rest at one end of a runway, and must attain takeoff 
speed before reaching the other end of the runway. (a) Plane A has acceleration a and takeoff speed vto. What is the 
minimum length of runway, ∆xA, required for this plane? Give a symbolic answer. (b) Plane B has the same acceleration 
as plane A, but requires twice the takeoff speed. Find ∆xB and compare with ∆xA. (c) Find the minimum runway length 
for plane A if a = 2.20 m>s2 and vto = 95.0 m>s. (These values are typical for a 747 jetliner. For purposes of comparison, 
the shortest runway at JFK International Airport is 04R>22L, which has a length of 2560 m.)

PICTURE THE PROBLEM
In our sketch, we choose the positive x direction to be the di-
rection of motion. With this choice, it follows that the accel-
eration of the plane is positive, a = +2.20 m>s2. Similarly, the 
takeoff velocity is positive as well, vto = +95.0 m>s.

REASONING AND STRATEGY
From the sketch it’s clear that we want to express ∆x, the distance the plane travels in attaining takeoff speed, in terms 
of the acceleration, a, and the takeoff speed, vto. Equation 2-12 1v

2 = v0 

2 + 2a∆x2, which relates distance to velocity, 
allows us to do this.

Known	 Acceleration, a = 2.20 m>s2; takeoff velocity, vto = 95.0 m>s.
Unknown	 Takeoff distance, ∆x = ?

SOLUTION

Part (a)

1.	 Solve v2 = v0 

2 + 2a1x - x02 = v0 

2 + 2a∆x for ∆x. 	  
To find ∆xA, set v0 = 0 and v = vto:

a
v0 =  0

v =  vto

x
Dx

CONTINUED

∆x =
v

2 - v0 

2

2a

∆xA =
vto 

2

2a
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2-6  Applications of the Equations of Motion
We devote this section to a variety of examples that further illustrate the use of the 
constant-acceleration equations of motion. For convenience, all of our constant-
acceleration equations of motion are collected in Table 2-5.

Section Review
•	 Motion with constant acceleration can be described by equations of motion relating 

quantities like position, velocity, time, and acceleration.

Enhance Your Understanding	 (Answers given at the end of the chapter)

5.	 The equation of motion for an object moving with constant acceleration is 
x = 6 m - 15 m>s2t + 14 m>s22t2. (a) What is the position of this object at t = 0? 
(b) What is the velocity of this object at t = 0? (c) What is the acceleration of this 
object?

TABLE 2-5  Constant-Acceleration Equations of Motion

Variables Related 	 Equation Number

velocity, time, acceleration v = v0 + at 2-7

initial, final, and average velocity vav = 1
21v0 + v2 2-9

position, time, velocity x = x0 + 1
21v0 + v2t 2-10

position, time, acceleration x = x0 + v0t + 1
2 at2 2-11

velocity, position, acceleration v2 = v0  

2 + 2a1x - x02 = v0  

2 + 2a∆x 2-12

Big Idea 5 Equations of motion 
for constant acceleration relate 
position, velocity, acceleration, and 
time.

In our first Example, we consider the distance and time needed to brake a vehicle 
to a complete stop.

EXAMPLE 2-15   HIT THE BRAKES!

A park ranger driving on a back country road suddenly sees a deer “frozen” in the headlights. The ranger, who is driving 
at 11.4 m>s, immediately applies the brakes and slows with an acceleration of 3.80 m>s2. (a) If the deer is 20.0 m from 
the ranger’s vehicle when the brakes are applied, how close does the ranger come to hitting the deer? (b) How much 
time is needed for the ranger’s vehicle to stop? CONTINUED

Part (b)

2.	 To find ∆xB, simply change vto to 2vto in part (a):	 ∆xB =
12vto22

2a
=

4vto 

2

2a
= 4∆xA

Part (c)

3.	 Substitute numerical values into the result found in part (a):	 ∆xA =
vto 

2

2a
=

195.0 m>s22

212.20 m>s22 = 2050 m

INSIGHT
This Example illustrates the fact that there are many advantages to obtaining symbolic results before substituting nu-
merical values. In this case, we found that the takeoff distance is proportional to v2; hence, we conclude immediately 
that doubling v results in a fourfold increase of ∆x.

PRACTICE PROBLEM
Find the minimum acceleration needed for a takeoff speed of vto = 195.0 m>s2>2 = 47.5 m>s on a runway of length 
∆x = 12050 m2>4 = 513 m.  [Answer: a = vto 

2>2∆x = 2.20 m>s2]

Some related homework problems: Problem 40, Problem 90
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In Example 2-15, we calculated the distance necessary for a vehicle to come to a 
complete stop. But how does the speed v vary with distance as the vehicle slows down? 
The next Conceptual Example deals with this topic.

PICTURE THE PROBLEM
We choose the positive x direction to be the direction of motion. 
With this choice it follows that v0 = +11.4 m>s. In addition, 
the fact that the ranger’s vehicle is slowing down means its ac-
celeration points in the opposite direction to that of the velocity 
[see Figure 2-14 (b) and (c)]. Therefore, the vehicle’s acceleration 
is a = -3.80 m>s2. Finally, when the vehicle comes to rest its ve-
locity is zero, v = 0.

REASONING AND STRATEGY
The acceleration is constant, so we can use the equations listed 
in Table 2-5. In part (a) we want to find a distance when we 
know the velocity and acceleration, so we use a rearranged ver-
sion of Equation 2-12 1v

2 = v0 

2 + 2a∆x2. In part (b) we want to 
find a time when we know the velocity and acceleration, so we 
use a rearranged version of Equation 2-7 1v = v0 + at2.

Known	 Velocity at time t = 0, v0 = 11.4 m>s; acceleration, a = -3.80 m>s2.
Unknown	 (a) Distance required to stop, ∆x = ? (b) Time required to stop, t = ?

SOLUTION

Part (a)

1.	 Solve v2 = v0 

2 + 2a∆x for ∆x:	 ∆x =
v

2 - v0 

2

2a

2.	 Set v = 0, and substitute numerical values:	 ∆x = -
v0 

2

2a
= -

111.4 m>s22

21-3.80 m>s22 = 17.1 m

3.	 Subtract ∆x from 20.0 m to find the distance between  
the stopped vehicle and the deer:	

20.0 m - 17.1 m = 2.9 m

Part (b)

4.	 Set v = 0 in v = v0 + at  and solve for t:	 v = v0 + at = 0

	 t = -
v0

a
= -

11.4 m>s
1-3.80 m>s22 = 3.00 s

INSIGHT
Notice the different ways that t and ∆x depend on the initial speed. If the initial speed is doubled, for example, the time 
needed to stop also doubles. On the other hand, the distance needed to stop increases by a factor of four. This is one 
reason speed on the highway has such a great influence on safety.

PRACTICE PROBLEM
Show that using t = 3.00 s in Equation 2-11 Ax = x0 + v0t + 1

2 at2 B  results in the same distance needed to stop.

[Answer: x = x0 + v0t + 1
2 at2 = 0 + 111.4 m>s213.00 s2 + 1

21-3.80 m>s2213.00 s22 = 17.1 m, as expected]

Some related homework problems: Problem 55, Problem 56

x

a
v0

v =  0

Dx

CONCEPTUAL EXAMPLE 2-16  STOPPING DISTANCE

The ranger in Example 2-15 brakes for 17.1 m. After braking for only half that distance, 1
2117.1 m2 = 8.55 m, is the ranger’s 

speed (a) equal to 12v0, (b) greater than 12v0, or (c) less than 12v0?

REASONING AND DISCUSSION
As pointed out in the Insight for Example 2-15, the fact that the stopping distance, ∆x, depends on v0 

2 means that this dis-
tance increases by a factor of four when the speed is doubled. For example, the stopping distance with an initial speed of v0 
is four times the stopping distance when the initial speed is v0 > 2.

CONTINUED
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Clearly, v does not decrease uniformly with distance. A plot showing v as a func-
tion of x for Example 2-15 is shown in FIGURE 2-21. As we can see from the graph, v 
changes more in the second half of the braking distance than in the first half.

We close this section with a familiar everyday example: a police car accelerating to 
overtake a speeder. This is the first time we use two equations of motion for two differ-
ent objects to solve a problem—but it won’t be the last. Problems of this type are often 
more interesting than problems involving only a single object, and they relate to many 
types of situations in everyday life.

P R O B L E M - S O L V I N G  N O T E

Strategize

Before you attempt to solve a problem, it is 
a good idea to have some sort of plan, or 
“strategy,” for how to proceed. It may be as 
simple as saying, “The problem asks me to 
relate velocity and time; therefore I will use 
Equation 2-7.” In other cases the strategy 
is a bit more involved. Producing effective 
strategies is one of the most challenging—
and creative—aspects of problem solving.
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◀  FIGURE 2-21 Velocity as a function of 
position for the ranger in Example 2-15
The ranger’s vehicle comes to rest with 
constant acceleration, which means that 
its velocity decreases uniformly with time. 
The velocity does not decrease uniformly 
with distance, however. In particular, note 
how rapidly the velocity decreases in the 
final one-quarter of the stopping distance.

EXAMPLE 2-17   CATCHING A SPEEDER

A speeder doing 40.0 mi>h (about 17.9 m>s) in a 25 mi>h zone approaches a parked police car. The instant the speeder 
passes the police car, the police begin their pursuit. If the speeder maintains a constant velocity, and the police car 
accelerates with a constant acceleration of 4.51 m>s2, (a) how much time does it take for the police car to catch the 
speeder, (b) how far have the two cars traveled in this time, and (c) what is the velocity of the police car when it catches 
the speeder?

PICTURE THE PROBLEM
Our sketch shows the two cars at the moment the speeder passes the resting police car. At this instant, which we 
take to be t = 0, both the speeder and the police car are at the origin, x = 0. In addition, we choose the positive x 
direction to be the direction of motion; therefore, the speeder’s initial velocity is given by vs = +17.9 m>s, and the 
police car’s initial velocity is zero. The speeder’s acceleration is zero, but the police car has an acceleration given by 
a = +4.51 m>s2. Finally, our figure shows the linear x-versus-t plot for the speeder, and the parabolic x-versus-t plot 
for the police car.

REASONING AND STRATEGY
To solve this problem, we first write a position-versus-time equation Ax = x0 + v0t + 1

2 at2 B  for the police car, xp, and a 
separate equation for the speeder, xs. Next, we find the time it takes the police car to catch the speeder by setting xp = xs 
and solving the resulting equation for t. Once the catch time is determined, it’s straightforward to calculate the distance 
traveled and the velocity of the police car. CONTINUED

To apply this observation to the ranger, suppose that the stopping distance with an initial speed of v0 is ∆x. It follows 
that the stopping distance for an initial speed of v0 > 2 is ∆x  > 4. This means that as the ranger slows from v0 to 0, it takes a 
distance ∆x  > 4 to slow from v0 > 2 to 0, and the remaining distance, 3∆x  > 4, to slow from v0 to v0 > 2. Thus, at the halfway point 
the ranger has not yet slowed to half of the initial velocity—the speed at this point is greater than v0 > 2.

ANSWER
(b) The ranger’s speed is greater than 12 v0.
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Known	 Speeder velocity, vs = +17.9 m>s; initial police velocity = 0; police acceleration, a = +4.51 m>s2.
Unknown	 �(a) Time to catch speeder, t = ? (b) Distance to catch speeder? (c) Velocity of police when speeder is caught, 

vp = ?

SOLUTION

Part (a)

1.	 Use x = x0 + v0t + 1
2 at2 to write equations of motion for the 	  

two vehicles. For the police car, v0 = 0 and a = 4.51 m>s2.  
For the speeder, v0 = 17.9 m>s = vs and a = 0:

2.	 Set xp = xs and solve for the time:	 1
2at2 = vst  or  A1

2at - vs Bt = 0

	 two solutions : t = 0 and t =
2vs

a

3.	 Clearly, t = 0 corresponds to the initial conditions,  
because both vehicles started at x = 0 at that time.  
The time of interest is obtained by substituting  
numerical values into the other solution:

Part (b)

4.	 Substitute t = 7.94 s into the equations of motion  
for xp and xs. Notice that xp = xs, as expected:

Part (c)

5.	 To find the velocity of the police car use Equation 2-7  
(v = v0 + at ), which relates velocity to time:

INSIGHT
When the police car catches up with the speeder, its velocity is 35.8 m>s, which is exactly twice the velocity of the 
speeder. A coincidence? Not at all. When the police car catches the speeder, both have traveled the same distance 
1142 m2 in the same time 17.94 s2; therefore, they have the same average velocity. Of course, the average velocity of 
the speeder is simply vs. The average velocity of the police car is 1

21v0 + v2, since its acceleration is constant, and thus 
1
21v0 + v2 = vs. Noting that v0 = 0 for the police car, we see that v = 2vs. This result is independent of the acceleration 
of the police car, as we show in the following Practice Problem.

PRACTICE PROBLEM
Repeat this Example for the case where the acceleration of the police car is a = 3.25 m>s2.  [Answer: (a) t = 11.0 s, 
(b) xp = xs = 197 m, (c) vp = 35.8 m>s]

Some related homework problems: Problem 62, Problem 64

xs = vst
xp = 1

2 at2

t =
2vs

a
=

2117.9 m>s2
4.51 m>s2 = 7.94 s

xp = 1
2 at2 = 1

214.51 m>s2217.94 s22 = 142

xs = vst = 117.9 m>s217.94 s2 = 142 m

vp = v0 + at = 0 + 14.51 m>s2217.94 s2 = 35.8 m>s

v0 =  17.9 m>s

v0 =  0

O O

Speeder,
xs

Police car,
xpa =  4.51 m>s2

a =  0

x

Po
si

ti
on

, x
 (m

)

Time, t (s)

175

150

125

100

75

50

25

2 4 6 8

Enhance Your Understanding	 (Answers given at the end of the chapter)

6.	 A submerged alligator swims directly toward two unsuspecting ducks. The equa-
tion of motion of the alligator is xa = 10.25 m>s22t2, the equation of motion 
of duck 1 is xd1 = 3 m - 11.5 m>s2t , and the equation of motion of duck 2 is 
xd2 = 3 m + 11 m>s2t . Which duck does the alligator encounter first?

CONTINUED
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(a)

(b)

(c)

▲  FIGURE 2-22   Visualizing Concepts Free 
fall  (a) In the absence of air resistance, all 
objects fall with the same acceleration, re-
gardless of their mass. (b) Whether she is 
on the way up, at the peak of her flight, or 
on the way down, this girl is in free fall, ac-
celerating downward with the acceleration 
of gravity. Only when she is in contact with 
the blanket does her acceleration change. 
(c) In the absence of air resistance, these 
lava bombs from the Kilauea volcano on the 
Big Island of Hawaii would strike the water 
with the same speed they had when they 
were blasted into the air. It’s an example of 
the symmetry of free fall.

2-7  Freely Falling Objects
The most famous example of motion with constant acceleration is free fall—the mo-
tion of an object falling freely under the influence of gravity. It was Galileo (1564–1642) 
who first showed, with his own experiments, that falling bodies move with constant 
acceleration. His conclusions were based on experiments done by rolling balls down 
inclines of various steepness. By using an incline, Galileo was able to reduce the accel-
eration of the balls, thus producing motion slow enough to be timed with the instru-
ments available at the time.

Galileo also pointed out that objects of different weight fall with the same con-
stant acceleration—provided air resistance is small enough to be ignored. Whether he 
dropped objects from the Leaning Tower of Pisa to demonstrate this fact, as legend has 
it, will probably never be known for certain, but we do know that he performed exten-
sive experiments to support his claim.

Today it is easy to verify Galileo’s assertion by dropping objects in a vacuum 
chamber, where the effects of air resistance are essentially removed. In a standard 
classroom demonstration, a feather and a coin are dropped in a vacuum, and both 
fall at the same rate. In 1971, a novel version of this experiment was carried out on the 
Moon by astronaut David Scott. In the near-perfect vacuum on the Moon’s surface he 
dropped a feather and a hammer and showed a worldwide television audience that 
they fell to the ground in the same time. Examples of free fall in different contexts 
are shown in FIGURE 2-22.

To illustrate the effect of air resistance in everyday terms, drop a sheet of paper 
and a rubber ball from the same height (FIGURE 2-23). The paper drifts slowly to the 
ground, taking much more time to fall than the ball. Now, wad the sheet of paper 
into a tight ball and repeat the experiment. This time the ball of paper and the rub-
ber ball reach the ground in nearly the same time. What was different in the two 
experiments? Clearly, when the sheet of paper was wadded into a ball, the effect of 
air resistance on it was greatly reduced, so that both objects fell almost as they would 
in a vacuum.

Characteristics of Free Fall  Before considering a few examples, let’s discuss exactly 
what is meant by “free fall.” To begin, the word free in free fall means free from any ef-
fects other than gravity. For example, in free fall we assume that an object’s motion is 
not influenced by any form of friction or air resistance.

Free fall is the motion of an object subject only to the influence of gravity.

(a) Dropping a sheet of paper and
a rubber ball 

(b) Dropping a wadded-up sheet
of paper and a rubber ball

	 ▲  FIGURE 2-23  Free fall and air resistance

Section Review
•	 Equations of motion for constant acceleration are listed in Table 2-5. As an example, 

the equation relating velocity and time is v = v0 + at.
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Though free fall is an idealization—which does not apply to many real-world situa-
tions—it is still a useful approximation in many other cases. In the following examples 
we assume that the motion may be considered as free fall.

Next, it should be realized that the word fall in free fall does not mean the object is 
necessarily moving downward. By free fall, we mean any motion under the influence 
of gravity alone. If you drop a ball, it is in free fall. If you throw a ball upward or down-
ward, it is in free fall as soon as it leaves your hand.

An object is in free fall as soon as it is released, whether it is dropped from 
rest, thrown downward, or thrown upward.

Finally, the acceleration produced by gravity on the Earth’s surface (sometimes 
called the gravitational strength) is denoted with the symbol g. As a shorthand name, 
we will frequently refer to g simply as “the acceleration due to gravity.” In fact, as we 
shall see in Chapter 12, the value of g varies according to one’s location on the surface of 
the Earth, as well as one’s altitude above it. Table 2-6 shows how g varies with latitude.

In all the calculations that follow in this book, we shall use g = 9.81 m>s2 for the 
acceleration due to gravity. Note, in particular, that g always stands for +9.81 m>s2, 
never -9.81 m>s2. For example, if we choose a coordinate system with the positive 
direction upward, the acceleration in free fall is a = -g. If the positive direction is 
downward, then free-fall acceleration is a = g.

With these comments in mind, we’re ready to explore a variety of free-fall examples.

TABLE 2-6  Values of g at Different Locations 
on Earth 1m ,s22 

Location Latitude g

North Pole 90° n 9.832

Oslo, Norway 60° n 9.819

Hong Kong 30° n 9.793

Quito, Ecuador 0° 9.780

Big Idea 6 Free fall is motion 
with a constant downward accelera-
tion of magnitude g, where g is the 
acceleration due to gravity.

EXAMPLE 2-18   LEMON DROP

A lemon drops from a tree and falls to the ground 3.15 m below. (a) How much time does it take for the lemon to reach 
the ground? (b) What is the lemon’s speed just before it hits the ground?

PICTURE THE PROBLEM
In our sketch we choose the origin to be at the drop height of the lemon, and we let 
the positive x direction be downward. With these choices, x0 = 0, a = g, and the 
ground is at x = h = 3.15 m. Of course, the initial velocity is zero, v0 = 0, because 
the lemon drops from rest out of the tree.

REASONING AND STRATEGY
We can ignore air resistance in this case and model the motion as free fall. This 
means we can assume a constant acceleration equal to g and use the equations of 
motion in Table 2-5. For part (a) we want to find the time of fall when we know 
the distance and acceleration, so we use Equation 2-11 Ax = x0 + v0t + 1

2 at2 B . For 
part (b) we can relate velocity to time by using Equation 2-7 1v = v0 + at2, or we 
can relate velocity to position by using Equation 2-12 1v

2 = v0
2 + 2a∆x2. We will 

implement both approaches and show that the results are the same.

Known	 �Initial position of lemon, x0 = 0; final position of lemon, x = h =
3.15 m; initial velocity of lemon, v0 = 0; acceleration of lemon, 
a = g = 9.81 m>s2.

Unknown	 (a) Drop time, t = ? (b) Landing speed, v = ?

SOLUTION

Part (a)

1.	 Write x = x0 + v0t + 1
2 at2, with x0 = 0, v0 = 0, and a = g:	 x = x0 + v0t + 1

2 at2 = 0 + 0 + 1
2 gt2 = 1

2 gt2

2.	 Solve for the time, t, and set x = h = 3.15 m:	 t = B2x
g

= B2h
g

= B213.15 m2
9.81 m>s2 = 0.801 s

Part (b)

3.	 To find the velocity, use the time found in part (a),  
t = 0.801 s, in v = v0 + at:	

v = v0 + gt = 0 + 19.81 m>s2210.801 s2 = 7.86 m>s

4.	 We can also find the velocity without knowing the time by  
using v2 = v0

2 + 2a∆x with ∆x = 3.15 m:

x0 =  0

x =  h

v = 22g∆x = 2219.81 m>s2213.15 m2 = 7.86 m>s
v

2 = v0 

2 + 2a∆x = 0 + 2g∆x

CONTINUED
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An erupting volcano shooting out fountains of lava is an impressive sight. In the 
next Example we show how a simple timing experiment can determine the initial 
velocity of the erupting lava.

Free Fall from Rest  The special case of free fall from rest occurs so frequently, and in 
so many different contexts, that it deserves special attention. If we take x0 to be zero, 
and positive to be downward, then position as a function of time is x = x0 + v0t +
1
2 gt2 = 0 + 0 + 1

2 gt2, or

	 x = 1
2 gt2	 2-13

Similarly, velocity as a function of time is

	 v = gt 	 2-14

In addition, velocity as a function of position is

	 v = 22gx	 2-15

The behavior of these functions is illustrated in FIGURE 2-24. Notice that position in-
creases with time squared, whereas velocity increases linearly with time.

Next we consider two objects that drop from rest, one after the other, and discuss 
how their separation varies with time.

INSIGHT
We could just as well solve this problem with the origin at ground level, the drop height at x = h, and the positive x 
direction upward, which means that a = -g . The results are the same, of course.	

PRACTICE PROBLEM — PREDICT/CALCULATE
Consider the distance the lemon drops in half the time required to reach the ground—that is, in the time t = 10.801 s2>2.  
(a) Is this distance greater than, less than, or equal to half the distance to the ground? Explain. (b) Find the distance the  
lemon drops in this time.  [Answer: (a) The distance is less than half the distance to the ground, because the average speed of  
the lemon in the first half of its drop is less than its average speed in the second half of its drop. (b) The distance dropped is 
 
x = 1

2gt2 = 1
219.81 m>s22a0.801 s

2
b

2

= 0.787 m, which is only one-quarter the distance to the ground.]

Some related homework problems: Problem 70, Problem 73

CONCEPTUAL EXAMPLE 2-19  FREE-FALL SEPARATION

Drops of water detach from the tip of an icicle and fall from rest. When one drop 
separates, the drop ahead of it has already fallen through a distance d, as shown 
below. As these two drops continue to fall, does their separation (a) increase,  
(b) decrease, or (c) stay the same?

REASONING AND DISCUSSION
It might seem that the separation between the drops will remain the same, be-
cause both are in free fall. This is not so. The drop that has a head start always has 
a greater velocity than the one that comes next. Therefore, the first drop covers 
a greater distance in any interval of time, and as a result, the separation between 
the drops increases.

ANSWER
(a) The separation between the drops increases.

d

v =  0 x =  0
x =  4.91 m

x =  19.6 m

x =  44.1 m

v =  9.81 m>s

v =  19.6 m>s

v =  29.4 m>s

t =  0
t =  1 s

t =  2 s

t =  3 s
x

x =  78.5 mv =  39.2 m>st =  4 s

▶  FIGURE 2-24  Free fall from rest  Position and velocity are shown as functions of time. It is 
apparent that velocity depends linearly on t, whereas position depends on t2.
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P R O B L E M - S O L V I N G  N O T E

Check Your Solution

Once you have a solution to a problem, 
check to see whether it makes sense. First, 
make sure the units are correct; m>s for 
speed, m>s2 for acceleration, and so on. 
Second, check the numerical value of your 
answer. If you are solving for the speed of a 
diver dropping from a 3.0-m diving board 
and you get an unreasonable value like 
200 m>s1≈450 mi>h2, chances are good 
that you’ve made a mistake.

What is the speed of a lava bomb when it returns to Earth; that is, when it returns 
to the same level from which it was launched? Physical intuition might suggest that, in 
the absence of air resistance, it should be the same as its initial speed. To show that this 
hypothesis is indeed correct, write out Equation 2-7 1v = v0 + at2 for this case:

	 v = v0 - gt 	

Substituting numerical values, we find

	 v = v0 - gt = 23.3 m>s - 19.81 m>s2214.75 s2 = -23.3 m>s	

Thus, the velocity of the lava bomb when it lands is just the negative of the velocity it 
had when launched upward. Or, put another way, when the lava bomb lands, it has the 
same speed as when it was launched; it’s just traveling in the opposite direction.

EXAMPLE 2-20   BOMBS AWAY: CALCULATING THE SPEED OF A LAVA BOMB

RWP A volcano shoots out blobs of molten lava, called lava bombs, from its summit. A geologist observing the eruption 
uses a stopwatch to time the flight of a particular lava bomb that is projected straight upward. If the time for the bomb 
to rise and fall back to its launch height is 4.75 s, and its acceleration is 9.81 m>s2 downward, what is its initial speed?

PICTURE THE PROBLEM
Our sketch shows a coordinate system with upward as the positive x direction. For clarity, 
we offset the upward and downward trajectories slightly in our sketch. In addition, we 
choose t = 0 to be the time at which the lava bomb is launched. With these choices it 
follows that x0 = 0 and the acceleration is a = -g = -9.81 m>s2. The initial speed to be 
determined is v0.

REASONING AND STRATEGY
Once again, we can ignore air resistance and model the motion of the lava bomb as free 
fall—this time with an initial upward velocity. We know that the lava bomb starts at x = 0 
at the time t = 0 and returns to x = 0 at the time t = 4.75 s. This means that we know the 
bomb’s position, time, and acceleration 1a = -g2, from which we would like to determine 
the initial velocity. A reasonable approach is to use Equation 2-11 Ax = x0 + v0t + 1

2 at2 B  
and solve it for the one unknown it contains, v0.

Known	 Flight time, t = 4.75 s; acceleration, a = -g = -9.81 m>s2.
Unknown	 Initial velocity of the lava bomb, v0 = ?

SOLUTION

1.	 Write out x = x0 + v0t + 1
2 at2 with x0 = 0 and a = -g. 	  

Factor out a time, t, from the two remaining terms:

2.	 Set x equal to zero, because this is the position of the lava 	  
bomb at t = 0 and t = 4.75 s: 

3.	 The first solution is simply the initial condition;  
that is, x = 0 at t = 0. Solve the second solution  
for the initial speed:

4.	 Substitute numerical values for g and the time  
the lava bomb lands:

INSIGHT
A geologist can determine a lava bomb’s initial speed by simply observing its flight time. Knowing the lava bomb’s 
initial speed can help geologists determine how severe a volcanic eruption will be, and how dangerous it might be to 
people in the surrounding area.

PRACTICE PROBLEM
A second lava bomb is projected straight upward with an initial speed of 25 m>s. What is its flight time?
[Answer: t = 5.1 s]

Some related homework problems: Problem 71, Problem 78

x

O
v0

a

x = x0 + v0t + 1
2 at2 = v0t - 1

2 gt2 = 1v0 - 1
2 gt2t

x = 1v0 - 1
2 gt2t = 0 

Two solutions: (i)  t = 0  (ii)  v0 - 1
2 gt = 0

v0 - 1
2 gt = 0  or  v0 = 1

2 gt

v0 = 1
2 gt = 1

219.81 m/s2214.75 s2 = 23.3 m>s
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It’s instructive to verify this result symbolically. Recall from Example 2-20 that 
v0 = 1

2 gt, where t is the time the bomb lands. Substituting this result into Equation 2-7, 
we find

	 v = 1
2 gt - gt = -1

2 gt = -v0	

The advantage of the symbolic solution lies in showing that the result is not a fluke—
no matter what the initial velocity, no matter what the acceleration, the bomb lands 
with the velocity -v0.

The Symmetry of Free Fall  The preceding results suggest a symmetry relating the mo-
tion on the way up to the motion on the way down. To make this symmetry more ap-
parent, we first solve for the time when the lava bomb lands. Using the result v0 = 1

2 gt  
from Example 2-20, we find

	 t =
2v0

g
	 (time of landing)

Next, we find the time when the velocity of the lava bomb is zero, which is at its high-
est point. Setting v = 0 in Equation 2-7 1v = v0 + at2, we have v = v0 - gt = 0, or

	 t =
v0

g
	 (time when v = 0)

This is exactly half the time required for the lava to make the round trip. Thus, the 
velocity of the lava bomb is zero and the height of the bomb is greatest exactly halfway 
between launch and landing.

This symmetry is illustrated in FIGURE 2-25. In this case we consider a lava bomb 
that is in the air for 6.00 s, moving without air resistance. Note that at t = 3.00 s the 
lava bomb is at its highest point and its velocity is zero. At times equally spaced before 
and after t = 3.00 s, the lava bomb is at the same height and has the same speed, but is 
moving in opposite directions. As a result of this symmetry, a movie of the lava bomb’s 
flight would look the same whether run forward or in reverse.

FIGURE 2-26 shows the time dependence of position, velocity, and acceleration for 
an object in free fall without air resistance after being thrown upward. As soon as the 
object is released, it begins to accelerate downward—as indicated by the negative slope 
of the velocity-versus-time plot—though it isn’t necessarily moving downward. For 
example, if you throw a ball upward, it begins to accelerate downward the moment it 
leaves your hand. It continues moving upward, however, until its speed diminishes to 
zero. Because gravity is causing the downward acceleration, and gravity doesn’t turn 
off just because the ball’s velocity goes through zero, the ball continues to accelerate 
downward even when it is momentarily at rest.

Similarly, in the next Example we consider a sandbag that falls from an ascending 
hot-air balloon. This means that before the bag is in free fall it was moving upward—
just like a ball thrown upward. And just like the ball, the sandbag continues moving 
upward for a brief time before momentarily stopping and then moving downward.

10

20

2

v =  29.4 m>s

v =  19.6 m>s

v =  0

v =  -29.4 m>s

v =  -19.6 m>s

v =  -9.81 m>sv =  9.81 m>s

O

30

40

1 3 4 5 6

Time, t (s)
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, x
 (m

)

◀  FIGURE 2-25  Position and velocity of a 
lava bomb  This lava bomb is in the air for 
6 seconds. Note the symmetry about the 
midpoint of the bomb’s flight.
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▲  FIGURE 2-26  Position, velocity, and 
acceleration of a lava bomb as func-
tions of time  The fact that the x-versus-t 
plot is curved indicates an acceleration; 
the downward curvature shows that the 
acceleration is negative. This is also clear 
from the v-versus-t plot, which has a 
negative slope. The constant slope of the 
straight line in the v-versus-t plot indicates 
a constant acceleration, as shown in the 
a-versus-t plot.
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EXAMPLE 2-21   LOOK OUT BELOW! A SANDBAG IN FREE FALL

A hot-air balloon is rising straight upward with a constant speed of 6.5 m>s. When the basket of the balloon is 20.0 m 
above the ground, a bag of sand tied to the basket comes loose. (a) How much time elapses before the bag of sand hits 
the ground? (b) What is the greatest height of the bag of sand during its fall to the ground?

PICTURE THE PROBLEM
We choose the origin to be at ground level and positive to be upward. This 
means that, for the bag, we have x0 = 20.0 m, v0 = 6.5 m>s, and a = -g. 
Our sketch also shows snapshots of the balloon and bag of sand at three 
different times, starting at t = 0 when the bag comes loose. Notice that the 
bag is moving upward with the balloon at the time it comes loose. It there-
fore continues to move upward for a short time after it separates from the 
basket, exactly as if it had been thrown upward.

REASONING AND STRATEGY
The effects of air resistance on the sandbag can be ignored. As a result, we 
can use the equations in Table 2-5 with a constant acceleration a = -g.

In part (a) we want to relate position and time—knowing the initial po-
sition and initial velocity—so we use Equation 2-11 Ax = x0 + v0t + 1

2 at2 B . 
To find the time the bag hits the ground, we set x = 0 and solve for t.

For part (b) we have no expression that gives the maximum height of a 
particle—so we will have to come up with something on our own. We can start with the fact that v = 0 at the greatest 
height, since it is there the bag momentarily stops as it changes direction. Therefore, we can find the time t when v = 0 
by using Equation 2-7 1v = v0 + at2, and then substitute t into Equation 2-11 to find xmax.

Known	 �Drop height, x0 = 20.0 m; upward initial velocity of basket, v0 = 6.5 m>s; acceleration due to gravity, 
a = -g = -9.81 m>s2.

Unknown	 (a) Time to reach the ground, t = ? (b) Maximum height of sandbag, xmax = ?

SOLUTION

Part (a)

1.	 Apply x = x0 + v0t + 1
2 at2 to the bag of sand. Do this by  

letting a = -g  and setting x = 0, which corresponds to  
ground level:

2.	 Notice that we have a quadratic equation for t, with  
A = -1

2 g = -1
219.81 m>s22, B = v0 = 6.5 m>s,  

and C = x0 = 20.0 m. Solve this equation for t.  
The positive solution, 2.78 s, applies to this problem:  
(Quadratic equations and their solutions are discussed  
in Appendix A. In general, one can expect two  
solutions to a quadratic equation.)

Part (b)

3.	 Apply v = v0 + at  to the bag of sand, and solve for 	 v = v0 + at = v0 - gt  
the time when the velocity equals zero:

4.	 Use t = 0.66 s in x = x0 + v0t + 1
2 at2 to find  

the maximum height:

INSIGHT
Thus, the bag of sand continues to move upward for 0.66 s after it separates from the basket, reaching a maximum 
height of 22 m above the ground. It then begins to move downward, and hits the ground 2.78 s after detaching from 
the basket.

PRACTICE PROBLEM
What is the velocity of the sandbag just before it hits the ground?  [Answer: v = v0 - gt = 16.5 m>s2 - 19.81 m>s22 *
12.78 s2 = -20.8 m>s; the minus sign indicates the bag is moving downward, as expected.]

Some related homework problems: Problem 83, Problem 84

t

x

t =  0

20.0 m
O

x = x0 + v0t - 1
2 gt2 = 0

  t =
-v0 { Av0 

2 - 4 A-1
2 g B1x02

2 A-1
2 g B

 =
-16.5 m>s2 { 216.5 m>s22 + 219.81 m>s22120.0 m2

1-9.81 m>s22

 =
-16.5 m>s2 { 20.8 m>s

1-9.81 m>s22 = 2.78 s, -1.46 s

v0 - gt = 0  or  t =
v0

g
=

6.5 m>s
9.81 m>s2 = 0.66 s

 xmax = 20.0 m + 16.5 m>s210.66 s2 - 1
219.81 m>s2210.66 s22

 = 22 m
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CHAPTER SUMMARY

2-1	 POSITION, DISTANCE, AND DISPLACEMENT
Position
Position is the location of an object as measured on a coordinate system.

Distance
Distance is the total length of travel, from beginning to end. Distance is always positive.

Displacement
Displacement, ∆x, is the change in position; that is, ∆x = xf - xi.

Positive and Negative Displacement
The sign of the displacement indicates the direction of motion.

2-2	 AVERAGE SPEED AND VELOCITY
Average Speed 
Average speed is distance divided by elapsed time.

Average Velocity
Average velocity is displacement divided by elapsed time. Average velocity is positive 
for motion in the positive direction, negative for motion in the negative direction.

Graphical Interpretation
In an x-versus-t plot, the average velocity is the slope of a line connecting two points.

2-3	 INSTANTANEOUS VELOCITY 
The velocity at an instant of time, v, is the average velocity over shorter and shorter 
time intervals: v = lim

∆tS0
 ∆x
∆t .

Graphical Interpretation
In an x-versus-t plot, the instantaneous velocity is the slope of a tangent line at a 
given instant of time.

When Dx 7  0,
the slope Dx/Dt
is positive.

x (m)

Dt

Dx 7  0
1

-1

-2

2

3

4

B

A

5

4
O t (s)

31 2

Slope =   =  average velocity from A to BDx
Dt

x

O
t

t3t1 t2

Slope =  average velocity
between times t1 and t2

Slope =  average velocity
between times t2 and t3

Slope of tangent
line =  instantaneous
velocity at time t3

CHAPTER 2 REVIEW

Section Review
•	 Free fall is motion with a constant downward acceleration of magnitude 

g = 9.81 m>s2.

Enhance Your Understanding	 (Answers given at the end of the chapter)

7.	 On a distant, airless planet, an astronaut drops a rock to test the planet’s gravitational 
pull. The astronaut finds that in the first second of falling (from t = 0 to t = 1 s)  
the rock drops a distance of 1 m. How far does the rock drop from t = 1 s to t = 2 s? 
(a) 1 m, (b) 2 m, (c) 3 m, (d) 4 m.
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2-4	 ACCELERATION 
Average Acceleration
Average acceleration is the change in velocity divided by the elapsed time.

Instantaneous Acceleration
The acceleration at an instant of time, a, is the limit of the average acceleration over 
shorter and shorter time intervals: a = lim

∆tS0
 ∆v

∆t .

Graphical Interpretation
In a v-versus-t plot, the instantaneous acceleration is the slope of a tangent line at a 
given instant of time.

2-5	 MOTION WITH CONSTANT ACCELERATION 
Several different equations are used to describe the motion of objects moving with 
constant acceleration. These “equations of motion” are listed in Table 2-5. The ones 
that are used most often are (1) velocity as a function of time 1v = v0 + at2, (2) po-
sition as a function of time Ax = x0 + v0t + 1

2 at2 B , and (3) velocity as a function of 
position 1v

2 = v0
2 + 2a∆x2.

2-7	 FREELY FALLING OBJECTS 
Objects in free fall move under the influence of gravity alone. An object is in free fall 
as soon as it is released, whether it is thrown upward, thrown downward, or released 
from rest. As a result, objects in free fall move with a constant downward acceleration 
of magnitude g = 9.81 m>s2.

v

O
t

t3t1 t2

Slope =  average acceleration
between times t1 and t2

Slope =  average acceleration
between times t2 and t3

Slope of tangent line =  
instantaneous acceleration at t3

10

20

30

Po
si

ti
on

, x
 (m

)

Time, t (s)

40

2O 1.50.5 1 32.5 3.5

v =  0 x =  0
x =  4.91 m

x =  19.6 m

x =  44.1 m

v =  9.81 m/s

v =  19.6 m/s

v =  29.4 m/s

t =  0
t =  1 s

t =  2 s

t =  3 s

ANSWERS TO ENHANCE YOUR UNDERSTANDING QUESTIONS
1.	 (a) No. Distance is always increasing on a trip, whereas the 

magnitude of displacement can increase or decrease. (b) Yes. 
For example, in a 5-mi round trip the distance is 5 mi but the 
magnitude of the displacement is zero.

2.	 (a) Positive. (b) Zero. (c) Negative.

3.	 C 6 B 6 D 6 A.

4.	 (a) The speed is decreasing because velocity and acceleration 
have opposite signs. (b) The velocity is increasing (becoming 

less negative) because the acceleration is positive. (c) The 
speed is decreasing because velocity and acceleration have 
opposite signs. (d) The velocity is decreasing (becoming less 
positive) because the acceleration is negative.

5.	 (a) x = 6 m. (b) v = -5 m>s. (c) a = 8 m>s2.

6.	 The alligator encounters duck 1 first.

7.	 (c) 3 m.

CONCEPTUAL QUESTIONS
(Answers to odd-numbered Conceptual Questions can be found in the back of the book.) 
(The effects of air resistance are to be ignored in this chapter.)

1.	 You take your dog on a walk to a nearby park. On the way, your 
dog takes many short side trips to chase squirrels, examine fire hy-
drants, and so on. When you arrive at the park, do you and your 
dog have the same displacement from home? Have you and your 
dog traveled the same distance? Explain.

2.	 Does an odometer in a car measure distance or displacement? 
Explain.

3.	 An astronaut orbits Earth in the space shuttle. In one complete 
orbit, is the magnitude of the displacement the same as the dis-
tance traveled? Explain.

4.	 After a tennis match the players dash to the net to congratulate 
one another. If they both run with a speed of 3 m>s, are their ve-
locities equal? Explain.

5.	 Does a speedometer measure speed or velocity? Explain.

6.	 Is it possible for a car to circle a racetrack with constant velocity? 
Can it do so with constant speed? Explain.

7.	 For what kinds of motion are the instantaneous and average ve-
locities equal?

8.	 Assume that the brakes in your car create a constant deceleration, 
regardless of how fast you are going. If you double your driving 
speed, how does this affect (a) the time required to come to a stop, 
and (b) the distance needed to stop?

9.	 The velocity of an object is zero at a given instant of time. (a) Is it 
possible for the object’s acceleration to be zero at this time? Ex-
plain. (b) Is it possible for the object’s acceleration to be nonzero 
at this time? Explain.

10.	 If the velocity of an object is nonzero, can its acceleration be zero? 
Give an example if your answer is yes; explain why not if your an-
swer is no.

For instructor-assigned homework, go to www.masteringphysics.com.
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