Copyright © Wright Group/McGraw-Hill

Name

9-8B Lesson Master	Questions on SPUR Objectives See Student Edition pages 656–659 for objectives.
VOCABULARY	
1. Fill in the Blank Logarithms to the base called <i>natural logarithms</i> .	are
In 2-9, write the logarithmic equation as an expo	nential equation.
2. $\ln 15 \approx 2.708$	3. $\ln 1.5 \approx 0.405$
4. $\ln 42 \approx 3.738$	5. $\ln 0.2 \approx -1.609$
6. $\ln 2.4 \approx 0.875$	7. $\ln 3,000 \approx 8.006$
8. $\ln 7 \approx 1.95$	9. $\ln 0.01 \approx -4.61$
In 10–15, write the exponential equation as a log	arithmic equation.
10. $e^{-1.3} \approx 0.273$	11. $e^{15} \approx 3,269,017$
12. $e^7 \approx 1097$	13. $e^{1.5} \approx 4.482$
14. $e^{-\frac{1}{2}} \approx 0.607$	15. $e^{\frac{7}{4}} \approx 5.755$
SKILLS Objective A	
In 16-21, evaluate. Round to the nearest hundred	dth when necessary.
16. ln 95	17. ln 0.03
18. ln 8	19 . ln 0.44
20. ln 5068	21. ln 0.05
In 22–35, give an exact answer. Do all work in yo if necessary.	ur head; check with a CAS
22. $\ln e^8$	23. $\ln e^{\frac{1}{2}}$
24. $\ln e^{-\frac{2}{5}}$	25. $\ln e^{14}$
26. ln <i>e</i>	27. $\ln e^0$
28. $\ln e^{\frac{4}{3}}$	29. $5 \ln e^2$
30. $-\ln e^{-0.02}$	31. $5 \ln e^{\frac{1}{5}}$
32. $2 \ln e^{-4.2}$	33. $3.5 \ln e^{-\frac{3}{7}}$
34. $\frac{1}{8} \ln e^{-1}$	35. $\frac{5}{3} \ln e^3$

Name

9-8B

page 2

		P~8~ -
	ODEDTIES Objective E	
36. 1	True or False Given the function f where $f(x) = \ln x$.	
â	domain of f is $\{x \mid x > 0\}$.	
ŀ	range of f is the set of all reals	
	domain of f^{-1} is $\{r \mid r > 0\}$	
($\int \int $	
0	. range of f^{-1} is the set of all reals.	
37. I	Explain why, if $\ln(e^x) = a, x = a$.	
-		
-		
(US	ES Objective I	
of ye the n	ars <i>t</i> for the investment to grow to g times what it was, assuming that noney is left untouched.	
38. I	Iow long will it take an investment to double if the account pays	
â	. 5% compounded continuously?	
k	. 7% compounded continuously?	
C	. 10% compounded continuously?	
39. I 3	f \$8000 is invested at 8% compounded continuously, in how many rears will the account be worth \$12,000?	
40 . \	What annual rate of interest compounded continuously would be necessary for an account to triple in	
â	b. 15 years?	
C	d. 5 years?	
41. 1 V	The maximum velocity v of a rocket is $v = c \cdot \ln R$, where c is the velocity of the exhaust and R is the ratio of the mass of the rocket	