## 8-4B Lesson Master

**Questions on SPUR Objectives** 

See Student Edition pages 574-577 for objectives.

**SKILLS**) Objective C

In 1-12, evaluate without using a calculator.

- 1.  $\sqrt[3]{0.216}$
- **2**.  $\sqrt[6]{64}$
- 3.  $\sqrt[4]{6561}$  \_\_\_\_\_

- 4.  $\sqrt[3]{343}$
- 5.  $\sqrt[5]{0.03125}$
- 7.  $\sqrt[3]{512}$  8.  $\sqrt{169}$
- 9.  $\sqrt[4]{10,000}$

- **10.**  $\sqrt[3]{0.008}$
- 11.  $\sqrt[6]{\frac{64}{729}}$
- 12.  $\sqrt[4]{50,625}$

In 13-18, estimate to the nearest hundredth.

- 13.  $\sqrt[4]{16+81}$
- **14**.  $\sqrt[5]{28}$  \_\_\_\_\_
- **16.**  $\sqrt[8]{8}$  \_\_\_\_\_
- 17.  $\sqrt[4]{716,448}$
- **18.**  $\sqrt[3]{0.00029}$

**PROPERTIES** ) Objective G

- 19. a. On a CAS, find all complex fourth roots of 6561.
  - b. Which of your answers from Part a is equal to  $\sqrt[4]{6561}$ ?
- **20.** Give a counterexample to the statement: For all h,  $\sqrt[4]{h^4} = h$ .
- 21. Consider the statement  $\sqrt[5]{m^5} = m$ . For which values of m is the statement true?
- 22. For the radical expression  $\sqrt[n]{n}$ , what are the possible values
  - **a.** of *m*? \_\_\_\_\_
- **23. Multiple Choice** When  $x \ge 0$ ,  $\sqrt[9]{x^4}$  equals which of the following?

D  $\frac{1}{9}x^4$ 

## Name

8-4B

page 2

**24.** Suppose  $r \ge 0$  and a and b are integers such that  $a \ge 1$  and  $b \ge 2$ . Write two other expressions that are equivalent to  $\sqrt[b]{r^a}$ .

(USES) Objective I

**25.** A cone has volume  $V = \frac{1}{3}\pi r^2 h$ . Express the length of its radius

a. in radical notation.

- **b.** with a rational exponent.
- **26**. Find the radius, to the nearest tenth, of a cone with volume 1063.8 cm<sup>3</sup> and height 9.1 cm.
- 27. A sphere has volume  $V = \frac{4}{3}\pi r^3$ . Write an expression for r using radical notation.
- 28. Find the radius, to the nearest tenth, of a sphere with volume  $250 \text{ in}^3$ .
- **29**. The frequency *F* of a note that is *n* notes above a note with frequency *f* can be found by using the following formula:

$$F = f \cdot 2^{\frac{n}{12}}.$$

- a. Write this formula using radical notation.
- b. Suppose you want to know the frequency F of a note 5 notes above the note with frequency f. Write a formula for F using radical notation.
- **30.** Refer to the spinner at the right. Suppose the probability of spinning a B six times in a row is *p*. Use radical notation to give the probability of spinning a B on a single spin.

