

Matrices for Rotations

BIG IDEA Matrices can represent rotations about the origin.

Recall from geometry and Lesson 4-7 that a turn, or **rotation**, is described by its *center* and *magnitude*. The **center of a rotation** is a point that coincides with its image. The **magnitude of a rotation** is positive if the rotation is counterclockwise, while the magnitude is negative if the rotation is clockwise. The rotation of magnitude x° around the origin is denoted R_{x} .

Note that we denote a rotation with a capital R, while we identify a reflection with a lowercase r.

The Composite of Two Rotations

Rotations often occur one after the other, as when a spinner is spun twice.

Activity

MATERIALS tracing paper, protractor

At the right, figures I, II, and III are images of each other under rotations with center *O*.

Step 1 Trace the figures at the right.

- **Step 2** Measure ∠AOE to determine the magnitude of the rotation that maps figure I onto figure II.
- **Step 3** Measure ∠*EOI* to determine the magnitude of the rotation that maps figure II onto figure III.
- Step 4 What is the magnitude of the rotation that maps figure I onto figure III?
- Step 5 What is the magnitude of the rotation that maps figure III onto figure I?

Vocabulary

rotation center of a rotation magnitude of a rotation

Mental Math Solve: a. $V = \frac{1}{3}\pi r^2 h$ for *h*. **b.** $h = 4.9t^2$ for *t*. **c.** $M = \frac{kwt^2}{d}$ for *k*. **d.** y = 4x + 12 for *x*.

The relationships in the Activity result from a fundamental property of rotations, which itself is a consequence of the Angle Addition Postulate in geometry.

Composite of Rotations Theorem

A rotation of b° following a rotation of a° with the same center results in a rotation of $(a + b)^{\circ}$. In symbols, $R_{b}^{\circ} \circ R_{a} = R_{a+b}^{\circ}$.

Matrices for Rotations

Rotations centered at the origin are the only rotations that can be represented by 2×2 matrices. This is because any transformation

represented by a 2 × 2 matrix maps (0, 0) onto itself: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

that can be ansformation $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

As you will see later in this course, you can use trigonometry to develop a rotation matrix of any magnitude. However, some rotations have matrices whose elements can be derived without trigonometry. For example, in the previous lesson you derived a matrix for R_{90} .

Matrix for R_{90} Theorem

 $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is the matrix for R_{90} .

You can verify this theorem using the Matrix Basis Theorem.

The image of (1, 0) under R_{90} is (0, 1).

The image of (0, 1) under R_{90} is (-1, 0).

So, the matrix for R_{90} is $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Using matrices to represent rotations lets you describe rotation images algebraically. For example, for $R_{_{90}}$,

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \cdot x + -1 \cdot y \\ 1 \cdot x + 0 \cdot y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}.$$

Thus, $R_{90}(x, y) = (-y, x)$. This is an important result you should memorize.

Matrices for Rotations of Multiples of 90°

The rotations R_{180} and R_{270} are especially important, and their matrices can be computed straightforwardly from the matrix for R_{00} .

Questions

COVERING THE IDEAS

- **1.** A rotation with negative magnitude represents a turn in which direction?
- **2. a.** Verify that $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
 - **b.** What does this computation prove about representing rotations with 2×2 matrices?

- **3.** a. **Fill in the Blank** A rotation of 45° followed by a rotation of 90° is equivalent to a rotation of ____?___.
 - **b.** Write Part a using R notation.
- 4. A rotation of -120° is the same as a rotation of what positive magnitude?
- 5. Write the matrices for R_{90} , R_{180} , R_{270} , and R_{360} .
- 6. Find the image of (x, y) under R_{270} .
- 7. Find the image of the square $\begin{bmatrix} 2 & 8 & 8 & 2 \\ 3 & 3 & 9 & 9 \end{bmatrix}$ under R_{180} .

APPLYING THE MATHEMATICS

- 8. Let A = (6, 2), $B = R_{90}(A)$, $C = R_{180}(A)$, and $D = R_{270}(A)$. Prove that *ABCD* is a square by showing that AB = BC = CD = AD and AO = BO = CO = DO, where O = (0, 0).
- **9.** a. Calculate a matrix for $R_{90} \circ r_x$.
 - **b.** Calculate a matrix for $r_x \circ R_{90}$.
 - **c.** Your answers to Parts a and b should be different. What property of matrix multiplication does this illustrate? What property of transformations does this illustrate?
- **10.** The matrix for R_{60} is approximately $\begin{bmatrix} 0.5 & -0.866 \\ 0.866 & 0.5 \end{bmatrix}$. Use the fact

that a 150° rotation is the result of a 60° rotation followed by a 90° rotation to find an approximate matrix for R_{150} .

- **11.** a. Find a matrix for $R_{90} \circ S_{0.5,2} \circ R_{-90} \circ S_{2,0.5}$.
 - **b.** What does this transformation represent geometrically?

REVIEW

- 12. a. By what matrix can you multiply the size change matrix
 - $\begin{vmatrix} 8 & 0 \\ 0 & 9 \end{vmatrix}$ to get the identity matrix?
 - b. What does your answer to Part a represent geometrically? (Lessons 4-7, 4-4)
- **13. True or False** The matrix for a transformation can be determined by finding the image of the point (1, 1) under the transformation. (Lesson 4-6)

14. Consider the triangle $\triangle ELK$ represented by the matrix

 $\begin{bmatrix} 0 & 8 & 9 \\ -2 & -4 & -6 \end{bmatrix}$, and the triangle $\triangle RAM$ represented by the matrix

$$\begin{bmatrix} 0 & 4 & 4.5 \\ -3 & -6 & -9 \end{bmatrix}$$
. (Lesson 4-5)

- **a**. Find a matrix for the scale change that maps $\triangle ELK$ onto $\triangle RAM.$
- **b**. Find a matrix for the scale change that maps $\triangle RAM$ onto $\triangle ELK.$
- **15.** In 2006, about 45 million people in the U.S. did not have health insurance. The four states with the highest percent of uninsured residents were Texas (24.1%), New Mexico (21.0%), Florida (20.3%), and Arizona (19.0%). Their populations in 2006 were as follows: Texas 23,508,000; New Mexico 1,955,000; Florida 18,090,000; and Arizona 6,166,000. Use matrix multiplication to determine how many people in these four states had no health insurance. (Lessons 4-3, 4-1)

The population of New Mexico increased by 20.1% between 1990 and 2000.

EXPLORATION

16. You can find a matrix for R_{45} in the following way. Suppose

the matrix is $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then, since $R_{45} \circ R_{45} = R_{90}$, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$

- **a**. Multiply the matrices on the left side of the equation to obtain one matrix.
- **b.** Equate the elements of the product matrix and the matrix for R_{00} . You will have four equations in *a*, *b*, *c*, and *d*.
- c. From the equations, explain why $a^2 = d^2$, but $a \neq -d$.
- **d**. From the equations, explain why b = -c.
- e. Either by hand or with a CAS, find the two possible matrices $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

f. One solution is the matrix for R_{45} . The other solution is the matrix for what transformation?

QY ANSWERS **1.** (-2, 3) 0 1 0