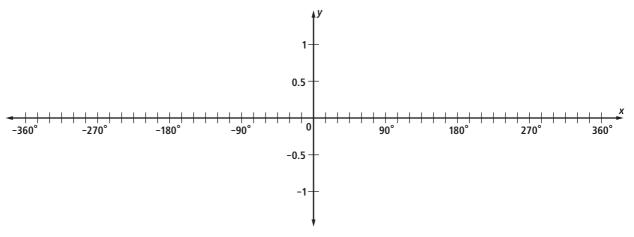
10-6A

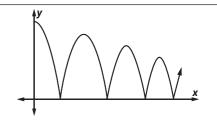

Lesson Master

Questions on SPUR Objectives

See Student Edition pages 724-727 for objectives.

SKILLS) Objective J

1. On the same axes below, graph $f(\theta) = \sin \theta$ and $g(\theta) = \cos \theta$ over the domain $-360 \le \theta \le 360$.



Use your graph from Question 1 to help answer Questions 2-5.

- 2. Give the domain and range of the cosine function.
- 3. Find all θ -intercepts of the sine function shown on the graph.
- 4. Find a θ -intercept of the sine function that is *not* shown on the graph.
- 5. Fill in the Blanks As θ increases from 180° to 270°, $\sin \theta$ _______to _____.
- **6.** The table below shows the time of sunset on the 1st day of each month in a given year for Seattle, WA.

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
Sunset	4:28	5:10	5:55	7:40	8:22	9:00	9:11	8:43	7:49	6:48	5:51	4:20

- a. Explain why these data can be modeled by a periodic function.
- b. Estimate the domain and range of a sinusoidal function that models these data.
- 7. The height of a bouncing ball over time is graphed at the right. Explain why this graph is *not* periodic.

