Name

13-8B Lesson Master

Questions on SPUR Objectives

See Student Edition pages 934–937 for objectives.

USES) Objective J

- 1. In Washington State's Daily Game, participants select a 3-digit number using any combinations of 0 through 9.
 - a. In how many ways can a player select a 3-digit number? Explain your answer.
 - **b**. What is the probability of winning the jackpot by matching all three digits? _
 - **c.** If the lottery game costs \$1 to participate, and the jackpot is worth \$500, does the state gain money, lose money, or break even in the long run? Explain your reasoning.

- **2.** In Minnesota's GOPHERS game, 5 balls are chosen from balls numbered 1–39. You can win prizes for matching 3 of the 5 balls and 4 of the 5 balls.
 - **a**. What is the probability of picking exactly 3 of the 5 winning numbers? Show your computation.
 - **b.** What is the probability of picking exactly 4 of the 5 winning numbers?
 - c. What is the probability of picking all 5 winning numbers?
- **3.** In the Guess-the-Number booth at the state fair, participants select a 4-digit number using any combination of the numbers, 1 through 6, rolled on a die.
 - **a**. What is the probability of picking the correct 4-digit number?
 - b. If the prize is \$1000, and it costs 50¢ to play, does the Guess-the-Number booth gain money, lose money, or break even in the long run? Explain your reasoning.

Name

1	3-8B		page 2
In 4 thre of t	4–8, consider the Spin 6 gar ough 36 is spun 6 times. Pr the 6 numbers, 4 out of 6, 5	ne at a fair. A wheel with the izes are given for anyone wh out of 6, or 6 out of 6.	e numbers 1 o picks 3 out
4.	What is the probability of p	bicking exactly 3 out of the 6	numbers?
5.	What is the probability of p	bicking exactly 4 out of the 6	numbers?
6.	. What is the probability of picking exactly 5 out of the 6 numbers?		
7.	What is the probability of p	bicking exactly 6 out of the 6	numbers?
8.	The prizes in Spin 6 are \$1 \$2000 for 4 out of 6, and \$7	50 for picking exactly 3 out o 5,000 for 5 out of 6.	f 6 numbers,
	a . Based on the probabilit these prize amounts see	ies found in Questions 4 thro em reasonable? Why or why r	ugh 6, do not?
	b. Multiple Choice Based on the other prize amounts and the probabilities found in Questions 4 through 7, which prize would be appropriate for someone who chooses 6 out of 6 numbers correctly? Explain your choice.		
	A \$5 million	B \$13 million	C \$20 million

9. At the after-prom party, 5 balls are chosen from 20 balls numbered from 1 to 20. Each couple may choose one game ticket. Enough prizes were donated to be able to award one prize to roughly every 25 couples. If a prize is given to each couple who pick 3 out of 5 numbers, will there be enough prizes? Explain your reasoning.