Chapter 9

## Summary and Vocabulary

- A function with an equation of the form  $y = ab^x$ , where b > 0 and  $b \neq 1$ , is an **exponential function**. All geometric sequences are also exponential functions. In the formula  $A = P(1 + \frac{r}{n})^{nt}$ , when *P*, *r*, and *n* are given, *A* is an exponential function of *t*.
- The exponential function with base *b* has an equation of the form *f*(*x*) = *ab<sup>x</sup>*. Some exponential functions represent **exponential growth** or **decay** situations. In an exponential growth situation, the growth factor *b* is greater than one. In an exponential decay situation, *b* is between 0 and 1. Over short periods of time, many populations grow exponentially. The value of many items depreciates exponentially. Quantities that grow or decay exponentially have a constant doubling time or **half-life**, respectively. Real data from these and other contexts can be modeled using exponential functions.
- When an initial amount of \$1.00 is continuously compounded at 100% interest, the value of the investment after one year is e ≈ 2.71828. Like π, the number e is an irrational number. In general, the formula A = Pe<sup>rt</sup> can be used to calculate the value A of an investment of P dollars at r% interest **compounded continuously** for t years.
- C The inverse of the exponential function *f*: *x* → *b<sup>x</sup>* is *f<sup>-1</sup>*: *b<sup>x</sup>* → *x*, the logarithm function with base *b*. Thus, *b<sup>x</sup>* = *a* if and only if *x* = log<sub>b</sub> *a*. Because exponential and logarithm functions are inverses, their graphs are reflection images of each other over the line *y* = *x*. Properties of logarithm functions can be derived from the corresponding properties of exponential functions.







## Vocabulary

#### Lesson 9-1

\*exponential function exponential curve growth factor

#### Lesson 9-2

exponential decay depreciation half-life

#### Lesson 9-3

e compounded continuously

#### Lesson 9-5

logarithm of x to the base 10, log of x to the base 10, log base 10 of x common logarithm, common log logarithmic function to the base 10, common logarithm function

#### Lesson 9-6

logarithmic scale decibel, dB

#### Lesson 9-7

\*logarithm of a to the base b logarithm function with base b

#### Lesson 9-8

\*natural logarithm of *m*, In *m* 

| <b>Exponential Growth Function</b> |            | Logarithmic Function             |
|------------------------------------|------------|----------------------------------|
| all real numbers                   | Domain     | all positive reals               |
| all positive reals                 | Range      | all real numbers                 |
| y-intercept is 1, no x-intercept   | Intercepts | x-intercept is 1, no y-intercept |
| the x-axis ( $y = 0$ )             | Asymptotes | the y-axis ( $x = 0$ )           |

- Copyright Copy
- The base of a logarithmic function can be any positive real number not equal to 1, but the most commonly used bases are 10 and *e*. When the base is 10, the values of the log function are called **common logarithms**. When the base is *e*, the values of the log function are called **natural logarithms**.
- The basic properties of logarithms correspond to properties of powers. Let x = b<sup>m</sup> and y = b<sup>n</sup>, and take the logarithms of both sides of each power property. The result is a logarithm property.

| Power Property              | Logarithm Property                                     |
|-----------------------------|--------------------------------------------------------|
| $b^0 = 1$                   | $\log_b 1 = 0$                                         |
| $b^m \cdot b^n = b^{m+n}$   | $\log_b(xy) = \log_b x + \log_b y$                     |
| $\frac{b^m}{b^n} = b^{m-n}$ | $\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$ |
| $(b^m)^a = b^{am}$          | $\log_b(x^a) = a  \log_b x$                            |
| $b^x = a$                   | $\log_b a = \frac{\log_t a}{\log_t b}$                 |

#### Theorems

Continuously Compounded Interest<br/>Formula (p. 597)(p. 637)Log<sub>b</sub> of b<sup>n</sup> Theorem (p. 636)Logarithm of a Quotient Theorem<br/>(p. 638)Logarithm of 1 Theorem (p. 636)Logarithm of a Power Theorem (p. 639)Logarithm of a Product TheoremChange of Base Theorem (p. 646)

#### Chapter 9

## Chapter

## Self-Test

- 1. What are the domain and range of the function *f* defined by  $f(x) = \log_{13} x$ ?
- 2. The half-life of uranium-237 is about 7 days. What percent of the original amount of uranium will remain in an artifact after three weeks?
- 3. Let  $f(x) = 8^x$ .
  - **a**. Graph *f* on the interval  $-2 \le x \le 2$ .
  - **b**. Approximate  $f(\pi)$  to the nearest tenth.
  - **c.** Does the graph have any asymptotes? If it does, state the equations for all asymptotes. If it does not, explain why not.
- **4. a.** Give a value of *b* for which the equation  $y = ab^x$  models exponential decay.
  - **b.** What are the domain and range of the function in Part a for your value of *b*?

# In 5–7, explain how you would evaluate each expression exactly without using a calculator.

- **5.**  $\log 100,000,000$  **6.**  $\log_2(\frac{1}{16})$
- **7.**  $\ln e^{-4}$
- 8. Rewrite  $\log a + 2 \log t \log s$  as a single logarithm.
- **9.** Without natural predators, the number of a certain species of bird will grow each year by 12%. A colony of 50 birds is started in a predator-free area. What is the expected number of birds of this species after 3 years?

Take this test as you would take a test in class. You will need a calculator. Then use the Selected Answers section in the back of the book to check your work.

In 10–12, solve. If necessary, round solutions to the nearest hundredth.

**10.** 
$$\log_x 27 = \frac{3}{4}$$
 **11.**  $5^y = 40$ 

**12.** 
$$\ln(7z) = \ln 3 + \ln 21$$

- **13.** True or False  $\log_5 a + \log_3 b = \log_{15}(ab)$ . Justify your answer.
- 14. Write an equation for the inverse of the function with equation  $y = \log_4 x$ .
- **15.** The Henderson-Hasselbalch formula  $pH = 6.1 + \log(\frac{B}{C})$  can be used to find the pH of a patient's blood as a function of the bicarbonate concentration *B* and the carbonic-acid concentration *C*. A patient's blood has a bicarbonate concentration of 23 and a pH reading of 7.3. Find the concentration of carbonic acid.
- **16.** To the nearest thousandth, what is  $\log_{14} 24.72$ ?
- **17.** State the general property used in simplifying the expression  $\log_{10} 19^{23}$ .
- **18.** Consider the function defined by  $y = \log_5 x$ .
  - **a**. State the coordinates of three points on the graph.
  - **b**. State the domain and range of the function.
  - c. Graph the function.
  - d. State an equation for its inverse.
  - **e.** Graph the inverse on the same axes you used in Part c.

**19. Multiple Choice** Assume that the value of an investment grows according to the model  $y = I(1.075)^x$ , where *I* is the original investment and *y* is the amount present after *x* years. Which graph below could represent this situation?



**20.** The Population Reference Bureau reports the following data about the population *P* of the United States.

| Population mid-2007            | 302,200,000  |
|--------------------------------|--------------|
| Births per 1000 population     | 14           |
| Deaths per 1000 population     | 8            |
| Rate of natural increase/year  | 0.6% = 0.006 |
| Projected population, mid-2025 | 349,400,000  |

Assume the continuous growth model  $P = 302,200,000e^{rt}$ , where *r* is the annual rate of increase and *t* is the number of years after 2007.

- **a.** Use the model to show that the reported rate of natural increase of 0.6% is *not* the rate leading to the projected population in 2025.
- **b.** Calculate the growth rate to the nearest 0.1% that will give the reported projected population for 2025 of 349,400,000. Show how you arrived at your answer.

- **21.** For the equation  $27^{x} = 14$ ,
  - **a.** find the exact solution.
  - **b.** find a decimal solution rounded to the nearest thousandth.
- **22.** The table below shows the total number of German-language articles in *Wikipedia* each month from March 2007 to February 2008.

| Month          | Articles (thousands) |
|----------------|----------------------|
| March 2007     | 570                  |
| April 2007     | 584                  |
| May 2007       | 599                  |
| June 2007      | 612                  |
| July 2007      | 626                  |
| August 2007    | 640                  |
| September 2007 | 655                  |
| October 2007   | 668                  |
| November 2007  | 681                  |
| December 2007  | 695                  |
| January 2008   | 711                  |
| February 2008  | 726                  |

- **a**. Fit an exponential model to these data.
- b. The number of English articles in *Wikipedia* surpassed 1 million in March, 2006. Use your model from Part a to predict when the number of German articles will reach this benchmark.

#### Chapter 9

# ChapterChapter9Review

**SKILLS** Procedures used to get answers

**OBJECTIVE A** Determine values of logarithms. (Lessons 9-5, 9-7, 9-8, 9-10)

In 1–8, find the exact value of each logarithm without using a calculator.

| <b>1</b> . log 10,000                            | <b>2.</b> log 0.0000            |  |  |
|--------------------------------------------------|---------------------------------|--|--|
| <b>3.</b> $\ln e^8$                              | 4. $\log_4 1024$                |  |  |
| <b>5</b> . log <sub>13</sub> (13 <sup>15</sup> ) | <b>6.</b> ln 1                  |  |  |
| <b>7.</b> $\log_{\frac{1}{3}} 27$                | <b>8</b> . $\log_9 \sqrt[3]{9}$ |  |  |

In 9–14, approximate each logarithm to the nearest hundredth.

| <b>9</b> . log 98,765           | <b>10</b> . ln 10.95              |
|---------------------------------|-----------------------------------|
| <b>11</b> . ln(-3.7)            | <b>12</b> . log 0.003             |
| <b>13</b> . log <sub>7</sub> 25 | <b>14</b> . log <sub>3</sub> 12.3 |

**OBJECTIVE B** Use logarithms to solve exponential equations. (Lesson 9-10)

In 15–22, solve. If necessary, round to the nearest hundredth.

| <b>15</b> . $\log_6 5 = t$       | <b>16.</b> $\log_{12} 9900 = s$ |
|----------------------------------|---------------------------------|
| <b>17.</b> $2000(1.06)^n = 6000$ | <b>18.</b> $13 \cdot 2^x = 1$   |
| <b>19.</b> $e^z = 44$            | <b>20.</b> $(0.8)^w = e$        |
| <b>21.</b> $11^{a+1} = 1011$     | <b>22.</b> $3^{-2a} = 53$       |

**OBJECTIVE C** Solve logarithmic equations. (Lessons 9-5, 9-6, 9-7, 9-9)

In 23–30, solve. If necessary, round to the nearest hundredth.

| <b>23</b> . $\log_x 33 = \log_{11} 33$ | <b>24.</b> $\ln(4y) = \ln 9 + \ln 12$ |
|----------------------------------------|---------------------------------------|
| <b>25</b> . log <i>z</i> = 18          | <b>26.</b> $\log x = 3.71$            |
| <b>27.</b> $3 \ln 5 = \ln x$           | <b>28.</b> $\log_8 x = \frac{3}{7}$   |
| <b>29</b> . $\log_r 347 = 3$           | <b>30.</b> $\log_r 5 = 10$            |

SKILLS PROPERTIES USES REPRESENTATIONS

**PROPERTIES** Principles behind the mathematics

# **OBJECTIVE D** Recognize properties of exponential functions. (Lessons 9-1, 9-2, 9-3)

- **31.** What are the domain and range of the function *f* defined by  $f(x) = e^{x}$ ?
- **32**. What are the domain and range of the function *g* defined by  $g(x) = 2^x$ ?
- **33.** When does the function  $f: x \rightarrow a^x$  describe exponential growth?
- **34**. What must be true about the value of *b* in the equation  $y = ab^x$ , if the equation models exponential decay?
- **35**. Write the equation (s) of the asymptote (s) to the graph of  $y = 27(1.017)^x$ .
- **36. Multiple Choice** Which situation does the equation  $y = e^{-x}$  describe?
  - A constant increase
  - B constant decrease
  - C exponential growth
  - D exponential decay

## **OBJECTIVE E** Recognize properties of logarithmic functions. (Lessons 9-5, 9-7, 9-8)

- **37.** What is the inverse of *f*, when  $f(x) = e^{-x}$ ?
- **38**. Give an equation of the form  $y = \underline{?}$  for the inverse of the function with equation  $y = \log_3 x$ .
- **39. True or False** The domain of the log function with base 12 is the range of the exponential function with base 12.
- 40. True or False Negative numbers are not included in the domain of f when  $f(x) = \log_b x$ .

**OBJECTIVE F** Apply properties of logarithms. (Lessons 9-9, 9-10)

In 41-44, write in exponential form.

| <b>41.</b> $\log_3\left(\frac{1}{243}\right) = -5$ | <b>42.</b> ln 23.14 $\approx \pi$ |
|----------------------------------------------------|-----------------------------------|
| <b>43.</b> $\log m = n$                            | 44. $\log_{1} p = q$              |

In 45-48, write in logarithmic form.

**45.**  $10^{-1.8} \approx 0.01585$  **46.**  $e^5 \approx 148.413$ 

**47.**  $x^y = z, x > 0, x \neq 1$  **48.**  $4^a = 18$ 

In 49–56, rewrite the expression as a whole number or a single logarithm and state the theorem or theorems you used.

- **49.**  $\ln 17 + \ln 12$ **50.**  $\log 50 \log 5$ **51.**  $-2 \log_{12} 11$ **52.**  $\ln e$ **53.**  $\log_{107} 107^{79}$ **54.**  $\log_{6.3} 1$ **55.**  $\log a 3 \log b$
- **56.**  $\log u + \log v + 0.7 \log w$

**USES** Applications of mathematics in real-world situations

#### **OBJECTIVE G** Create and apply exponential growth and decay models. (Lessons 9-1, 9-2, 9-3, 9-10)

- **57.** In 2005 the population of the Tokyo-Yokohama region in Japan was about 35.327 million, the largest metropolitan area in the world. The average annual growth rate was 0.43%. Assuming this growth rate continues, find the population of the Tokyo-Yokohama area in 2020.
- **58**. In 2005 the sixth largest metropolitan area in the world was that of Mumbai, India, with 18.202 million people. Mumbai was growing at an average rate of 1.96% annually. Suppose this rate continues indefinitely.
  - **a**. Find the population of this area in 2020.
  - **b**. In what year will the population of Mumbai reach 30 million?

- **59.** Refer to Questions 57 and 58. Estimate the year in which Mumbai's population will first exceed Tokyo-Yokohama's population.
- **60**. The population of a certain strain of bacteria grows according to  $N = C \cdot 3^{0.593t}$ , where *t* is the time in hours. How long will it take for 30 bacteria to increase to 500 bacteria?
- **61.** The amount *A* of radioactivity from a nuclear explosion is given by  $A = Ce^{-0.2t}$ , where *t* is measured in days after the explosion. What percent of the original radioactivity is present 9 days after the explosion?
- 62. Strontium-90 (<sup>90</sup>Sr) has a half-life of 29 years. If there was originally 25 grams of <sup>90</sup>Sr,
  - **a.** how much strontium will be left after 87 years?
  - **b**. how much strontium will be left after *t* years?
- **63**. A new car costing \$28,000 is predicted to depreciate at a rate of 14% per year. About how much will the car be worth in six years?

## **OBJECTIVE H** Fit an exponential model to data. (Lesson 9-4)

- 64. Find an equation for the exponential function  $f: x \to ab^x$  passing through (0, 1.2) and (3, 25).
- **65**. A bacteria population was counted every hour for a day with the following results.

| Hour <i>h</i>                     | 1 | 2  | 3  | 4  | 5   | 6   | 7   |
|-----------------------------------|---|----|----|----|-----|-----|-----|
| Population <i>p</i><br>(hundreds) | 5 | 13 | 25 | 49 | 103 | 211 | 423 |

- **a.** Construct a scatterplot of these data.
- **b.** Fit an exponential model to these data.
- **c.** Use your model to estimate the population at the 11th hour.

**66.** A hypothetical new substance, mathium, was manufactured and experiments showed that it decayed at the following rate.

| Days | Amount Present (g) |
|------|--------------------|
| 1    | 1156               |
| 2    | 907                |
| 3    | 715                |
| 4    | 660                |
| 5    | 432                |
| 6    | 340                |
| 7    | 273                |
| 8    | 210                |
| 9    | 168                |
| 10   | 129                |

- **a**. Construct a scatterplot of these data.
- **b.** From the data in the scatterplot, what is the approximate half-life of this new substance? Explain your answer.
- c. Fit an exponential model to these data.
- **d.** On the 20th day, how much of the substance will be present?

**OBJECTIVE I** Apply logarithmic scales, models, and formulas. (Lessons 9-6, 9-8)

In 67-69, use the formula  $D = 10 \log \left(\frac{I}{10^{-12}}\right)$  to convert sound intensity I in  $\frac{W}{m^2}$  into relative intensity D in decibels.

- **67**. Find *D* when  $I = 3.88 \cdot 10^9$ .
- **68**. What sound intensity corresponds to a relative intensity of 80 decibels?
- **69**. How many times as intense is a 60 dB sound as a 20 dB sound?
- **70**. Baking soda has a pH value of 8, while pure water has a pH value of 7. How many times as acidic is water than baking soda?

**71.** The boiling point *T* of water in degrees Fahrenheit at barometric pressure *P* in inches Hg (inches of mercury) is given by the model

 $T = 49.161 \cdot \ln P + 44.932.$ 

At what temperature does water boil in Colorado if the average barometric pressure is 27 inches Hg?

**REPRESENTATIONS** Pictures, graphs, or objects that illustrate concepts

**OBJECTIVE J** Graph exponential functions. (Lessons 9-1, 9-2)

- **72.** Graph  $y = 3^x$  using at least five points.
- **73.** Graph  $y = \left(\frac{1}{3}\right)^x$  using at least five points.
- 74. Graph  $g(x) = \left(\frac{1}{5}\right)^x$  and  $h(x) = \left(\frac{1}{5}\right)^{2x}$  on the same set of axes.
  - **a**. Which function has greater values when *x* > 0?
  - b. Which function has greater values when *x* < 0?</li>
- **75.** Below are the graphs of the equations  $y = 2^x$  and  $y = 3^x$ .



- **a.** Which equation corresponds to the graph of *f* ?
- **b.** Which equation corresponds to the graph of *g*?
- **c.** Describe how the graph of  $y = e^x$  is related to the graphs of *f* and *g*.

76. **Multiple Choice** Which graph below represents exponential decay?



**OBJECTIVE K** Graph logarithmic curves. (Lessons 9-5, 9-7)

- **77. a.** Graph  $y = 4^x$  using at least five points.
  - **b.** Use the results of Part a to plot at least five points on the graph of  $y = \log_4 x$ .

- **78.** a. Plot  $y = 10^x$  and  $y = \log_{10} x$  on the same set of axes.
  - **b.** Identify all intercepts of these curves.
- **79. a.** Graph  $y = \ln x$  using at least five points.
  - **b.** Give an equation for the inverse of this function.
- **80**. The graph below has the equation  $y = \log_Q x$ . Find *Q*.



**81.** What is the *x*-intercept of the graph of  $y = \log_b x$ , where b > 1?