Lesson **12-1**

Parabolas

BIG IDEA From the geometric definition of a parabola, it can be proved that the graph of the equation $y = ax^2$ is a parabola.

What Is a Parabola?

In Chapter 6 you were told that the path of a shot or tossed object, such as a fly ball in baseball, is part of a *parabola*.

But how do we know this? In order to determine whether a curve is a parabola, a definition of *parabola* is necessary. Here is a geometric definition.

Definition of Parabola

Let ℓ be a line and *F* be a point not on ℓ . A **parabola** is the set of all points in the plane of ℓ and *F* equidistant from *F* and ℓ .

To understand the definition of parabola, recall that the distance from a point *P* to a line ℓ is the length of the perpendicular from *P* to ℓ . In the diagram at the right below, four points on a parabola, *V*, *P*₁, *P*₂, and *P*₃, are identified. Note that each is equidistant from *F* and the line ℓ . For example, $\overline{P_1Q_1} \perp \ell$ and $P_1Q_1 = P_1F$. Also, $\overline{P_2Q_2} \perp \ell$ and $P_2Q_2 = P_2F$, and so on.

F is the **focus** and ℓ is the **directrix** of the parabola. Thus, a parabola is the set of points in a plane equidistant from its focus and its directrix. Neither the focus nor directrix is on the parabola. The line through the focus perpendicular to the directrix is the **axis of symmetry** of the parabola. The point *V* on the parabola and on the axis of symmetry is the **vertex of the parabola**.

parabola focus, directrix axis of symmetry vertex of a parabola paraboloid

Mental Math

Which expression or equation is not equivalent to the others?

a. log₁₀ 1742, log₁₆ 1742, log 1742

b. $\log_3 100, 2 \log_3 10, \log_3 20$

c. $r = e^{3t}, r = 3e^{t},$ $\ln r = 3t$ **d.** $\frac{\ln 2}{\ln p}, \frac{\log 2}{\log p}, \frac{\log_6 2}{\log_6 p}$

l

Drawing a Parabola

You can draw as many points on a parabola as you wish using only a compass and a straightedge.

Activity

MATERIA	LS compass, straightedge	
Step 1	Begin with a blank sheet of paper. Draw a directrix ℓ and a focus F not on ℓ . With H on ℓ , construct \overrightarrow{FH} perpendicular to ℓ . Then construct the midpoint of \overrightarrow{FH} and label it V for vertex. Your drawing should resemble the one at the right.	Line Line Line Line Line Line Line Line
Step 2	Let $FH = d$. Construct a line segment parallel to ℓ of length 2d through F, where F is the midpoint. Label the endpoints of this segment P_1 and P_2 .	V
Step 3	 a. Construct perpendicular line segments from P₁ to ℓ and P₂ to ℓ. Note that P₁ and P₂ are vertices of squares with FH as the common side. b. How does FP₁ compare to the perpendicular distance from P₁ to ℓ? What does this tell you about P₁? c. How does FP₂ compare to the perpendicular distance from P₂ to ℓ? What does this tell you about P₂? 	**
Step 4	Construct a circle with center <i>F</i> and any radius $r > \frac{d}{2}$.	
Step 5	 a. Construct a line <i>n</i> parallel to ℓ that is distance <i>r</i> from ℓ. (<i>Hint:</i> Use your compass to measure <i>r</i>.) Label the two intersections of this line and the circle P₃ and P₄. b. Are P₃ and P₄ on the parabola? Justify your answer. 	
Step 6	Find two more points by repeating Steps 4 and 5 for a different $r > \frac{d}{2}$.	
Step 7	You have found seven points on the parabola. Connect them with	

a smooth curve to sketch part of a parabola.

Equations for Parabolas

Suppose that you know the coordinates of the focus and an equation for the directrix of a parabola. You can find an equation for the parabola by using the definition of parabola and the Pythagorean Distance Formula. *FV* is equal to what other distance shown in the diagram on the previous page?

Example

Find an equation for the parabola with focus F = (0, 2) and directrix y = -2.

PF = PQ

Solution Sketch the given information. Let P = (x, y) be any point on the parabola. Because the directrix is a horizontal line, the distance from a point on the parabola to the directrix is measured along a vertical line. Let Q be the point on the directrix and on the vertical line through P. If P = (x, y), then Q = (x, -2).

definition of parabola

$$\sqrt{(x-0)^2 + (y-2)^2} = \sqrt{(x-x)^2 + (y-(-2))^2}$$
Pythagorean Distance Formula

$$x^2 + (y-2)^2 = (y+2)^2$$
Square both sides.

$$x^2 + y^2 - 4y + 4 = y^2 + 4y + 4$$
Expand.

$$x^2 - 4y = 4y$$
Add $-y^2 - 4$ to both sides.

$$x^2 = 8y$$
Add 4y to both sides.

$$y = \frac{1}{8}x^2$$
Solve for y.

An equation for the parabola is $y = \frac{1}{8}x^2$.

Check Pick any point on $y = \frac{1}{8}x^2$. We use A = (12, 18). Now show that A is equidistant from F = (0, 2) and y = -2.

 $AF = \sqrt{(12 - 0)^2 + (18 - 2)^2} = \sqrt{12^2 + 16^2} = \sqrt{400} = 20$

The distance from A to y = -2 is the distance from (12, 18) to (12, -2), which is 20, also. So, A is on the parabola with focus (0, 2) and directrix y = -2.

In the Example, if you replace the focus by $(0, \frac{1}{4})$ and replace the directrix by $y = -\frac{1}{4}$, the equation for the parabola is $y = x^2$. If *a* is nonzero, (0, 2) is replaced by $(0, \frac{1}{4a})$, and the directrix is replaced by $y = -\frac{1}{4a}$, then the parabola has equation $y = ax^2$. The derivation of both of these equations uses the same steps as the Example, and demonstrates the following theorem.

Focus and Directrix of a Parabola Theorem

For any nonzero real number *a*, the graph of $y = ax^2$ is the parabola with focus at $\left(0, \frac{1}{4a}\right)$ and directrix at $y = -\frac{1}{4a}$.

STOP QY2

Recall that because the image of the graph of $y = ax^2$ under the translation $T_{h,k}:(x, y) \rightarrow (x + h, y + k)$ is the graph with equation $y - k = a(x - h)^2$, the graph of any quadratic equation of the form $y = a(x - h)^2 + k$ or $y = ax^2 + bx + c$ is also a parabola. You can find the focus and directrix of a parabola with equation $y = a(x - h)^2 + k$ by applying the appropriate translation to the focus and directrix of $y = ax^2$.

When a < 0, you have learned that the parabola opens down. In this case, when the vertex is (0, 0), the directrix is above the *x*-axis, and the focus is below.

If a parabola is rotated in space around its axis of symmetry it creates a 3-dimensional **paraboloid**. The focus of a paraboloid is the focus of the rotated parabola. Paraboloids are common in modern technology. The shape of a satellite receiving dish is based on a paraboloid. Residents of a wheat-growing commune in southern China use a tiled solar reflector in the shape of a paraboloid. A teapot is placed at the focus of the paraboloid. Sunlight is reflected toward the teapot, boiling the water in 20 minutes without burning any wood, which is a precious resource. Cooking with a Dutch oven, as shown at the right, follows the same principle.

Questions

COVERING THE IDEAS

- 1. a. Can the focus of a parabola be a point on the directrix? Why or why not?
 - **b**. Can the vertex be on the directrix? Why or why not?

True or False In 2–4, refer to the parabola at the right with focus *F* and directrix ℓ . P_1 , P_2 , P_3 , and P_4 are points on the parabola.

2. $P_3F = FG_3$

3.
$$FG_1 = FG_2$$

4. The focus of this parabola is its vertex.

▶ QY2

Find the focus and directrix of the parabola with equation $y = -\frac{1}{6}x^2$.

Chapter 12

- 5. Refer to the Example.
 - **a.** Graph the parabola with equation $y = \frac{1}{8}x^2$.
 - **b.** Name its focus, vertex, and directrix.
 - c. Verify that the point (5, 3.125) is equidistant from the focus and directrix, and therefore is a point on the parabola $y = \frac{1}{8}x^2$.
 - **d**. Find another point on the graph of $y = \frac{1}{8}x^2$. Show that it is equidistant from the focus and directrix.
- 6. Verify that the graph of $y = -x^2$ is a parabola with focus $\left(0, -\frac{1}{4}\right)$ and directrix $y = \frac{1}{4}$ by choosing a point on the graph and showing that two appropriate distances are equal.
- 7. Let F = (0, -3) and ℓ be the line with equation y = 3. Write an equation for the set of points equidistant from F and ℓ .
- 8. a. Using graph paper, follow the steps of the Activity to draw five points that are on the parabola with focus F = (0, 1) and directrix defined by y = -1. You do not need to construct with a ruler and compass.
 - **b.** Refer to the Example. Find an equation for the parabola you drew in Part a.
 - **c.** Verify that the points you drew in Part a are on the graph of the function defined in Part b.
- **9.** Give the focus and directrix of the parabola with equation $y = -2xz^2$.
- **10**. What is a paraboloid?

APPLYING THE MATHEMATICS

- 11. What are the focus and directrix of $y 6 = (x + 5)^2$?
- **12.** Prove the Focus and Directrix of a Parabola Theorem.
- In 13 and 14, an equation for a parabola is given.
 - a. Tell whether the parabola opens up or down.
 - b. Give the focus of the parabola.
- **13.** $y = -5x^2$ **14.** $y = \frac{1}{4}x^2$
- **15. a.** Find an equation for the parabola with focus (5, 0) and directrix x = -5.
 - **b.** Give the coordinates of three points on this parabola, including the vertex.

The Municipal Asphalt Plant in New York City has a parabolic shape. This landmark facility is used for community sports, fitness, and recreation.

16.	An isotope has a half-life of 135 s 75 mg of this isotope to decay to	seco 20	onds. How long will it take mg? (Lesson 9-2)
17.	Solve for <i>y</i> . (Lessons 8-8, 6-2) a. $y^2 = 13$ c. $\sqrt{y} = 13$	b. d.	$(y+3)^2 = 13$ $\sqrt{y+3} = 13$
18.	18. Determine whether the set of points (x, y) satisfying th given equation describes <i>y</i> as a function of <i>x</i> . Explain yearswer. (Lessons 8-2, 2-5)		s (x, y) satisfying the ction of x. Explain your
19.	a. $y = (x + 1)^2$ Simplify. (Lessons 7-8, 7-7) a. $\left(\frac{16}{49}\right)^{\frac{1}{2}}$	b. b.	$x = (y+1)^2$ $(0.0001)^{-\frac{3}{4}}$

- **20.** Suppose the transformation $T_{-3,2}$ is applied to the parabola with equation $y = \frac{5}{9}x^2$. Find an equation for its image. (Lesson 6-3)
- 21. Fill in the Blank If x is a real number, then $\sqrt{x^2} = \underline{?}$. (Lesson 6-2)
 - A x B -x C |x| D none of these

EXPLORATION

DEVIE

- **22.** Parabolas can be formed without equations or graphs. Follow these steps to see how to make a parabola by folding paper.
 - a. Start with a sheet of unlined paper. Fold it in half as shown at the right. Cut or tear along the fold to make two congruent pieces. On one piece mark a point *P* about one inch above the center of the lower edge. Fold the paper so that the lower edge touches *P*, and crease well as shown at the right. Then unfold the paper. Repeat 10 to 15 times, each time folding so that a different point on the bottom edge of the paper aligns with *P*. The creases represent the *tangents* to a parabola. (A *tangent* to a parabola is a line not parallel to its line of symmetry that intersects the parabola in exactly one point.) Where are the focus and directrix of this parabola?
 - **b.** On the other piece of paper mark a point *Q* approximately in the center. Repeat the procedure used in Part a. Where are the focus and directrix for this parabola?
 - **c. Fill in the Blank** The two parabolas formed in Parts a and b illustrate the property that as the distance between the focus and directrix increases, the parabola _____.

.P.

QY ANSWERS

2. focus: (0, -24); directrix: y = 24

^{1.} VT