Lesson Master

Questions on SPUR Objectives

See Student Edition pages 792-795 for objectives.

PROPERTIES Objective G

In 1-6, determine whether, according to the Rational-Root Theorem, each number could be a root of a polynomial p(x) with the given first term and constant term.

1. first term $2x^7$ and constant term 6

2. first term $5x^4$ and constant term 8

a.
$$-1$$
 _____ b. $-\frac{4}{3}$ _____

3. first term $14x^5$ and constant term 3

a.
$$-7$$
 _____ b. $-\frac{1}{3}$ _____

d.
$$\frac{3}{7}$$

4. first term $3x^2$ and constant term 4

5. first term $6x^4$ and constant term 2

b.
$$-\frac{2}{3}$$

d.
$$-1$$

6. first term $2x^6$ and constant term 12

b.
$$-\frac{1}{2}$$

In 7-9, use the Rational-Root Theorem to determine whether the given number could be a root of either polynomial.

7.
$$\frac{2}{3}$$

a.
$$3x^2 - 15x - 18$$

b.
$$6x^2 - 15x - 8$$

8.
$$\frac{1}{3}$$

a.
$$6x^3 - 13x^2 + x + 2$$

b.
$$15x^3 - 22x^2 - 5x$$

9.
$$\frac{4}{5}$$

a.
$$3x^2 + 2x + 8$$

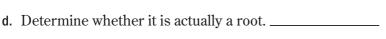
b.
$$10x^2 - 11x + 4$$

In 10-13, a. use the Rational-Root Theorem to list all possible rational roots of the polynomial, and b. find all rational roots.

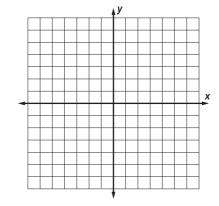
10.
$$30x^3 - 31x^2 + 10x - 1$$

Name

11-5B page 2


- 11. $x^4 + 2x^3 + x^2$
 - a. _____
- b. _____

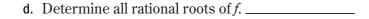
- 12. $7x^5 3x^4 2$
 - a. _____
- b. _____

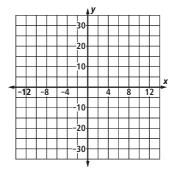

- 13. $64x^3 1$
 - a. _____
- b. _____

REPRESENTATIONS) Objectives J, K

- 14. Consider the polynomial $p(x) = 24x^2 + 53x 7$.
 - a. List the possible rational roots according to the Rational-Root Theorem.
 - **b.** Sketch a graph of p for $-5 \le x \le 5$ at the right.
 - c. According to the graph, which of the possible negative rational roots could be an actual root?

e. According to the graph, which of the possible positive rational roots could be an actual root?


- 19. Consider the polynomial $f(x) = -3x^5 + 20x^2 8$.
 - **a.** List the possible rational roots according to the Rational-Root Theorem.
 - **b. Multiple Choice** Based on your answer to Part a, which would be a good domain over which to graph *f*?



B
$$-10 \le x \le 10$$

$$\mathbf{C} \quad -4 \le x \le 4$$

c. At the right, sketch a graph of *f* over the domain you chose in Part b.

558