11-3A Lesson Master

Questions on SPUR Objectives

See Student Edition pages 792-795 for objectives.

SKILLS) Objective B

In 1–15, work by hand to factor over the rational numbers (if possible). If it is not factorable, write "prime over the rational numbers." Check by expanding or by using a CAS if necessary.

In 1-3, factor out the greatest common monomial factor.

1.
$$14x^3 - 49x =$$

2.
$$30nm^2 + 10nm - 15m =$$

3.
$$8a^3b^2 - 12a^2b^3 + 24ab^2 =$$

In 4 and 5, factor as a difference of squares.

4.
$$x^2 - 121 =$$

5.
$$16a^2 - 25b^2 =$$

In 6 and 7, factor as the square of a binomial.

6.
$$x^2 - 14x + 49 =$$

7.
$$p^2 + 8pq + 16q^2 =$$

In 8 and 9, factor by considering the factors of the constant term.

8.
$$x^2 + 8x + 12 =$$

9.
$$t^2 - t - 30 =$$

In 10-15, use one or more of the above methods.

10.
$$3x^3 - 27x =$$

11.
$$2a^2 - 10a + 8 =$$

12.
$$x^3 - 10x^2 + 25x =$$

13.
$$y^2 + 3y - 10 =$$

14.
$$x^2 - x + 3 =$$

15.
$$t^6 + 4t^5 + 4t^4 =$$

16. a. Factor
$$x^4 - 16$$
 as a difference of squares.

b. One of the terms in your answer to Part a is also a difference of squares.

Use this fact to completely factor $x^4 - 16$ over the rationals.

PROPERTIES Objective E

In 17-19, use a CAS as needed to help answer the question.

17. Consider the polynomial $P(x) = x^2 - 2x - 2$.

a. Is P(x) prime over the integers? If not, factor it.

b. Is P(x) prime over the reals? If not, factor it.

18. For which integers n from 1 to 10 is $x^2 - n$ prime over the integers?

19. Factor $x^2 + 9$ over each set, if possible.

a. the rational numbers: _____

b. the real numbers: _____