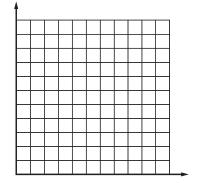
2-7A Lesson Master

Questions on SPUR Objectives

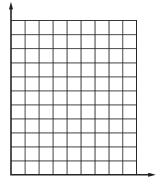

See Student Edition pages 143–147 for objectives.

(USES) Objective H

1. A baseball coach uses a machine to send fly balls to outfielders. The speed of the balls leaving the machine and the distance the balls travel is given in the table below.

Speed (ft/sec)	40	50	60	70	80	90	100
Distance (ft)	49	77	111	151	197	249	308

- **a.** Graph the data using an appropriate scale on the axes at the right.
- **b.** Which equation seems to model the data best: y = kx, $y = kx^2$, $y = \frac{k}{x}$, or $y = \frac{k}{x^2}$?


- c. Find the constant of variation for your model.
- d. According to your model, how far will a ball travel if it leaves the machine at 75 ft/sec?
- 2. For six days, Sarah recorded the time it took her to bike to school and her average speed. Her data are shown in the table below.

Speed (mi/hr)	6	8	10	12	14	16
Time (min)	20	15	12	10	8.5	7.5

- **a.** Graph the data using an appropriate scale on the axes at the right.
- **b.** Which equation seems to fit the data best:

$$y = kx, y = kx^2, y = \frac{k}{x}, \text{ or } y = \frac{k}{x^2}$$
?

- c. Find the constant of variation for your model. _____
- d. According to your model, how long will it take her to get to school if she bikes at 20 mi/hr?

