GAC AP Chemistry Summer Assignment: Instructions

I am so thrilled that you have chosen to join us in AP Chemistry next year!

Since AP Chemistry is a second-year course, I will expect that you remember much of what you learned in your first chemistry course. The slides included in this summer assignment will enable you to review the material you learned in Honors Chemistry before we begin in August.

Use the Guided Notes in this packet as you view the slides in "Slideshow" mode (so that you get the benefit of the animations). You may also want to have some extra scratch paper with you, in case you need more space for working problems. You will definitely need a periodic table and a calculator.

Take the time to work the problems before viewing the answers as you go through the slides. If you simply view and write down the answers, you will not get the benefit of thinking through the problems yourself.

If you encounter a section that is unfamiliar to you, or for which you need a refresher, there are many wonderful resources available to help you online. LibreTexts offers free chemistry textbooks with searchable indexes, and there are several YouTube channels that specialize in chemistry (Tyler Dewitt, Crash Course Chemistry, Professor Dave Explains, and Bozeman Science are all excellent).

Two grades will be associated with this assignment:

- 1) The completed guided notes packet will be collected on the first day of class and entered as the first homework grade.
- 2) There will be a quiz over the material on the first block class period of the semester.

If you did not complete an Honors-level chemistry course prior to enrolling in AP Chemistry, please contact me quickly so that we can discuss your personal situation and determine if additional study will be necessary for you.

I can't wait to start learning with you!

- Dr. Rodgers brodgers@gac.org

Lesson 1 Notes

In Chemistry, measurements are made using the metric system. Fill in the most common metric system prefixes to the chart below.

	Common	Abbreviation	Conversion				
	Unit		F	actor			
	Milliliter		1L =	mL			
	Milligram		1g =	mg			
	Micromolar		1M =	μM			
	Nanometer		1m =	nm			
Most of o	ur lab measuremer	its are teeny tiny! W	/e use			_ in order to express them.	
Practice P Change in	roblem: to scientific notatic	on:					
24500:	356:	0.000985:		0.222:	12200:		
Practice P Change ou	roblem: ut of sci. not.:						
4.2 x 10 ³ :_	2.15 x	10 ⁻⁴ :3.1	4 x 10⁻⁵:	9.22 x	10 ⁵ :	9.57 x 10 ² :	
<u>Practice Problem:</u> Density is a measure of how closely packed atoms/molecules are in a substance. Write the equation for density:							
The two p	ossible units for de	nsity are:		or			
Practice P	roblem:		6				

What is the volume of a chunk of lead with a mass of 255 g and a density of 11.34 g/cm³?

Dimensional analysis is a way of lining up numbers so that units (such as grams or g/cm³) cancel. This allows you to know when to multiply and when to divide so that you can get the right units in your answer. Show dimensional analysis for the density problem above:

Practice Problem:

What is the volume (in μ I) of ethanol if the mass is 54.0 ounces? (Density=789 mg/mL; 28.35 g/oz)? Give your answer with in scientific notation with 2 places past the decimal and show your work using dimensional analysis.

In the following numbers, circl	e the LEADING zero(s):	0.005	0.30	0.020190	
In the following numbers, circl	e the CAPTIVE zero(s):	0.005	0.30	0.020190	
In the following numbers, circl	e the TRAILING zero(s):	0.005	0.30	0.020190	
Complete the sentence: Leadi	ng zeros are		signi	ficant.	
Complete the sentence: Capti	ve zeros are		signi	ficant.	
Complete the sentence: Trailing	ng zeros are only signific	ant if there	's a		ANYWHERE in the
number.					
Practice Problem: How many sig figs are in the fo	llowing measurements?	:			
5.010: (0.25050: 0.0)39010:		2500:	-
Write the rule for sig figs in the	e answer for a multiplica	tion/divisio	on prob	lem:	
Write the rule for sig figs in the	e answer for an addition	/subtractio	n probl	em:	
Practice Problem:					
Solve the following problems v	vith the correct number	ot sig figs i	n your a	answer:	
11 - 3.92 =	2550.0 – 31 =			25.1 x 30.11 = _	

10.2 x 2.1 = _____

Lesson 2 Notes

List the 3 subatomic particles and the locations where they can be found within the atom.

- 1) _____location: _____
- 2) _____location: _____
- 3) _____location: _____

Draw a sketch of a common atom and label the protons, neutrons, and electrons. Also label the charge of each subatomic particle.

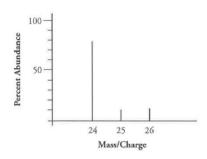
On the block below, label the "atomic number" and "atomic mass." Define atomic number and mass.

3	Li	
	Lithium	
	6.94	

Practice Problem:

How many protons, neutrons and electrons are found in a neutral atom of Lithium?

Atoms with the same atomic number but different atomic masses are called ______.


Silver has two isotopes. 51.839% of Silver atoms have 60 neutrons. (We say the "percent abundance" of this isotope is 51.839%). All other silver atoms have 62 neutrons.

Practice Problem:

Determine the average atomic mass of this element. (This is the mass found on the Periodic Table. It is a decimal because it is the AVERAGE mass of all isotopes of an element).

Scientific experiments are conducted to find isotopes. These experiments are done using mass spectrometry. A sample is injected into a detector, which can measure the weight and relative abundance of the individual atoms in the sample. Then, a graph is created. Sketch the graph in the space below. Label the x and y axes.

Calculate the average atomic mass and identify the element graphed below. How many isotopes does this element have?

The number 12 is called 1 dozen. We say there are 12 eggs in a dozen. The number 6.02×10^{23} (a REALLY LARGE number) is called a ______. We say there are 6.02×10^{23} atoms in a mole.

This is called ______ number.

The atomic mass on the Periodic Table is the mass of 1 mole of that element. This is known as the

Practice Problem:

How much does 1 mole of Carbon weigh?

How about 1 mole of Calcium?

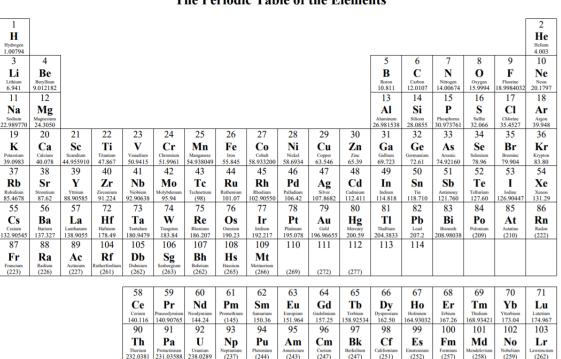
In 6.91g of Li, how many moles are there?

Practice Problem:

How many moles of carbon are in 46g of carbon?

Practice Problem:

What mass of lead, in grams, is equivalent to 2.50 moles of lead?

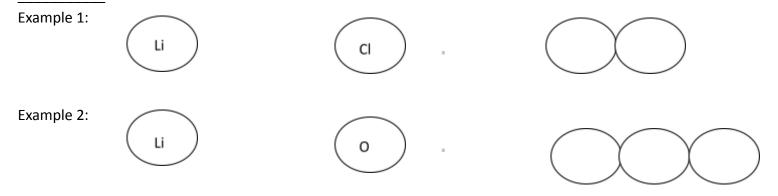

Practice Problem:

What amount of tin, in moles, is represented by 36.5 g of tin?

Practice Problem:

A graduated cylinder contains 32.0 cm³ of mercury. If the density of mercury at 25°C is 13.534 g/cm³, what amount of mercury, in atoms, is in the cylinder?

On the Periodic Table below, label metals, nonmetals, metalloids, alkali metals, alkaline earth metals, transition metals, main group elements, halogens, chalcogens, and noble gases.


The Periodic Table of the Elements

Draw an arrow to show which direction *periods* run on the Periodic Table.

Draw an arrow to show which direction *groups/families* run on the Periodic Table.

Lesson 3 Notes

Two elements can combine and to become ______. They do this by chemical bonding. There are two types of chemical bonds that can form: ______ bonds and ______ bonds and ______ bonds. Ionic bonds: usually form between a ______ and a ______. This happens because metals give up electrons and nonmetals take those electrons. This causes the two atoms to become charged instead of being neutral, because their electrons and protons are now unequal. They are called

The atom that becomes POSITIVE is called a ______. The atom that becomes NEGATIVE is called an ______. It is the OPPOSITE charges that cause the force of attraction that holds these atoms together in a bond.

How do you know how many electrons will be taken/given away? Electrons move around the atom in shells. The outer shell of electrons needs to be completely filled with electrons in order for the atom to be stable. This usually requires 8 electrons. This is called the ______ Rule. There is a pattern of valence electrons for the atoms of elements on the Periodic Table. Write this pattern on the Periodic Table on the next page.

The charges of transition metals will vary, so there is no predictable pattern for them. However, Ag⁺¹, Zn⁺² must be memorized.

The Periodic	Fable of the	Elements
--------------	---------------------	----------

					1	ne re	rioui	c rau	ole ol	the L	leme	uts					
1 H Hydrogen																	2 He Helium
1.00794	4	1										5	6	7	8	9	4.003
Li	Be											B	Č	Ň	Ŏ	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15,9994	Fluorine 18,9984032	Neon 20.1797
11	12											13	14	14.00074	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba Barium	Lanthanum	Hafnium	Ta Tantalum	W	Re	Os Osmium	Ir	Pt Platinum	Au	Hg	TI	Pb Lead	Bi	Polonium	At	Rn
132.90545	137.327	138.9055	178.49	180.9479	Tungsten 183.84	186.207	190.23	192.217	195.078	196.96655	Mercury 200.59	204.3833	207.2	208.98038	(209)	(210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr Francium	Radium	Ac	Rf Rutherfordium	Db Dubnium	Seaborgium	Bh Bohrium	Hassium	Mt Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						
				50	50	(0)	(1	(2)	(2)	(1	(5	(((7	(0	(0)	70	71
				58	59 Dm	60	61 B	62 S-m	63 E	64	65 Th	66 D-1	67	68	69 T-m	70 Vh	71
				Cerium	Pr Praseodymium	Nd Neodymium	Pm Promethium	Sm Samarium	Europium	Gd Gadolinium	Tb Terbium	Dy Dysprosium	Ho Holmium	Er Erbium	Tm Thulium	Yb Ytterbium	Lu
				140.116 90	140.90765 91	144.24 92	(145) 93	150.36 94	151.964 95	157.25 96	158.92534 97	162.50 98	164.93032 99	167.26 100	168.93421	173.04 102	174.967 103
				90	91	92	93	94	95	90	97	98	99	100	101	102	103

Pu

(244)

Np

Cm

(247)

Am

(243)

Bk

(247)

Cf

(251)

Es

Fm

Md

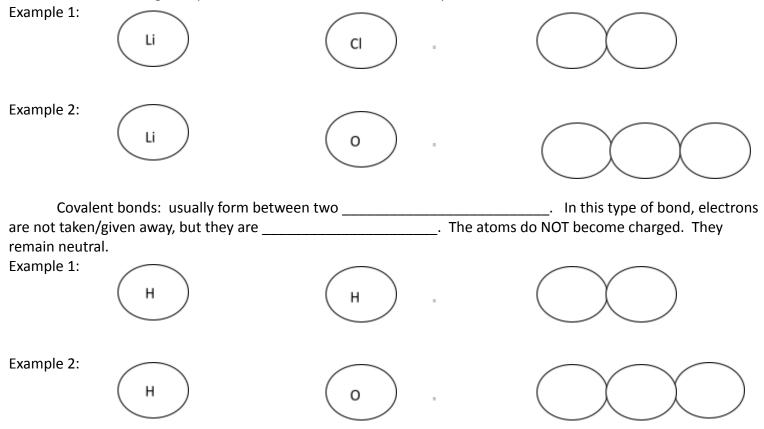
No

Lr

Th

32 0381

Pa


U

How many valence electrons can be found in an atom of Magnesium?

Practice Problem:

What is the charge of Magnesium during chemical bonding?

We can use these charges to predict the FORMULA of an ionic compound.

Formulas can be written for covalent bonds, too, but this does NOT require balancing positive/negative charges. The attractive force that holds this bond together comes from the need for these atoms to share electrons in order to be stable, so they must remain close to each other in order to share their electrons.

Sometimes several nonmetals can form covalent bonds but end up with a charge. There are quite a few of these that we must memorize! They are called polyatomic ions. They are listed on the next page! Memorize the highlighted ones! You will be tested over them!

Example: OH⁻¹.....Oxygen and hydrogen are both nonmetals, so they are bonded covalently, but they have an overall charge of -1. This is the polyatomic ion called hydroxide.

Polyatomic ions can combine with elemental cations and anions to form compounds. We can write a formula for these compounds.

Example 1: ammonium + chlorine Example 2: ammonium + oxygen Example 3: calcium + acetate Example 4: lithium + oxalate

Practice Problem:

Write a formula for ammonium + hydroxide

Polyatomic lons and Transition Metal lons (the most commonly used are in yellow - memorize these, and the Halite series in pink - recognizing the pattern will make the whole series easy to memorize). Flashcards are often very helpful for this!

Symbol	Name	Charge
HSO ₄	Hydrogen sulfate (bisulfate)	-1
<mark>NO₃</mark>	Nitrate	<mark>-1</mark>
NO ₂	Nitrite	-1
<mark>OH</mark>	<mark>Hydroxide</mark>	<mark>-1</mark>
<mark>CN</mark>	<mark>Cyanide</mark>	<mark>-1</mark>
SCN	Thiocyanate	-1
HCO ₃	Hydrogen carbonate	-1
	(bicarbonate)	
CIO	Hypochlorite	-1
CIO ₂	Chlorite	-1
CIO ₃	Chlorate	-1
CIO ₄	Perchlorate	-1
BrO	Hypobromite	-1
BrO ₂	Bromite	-1
BrO ₃	Bromate	-1
BrO ₄	Perbromate	-1
10	Hypoiodite	-1
102	lodite	-1
IO ₃	lodate	-1
IO ₄	Periodate	-1
H_2PO_4	Dihydrogen phosphate	-1
<mark>C₂H₃O₂</mark>	Acetate	<mark>-1</mark>
<mark>MnO₄</mark>	Permanganate	<mark>-1</mark>
NH_2	Amide	-1
<mark>SO₄</mark>	Sulfate	<mark>-2</mark>
SO ₃	Sulfite	-2
S_2O_3	Thiosulfate	-2
02	Peroxide	-2
C_2O_4	Oxalate	-2
CO ₃	Carbonate	<mark>-2</mark>
CrO ₄	Chromate	-2
Cr ₂ O ₇	Dichromate	-2
HPO ₄	Hydrogen phosphate	-2
PO ₄	Phosphate	<mark>-3</mark>
PO ₃	Phosphite	-3
BO ₃	Borate	-3
NH₄	Ammonium	<mark>+1</mark>
Symbol	Name	- '
<mark>Ag⁺</mark>	Silver	7
Zn ⁺²	Zinc	

**This is the halite series. There is a distinct pattern - see it??

If X is the halogen, the pattern goes:

Example Test Questions:

Write the name of the polyatomic ion SO_a.

Write the symbol of the polyatomic ion phosphate

Write the charge of the polyatomic ion OH

What is the charge of zinc?

Ionic and covalent compou	inds can be named follo	owing a set of rules.
Example 1: NaCl	Example 2: CO ₂	Example 3: $NH_4C_2H_3O_2$

For both types of compounds, change the ______ of the ______ part of the formula to ______ ide, except in the case of polyatomic ions.

For ______ compounds ONLY, use prefixes in the name to express the number of atoms of each element. (This is necessary because there are no positive/negative charges in covalent bonding to help us figure out the number of atoms that are needed).

Prefix	Meaning	Example 1: N ₂ O ₅	Example 2: NO ₂	Example 3: CO				
Mono-		Example 4: SF ₆						
Di-								
Tri-				nce they are metals, they will				
Tetra-			ectrons and be	0 /				
Penta-		know what their exact charge will be without more information. (Remember there is no pattern for charges of the transition metals).						
Hexa-								
Hepta-		The in changes and offer since		+2				
Octa-		Their charges are often given as roman numerals. Fe^{+2} will be Iron (II) and Fe^{+3} will be (III)						
Nona-		(111).						
Deca-								

Practice Problem:

What is the formula for Iron III oxide?

Practice Problem:

What is the name for FeO?

Property	Ionic	Covalent
Melts at		
Dissolves in		
water?		
Conducts		
electricity?		
Hard/Soft?		
Odor?		

Why is it necessary to	distinguish between ionic and covalent
bonding? Their	are important.

What properties would you expect for the chemical C₆H₁₂O₆?

Does it make sense that ionic compounds are hard while covalent compounds are soft? Why?

Coulomb's Law:

Some elements do NOT exist as a single atom. Those elements exist as a PAIR of atoms. They are called

Example: Hydrogen does not exist as H. It exists only as H₂. Elemental hydrogen is diatomic.

If you add up the atomic mass of EVERY atom in a compound, you will have the mass of 1 MOLE of that compound. That's the mass of 6.02×10^{23} molecules of that compound!

Example 1: $C_9H_8O_4...molar mass = (9 \times 12.01) + (8 \times 1..01) + (4 \times 16.00) = 180.20 g/mol$ (Give this value with 2 places past the decimal).

Then, the molar mass can be used in calculations along with Avogadro's number.

Example 1: The compound $C_9H_8O_4$ is aspirin. If I have an aspirin tablet that weighs 0.325g, how many molecules of aspirin are in the tablet?

Example 2: You have 16.5 g of oxalic acid, $H_2C_2O_4$. How many moles of acid do you have? How many molecules are in this sample?

Since the molar mass is a ______, we can figure out the percentage that each element makes up of the molar mass of a compound.

Example 1: $C_9H_8O_4$...molar mass = 180.2 g/mol; The carbon represents 108.09 grams of this compound (9 x 12.01). This is 59.98% (108.09/180.20 x 100).

We call these percents the ______. What is the percent composition for H and O in aspirin?

If I have 3.25 g of aspirin, how much carbon (in grams) do I have in my sample? How much oxygen? How much hydrogen?

Imagine that I dig up a rock that is made of FeO (iron ore). If the rock weighs 2500 grams, how much iron can I pull out of the rock (in grams)?

The formula $H_2C_2O_4$ represents the TRUE formula of the chemical. This is called the

______ formula. If we divide each element by 2, we can simplify or reduce the formula

to HCO₂. This is called the ______ formula.

Practice Problem:

What is the formula of Ga_xO_y if 1.25 g of Ga react with oxygen to form 1.68 g of Ga_xO_y ? Is this an empirical formula?

A ______ compound is one that has water attached to them. $CuCl_2 H_2O$ is copper II chloride and it has 1 mole of water attached to it. What is the molar mass of this compound?

Practice Problem:

Find the empirical formula for a sample of 57.54% C, 3.45% H, and 39.01% F.

Practice Problem:

Copper (II) sulfate is a hydrate, but we don't know how many waters are attached to it. Suppose you measured out 1.023g of this substance ($CuSO_4$ 'xH₂O) and we heat it thoroughly so that all of the waters are removed and evaporated. It now weighs 0.654 grams. What is the formula of this hydrate?

Lesson 4 Notes

Chemical reactions are expressed as chemical equations. Label the "reactants" and "products" in the equation below. Solid, liquid, gas, and "aqueous" (meaning solid dissolved in ______) are indicated in parentheses. The little numbers (subscripts) come from writing the correct formula for the chemical. The big numbers (coefficients) come from *balancing* the equation.

 $\mathsf{P}_{4(s)} + \mathsf{6Cl}_{2(g)} \rightarrow 4 \; \mathsf{PCl}_{3(l)}$

In a balanced equation, the number of atoms on the left side (reactants) is equal to the number of atoms on the right side (products). Draw an illustration here to show WHY the coefficients (6 & 4) are necessary.

Example 1: $Fe + O_2 \rightarrow Fe_2O_3$

Example 2: $NH_3 + O_2 \rightarrow NO + H_2O$

The Law of _______ states that atoms/mass cannot be created or destroyed during a chemical reaction. So, the number of atoms in the reactants must equal the number of atoms in the products. Balancing equations does this for us.

The coefficients can provide a ratio for chemicals in an equation. This ratio is called the ______.

Practice Problem:

 $P_{4(s)} + 6Cl_{2(g)} \rightarrow 4 PCl_{3(l)}$ What is the mole ratio for P_4 and PCl_3 ?

If we know the mass or moles of one chemical, we can use the mole ratio to figure out the mass or moles of another chemical.

Practice Problem:

```
P_{4(s)} + 6Cl_{2(g)} \rightarrow 4 PCl_{3(l)} If 3.0 g of P_4 react, how many grams of PCl_3 will be formed?
```

There is a name for this process. When we use math to convert between moles/mass of 2 different substances in an equation, we are using ______.

What mass of oxygen (in grams) is required for a complete reaction of 25.0 g of glucose, $C_6H_{12}O_6$? The balanced equation is shown below.

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$

Practice Problem:

How many moles of oxygen is required for a complete reaction of 25.0 g of glucose, $C_6H_{12}O_6$? The balanced equation is shown below.

 $\mathsf{C}_6\mathsf{H}_{12}\mathsf{O}_6 + \mathsf{6O}_2 \to \mathsf{6CO}_2 + \mathsf{6H}_2\mathsf{O}$

Practice Problem:

What mass of glucose, $C_6H_{12}O_6$, is required to form 3 moles of H_2O ? The balanced equation is shown below. $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$

When two chemicals are mixed together in a reaction, you might have some chemical left over and another chemical used up. We call the leftover chemical ______ reactant. The used up chemical is called the ______ reactant.

You can use stoichiometry to figure out limiting and excess reactant. The one that makes LESS product will be all used up (limiting). The one that is capable of making MORE product will be leftover (excess).

Practice Problem:

Methanol, CH₃OH, can be used as a fuel. It is made by reacting carbon monoxide and hydrogen gas. Write an equation for this reaction. Balance the equation.

Practice Problem:

Suppose 356 g of CO and 65.0 g of H_2 are mixed to make the methanol. Identify the limiting and excess reactant. How much methanol will actually be made (in grams)?

Practice Problem:

 $Fe_2O_3 + 2AI \rightarrow 2Fe + Al_2O_3$

Suppose 50.0 g of reactants are mixed. Identify the limiting and excess reactant. How much iron will actually be made (in grams)?

So now that we can calculate how much of a product <i>should</i> be made (called the	yield), we
can compare that to the amount that we actually make. This is called the	•

Let's look back at the last two examples:

Practice Problem:

If 400.0 grams of CH_3OH are actually made, what is the percent yield?

Practice Problem:

If 30.0 grams of Fe are actually made, what is the percent yield?

There are 5 categories in the Animal Kingdom (mammal, amphibian, reptile, fish, and bird). How would you classify a rat? Why? Just like we can classify a rat as a mammal and not an amphibian, we can classify chemical equations.

There are 5 categories of chemical equations. They are called Synthesis, Decomposition, Single Displacement, Double Displacement, and Combustion.

Synthesis reactions:		
$H_2 + O_2 \rightarrow H_2O$		
Decomposition reactions:		
$H_2O \rightarrow H_2 + O_2$		
Single Displacement reactions:		
$AI + CuCl_2 \rightarrow AICl_3 + Cu$		
Double Displacement reactions:		
$CuCl_2 + Al(OH)_3 \rightarrow Cu(OH)_2 + AlCl_3$		
Combustion reactions:		_
$CH_4 + O_2 \rightarrow CO_2 + H_2O$ Practice Problem: Identify these types of reactions: (a) $2Mg + O_2 \rightarrow 2MgO$ $Ni(NO_3)_2 + H_2$	(b) $CH_3CO_2H + NaOH \rightarrow CH_3CO_2Na + H_2CO_2Na + H_2C$	O (c) Ni + 2HNO₃ →

Practice Problem:

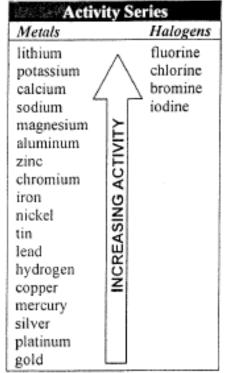
Can you identify the type of reaction without the products? Li + $\mathrm{O_2} \rightarrow$

Predicting the products of a chemical reaction is an important part of Chemistry. We predict the products by "balancing" the charges of the elements in the reaction.

 $H_{2} + O_{2} \rightarrow$ $H_{2}O \rightarrow$ $AI + CuCl_{2} \rightarrow$ $CuCl_{2} + AI(OH)_{3} \rightarrow$ $CH_{4} + O_{2} \rightarrow$

Practice Problem:

Can you predict the products for the following reactions:


(a) $Na_2SO_4 + BaCl_2 \rightarrow$

(b) Al + $Cl_2 \rightarrow$

(c) PbS + $O_2 \rightarrow$

Double displacement reactions only occur when an INSOLUBLE solid is formed in the products. (Use the solubility chart below). Single displacement reactions only occur if the FREE element in the reactants is MORE ACTIVE than the free element in the products. (Use the Activity Series below).

Negative Ion	+	y of Some Ionic Compounds in Water Positive Ion	Will be
Any negative ion	+	Alkali metal ions (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , or Cs ⁺)	Soluble
Any negative ion	+	Ammonium ion, NH4*	Soluble
Nitrate, NO3"	+	Any positive ion	Soluble
Acetate, CH3COO-	+	Any positive ion except Ag ⁺ or Hg ²⁺	Soluble
Chloride, Cl ⁻ , or Bromide, Br ⁻ , or Iodide, I ⁻	+ +	Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺ , or Cu ⁺ Any other positive ion	Insoluble Soluble
Sulfate, SO42-	+ +	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Ra ²⁺ , Ag ⁺ , or Pb ²⁺ Any other positive ion	Insoluble Soluble
Sulfide, S ²⁻	+ + +	Alkali ions or NH4 ⁺ Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , or Ra ²⁺ Any other positive ion	Soluble Soluble Insoluble
Hydroxide, ÖH-	++++	Alkali ions or NH4 ⁺ Any other positive ion	Soluble Insoluble
Phosphate, PO ₄ ³⁻ , or Carbonate, CO ₃ ²⁻ , or Sulfite, SO ₃ ²⁻	+ +	Alkali ions or NH4 ⁺ Any other positive ion	Soluble Insoluble

Practice Problem:

Let's revisit the last few practice problems. Will the following reactions occur?

 $2AI + 3CuCl_2 \rightarrow 2AICl_3 + 3Cu$

 $3CuCl_2 + 2Al(OH)_3 \rightarrow 2AlCl_3 + 3Cu(OH)_2$

 $Na_2SO_4 + BaCl_2 \rightarrow 2NaCl + BaSO_4$

 $Cl_2 + MgBr_2 \rightarrow MgCl_2 + Br_2$

Foundations of Chemistry

Lesson 1

- Metric Prefixes
- Scientific Notation
- Density
- Dimensional Analysis
- Significant Figures

In Chemistry, measurements are made using the metric system.

Common Unit	Abbreviation	Conversion Factor
Milliliter	mL	1L = 1000 mL
Milligram	mg	1g = 1000 mg
Micromolar	μΜ	1M = 1 x 10 ⁶ µM
Nanometer	nm	1m = 1 x 10 ⁹ nm

Most of our lab measurements are teeny-tiny!

- We use scientific notation in order to express them. Change into scientific notation:
- ► 24500 = **2.45 x 10**⁴
- ► 356 = <u>3.56 x 10²</u>
- ► 0.000985 = **9.85 x 10⁻⁴**
- ► 0.222 = **2.22 x 10**⁻¹
- ► 12200 = 1.22 x 10⁴

Can you convert OUT of scientific notation?

- ► 4.2 x 10³ = **4200**
- ► 2.15 x 10⁻⁴ = **0.000215**
- ► 3.14 x 10⁻⁶ = **0.00000314**
- ► 9.22 x 10⁵ = **922000**
- ► 9.57 x 10² = <u>957</u>

Density

- Density is a measure of how closely packed atoms/molecules are in a substance. Write the equation for density: D = m
- The two possible units for density are:

g/mL g

g/cm³

What is the volume of a chunk of lead with a mass of 255g and a density of 11.34g/cm³?

$$D = \frac{m}{v}$$

11.34 = $\frac{255}{v}$
v = 22.5 cm³

Dimensional Analysis

Dimensional analysis is a way of lining up numbers so that units cancel. This allows you to know when to multiply and when to divide so that you can get the right answer. Here's dimensional analysis for the density problem:

$$255g_{\rm X} \frac{1 \, {\rm cm}^3}{11.34 \, {\rm g}} = 22.5 \, {\rm cm}^3$$

$$\frac{255g 1 \text{ cm}^3}{11.34 \text{ g}} = 22.5 \text{ cm}^3$$

Practice Problem:

What is the volume (in µL) of ethanol if the mass is 54.0 ounces? (The density of ethanol is 789 mg/mL; 28.35 g = 1oz). Give your answer with in scientific notation with 2 places past the decimal and show your work using dimensional analysis.

= 1940304.183 μL ==> 1.94 x 10⁶ μL

Types of Zeros in a Number

- Leading zeros
 0.0025
- Captive zeros
 2,505
- Trailing zeros

2,5<u>00</u>

2,5<u>00.0</u>

Practice Problem: Circle the LEADING zero(s): 0.005 0.80 0.020190 Circle the CAPTIVE zero(s): 0.005 0.30 0.005 0.30 0.005 0.30

Some Zeros are Significant

- All non-zeros are significant.
- Leading zeros are NEVER significant
 <u>0.00</u>25 TWO sig figs
- Captive zeros are ALWAYS significant
 2,505 FOUR sig figs
- Trailing zeros are only significant if there's a DECIMAL present ANYWHERE in the number.

2,5<u>00</u> TWO sig figs

2,5<u>00.0</u> FIVE sig figs

How many sig figs are in the following measurements: 5.010 = 4 sig figs

0.25050	0.25050 =	5 sig figs

 $0.039010 \qquad 0.039010 = 5 \text{ sig figs}$

2500 2500 = 2 sig figs

Rules for Calculating with Sig Figs

Multiply/Divide –

Count sig figs in each value in the problem. The value with fewest sig figs = # of sig figs in answer.

(13.91)(23.3) = 324.103 ⁴ SF ³ SF **3** SF **3** SF

324

Rules for Calculating with Sig Figs

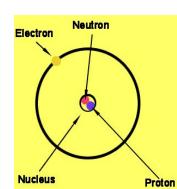
Add/Subtract-

The value with least precision matches the "places past the decimal" or the place of the last sig fig in the answer.

3.7 <mark>5</mark>	224
+ 4.1	<u>+ 130</u>
7.8 5 → 7.9	$354 \rightarrow 350$

Practice Problem:

Solve the following problems with the correct number of sig figs in your answer. 11 - 3.92 = 7


2550.0 - 31 = 2519

 $25.1 \times 30.11 = 756$

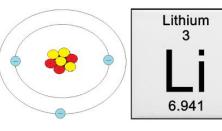
10.2 x 2.1 = 21

Subatomic Particles

The atom contains:

- Protons
 - in the nucleus
- Neutrons
 - in the nucleus
- Electrons
 - in shells around the nucleus

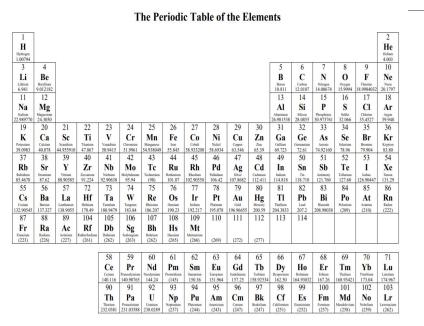
Subatomic Particles are Charged

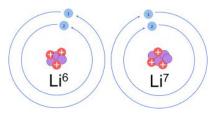

Proton

Neutron

Electron

- Protons
 - (positively-charged particles)
- Atom structure **Neutrons**
 - (neutral particles)
 - Electrons
 - (negatively-charged particles)

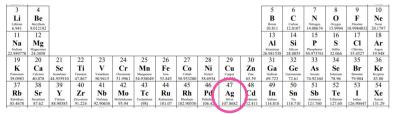

The Periodic Table tells the Atomic Structure of each Element!


Atomic Number

Atomic Mass

Atomic Number = # protons = # electrons Atomic Mass = sum of protons & neutrons

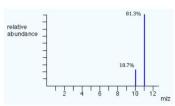
Isotopes

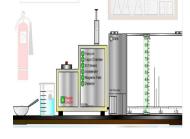

Atoms with the same atomic number but different atomic masses are called **isotopes**.

Example of Isotopes

•60 •62

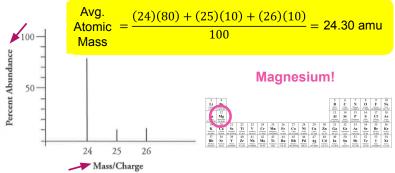
- A sample of Silver (#47) has two isotopes.
- 51.839% of silver atoms have 60 neutrons.
- 48.161% of silver atoms have 62 neutrons.


Calculating the Atomic Masses


- 51.839% of silver atoms have 60 neutrons.
- 48.161% of silver atoms have 62 neutrons.

A	Av Atoi	g. mic	_	_ (*	107) (5	51.8	339)) -	- (1	09) (4	8.1	61))		
	Ma	SS	-						10	0				= 1	07	.96	322
11 Na Sodium 22.989770	12 Mg Magnesium 24.3050											1.5 Al Aluminum 26.981538	14 Si Silicon 28.0855	15 P Phosphorus 30.973761	10 S Sulfur 32.066	1 / Cl Chlorine 35.4527	18 Ar Argen 39.948
19 K Potassium 39.0983	20 Ca Calcium 40.078	21 Sc Scandium 44.955910	22 Ti ^{Titaniam} 47.867	23 V Vanadium 50.9415	24 Cr Cheomians 51.9961	25 Mn Manganese 54.938049	26 Fe 55.845	27 Co cobult 58.933200	28 Ni ^{Nickel} 58.6934	29 Cu	30 Zn Zine 65.39	31 Gallium 69.723	32 Ge Germanium 72.61	33 As Arsenic 74.92160	34 See Selenium 78.96	35 Br Bromine 79.904	36 Kr Krypton 83.80
37 Rb Rubidium 85.4678	38 Sr Strostian 87.62	39 Y ^{Ymium} 88.90585	40 Zr ^{Zircceium} 91.224	41 Nb Niobiam 92.90638	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Rathenium 101.07	45 Rh Rhedium 102.90550	46 Pd Palladia 106.42	47 Ag silver 107.8682	48 Cd dmiam 12.411	49 In Indiam 114.818	50 Sn ^{Tin} 118.710	51 Sb Antimoety 121.760	52 Te Tebariam 127.60	53 I Iodine 126.90447	54 Xe Xenon 131.29

Mass Spectrometer


 This machine generates a graph for you.

Practice Problem:

 Calculate the average atomic mass and identify the element graphed below.

What is the Mole?

Just like 1 dozen equals 12,

1 mole equals 6.02 x 10²³

- It's called Avogadro's number.
- 1 mole is abbreviated as 1 mol.

Amadeo Avogadro

Why do we use moles to count in Chemistry?

- A tablespoon of water contains about 4.94 x 10²³ water molecules.
- That's about 0.8 moles.
- Since there are a LOT of molecules in a small amount of chemical, we count in terms of moles.

But we don't physically count at all...

How many pennies are in a 50.0 lb bag?

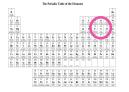
- Instead of counting them, weigh the bag and weigh a single penny.
- Then, you can use MATH to figure out the number of pennies in the bag!

Atomic Mass = Mass of 1 mole!

- 12.01 grams
- How much does 1 mole of calcium weigh?

How much does 1 mole of carbon weigh?

40.08 grams


• In 6.91 g of Lithium, how many moles are there?

1 mol Li (That's 6.02×10^{23} atoms of Li).

Atomic Mass = Molar Mass

- Atomic mass tells both the...
 - mass of 1 atom (in amu)
 - mass of 1 mole (in grams)

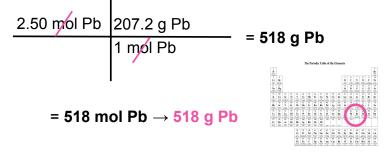

- 1 atom of S = 32.06 amu
- 6.02 x 10²³ atoms of S = 32.06 g

Practice Problems:

What's the molar mass of these elements:

22.99 g/mol

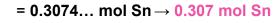
- magnesium 24.31 g/mol
- fluorine 19.00 g/mol
- sodium


Use Dimensional Analysis & Sig Figs!

How many moles of carbon are in 46 g of carbon?

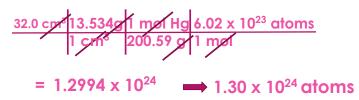
 $\frac{46 \text{ g'C}}{12.01 \text{ g'C}} = 3.8304... \text{ mol C}$ $= 3.8304... \text{ mol C} \rightarrow 3.8 \text{ mol C}$

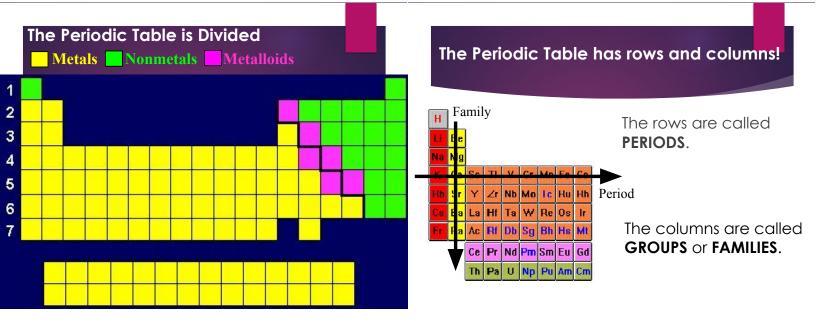
Use Dimensional Analysis & Sig Figs!


• What mass of lead, in grams, is equivalent to 2.50 moles of lead?

Use Dimensional Analysis & Sig Figs!

• What amount of tin, in moles, is represented by 36.5 g of tin?


36.5 g Sn 1 mol Sn 118.71g Sn = 0.3074... mol Sn

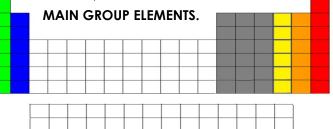


 A graduated cylinder contains 32.0 cm³ of mercury. If the density of mercury at 25°C is 13.534 g/cm³, what amount of mercury, in atoms, is in the cylinder?

Periods and Families are Numbered!

What element is found in Group 2, Period 3?

► Magnesium


1	2)			т	he Pe	riodi	ic Tab	le of	the F	leme	3	4	5	6	7	8
<u>.</u>	, *					ac r i				the L	it into	~		~	~	1	
Ĥ.																	Be
R+0-april 1.00754																	4.00
3	4											5	6	2	8	9	10
Li	Be											B	Catha	N	0	F	Ne
6.541	9012182											10.511	12,000		15.9954	15,96405	31.17
11	12											13	14	15	16	17	15
Na	Mg											Al	Si	P	S	Cl	A
1149111	28,3050											31-191119	32	31	12.004	35.4527	71.6
19	20	21	22	23 V	24	25	26	27	28	29	30						36
K	Ca	Sc	Ti	Tanka	Cr	Mn	Fe	Co	Ni	Cu	Za	Ga	Ge	As	Se	Br	Kr
37	40.075	44 9700 8	41961	503415	42	43	55.645	45	51.0534	47	48	49.113	72.H 50	51	78.96	79:304	54
Rb	Sr	Y Y	Zr	Nb	Mo	Te	Ru	Rh	46 Pd	Ag	či.	in in	Sn 50	Sb	Te	1	x
T-dam.						Tubeties						blue				tabe .	
41.4(7)	17.62	55,50705	51.224	73	34	09	76	77	106.42	107 8582	10.41	81	118,799	\$1	84	125.90647	101.
ő	Ba	Ľa.	Hr	Ta	ŵ	Re	Os.	Űr.	Pr	Au	Hz	n	Ph	Bi	Pa	At	R
Colan (11.9054)	Lintern Lint Jack	Loton and	Tables I	Tanker LED HETY	Income.	Roman 186-201	Common 19925	100m	Taken I	Gill	-	Tallon Married	Lod	Annual Annual	Naia	Anne	100
87	88	89	104	165	105	107	10.23	109	110	111	112	113	114	20.466.6	(294	(2.86)	(333
Fr	Ra	Ac	Rf	Db	Sg	Rb	Hs	Mr									
Fascian (221)	Radiani (126)	12271	GNU	Octoon I		Address (202)	Encire LOOP	12Mil	(27)	0725	(217)						
0.00	1.1000	1 410	0.01	1. 1999	010		1000	1 1000	0.001	1.14.40	0.0			-	-	-	-
			/	.58	59	60	61	62	63	64	65	66	67	68	69	70	71
		- 6	5	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	L
			-	Cutum 140115	141.9155	144.24	(149)	Seater 158.36	111.964	152.25	100.0COH	12.50	194,9000	100m	HASH21	175-04	154.9
		-	-	90	91	92	93	94	95	96	97	98	99	100	101	102	10.
			/	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	L
				212.0681	231,80088	285.8299	in	GHO	(26)	00	(HD)	(251)	(20)	610	(29)	(296)	

Alkali MetalsAlkaline EarlyTransition MetalsChalcogensHalogensNoble Gases

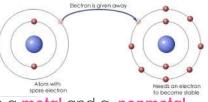
*The bottom two rows are called the Lanthanide & Actinide Series.

*Groups 13-15 do not have names.

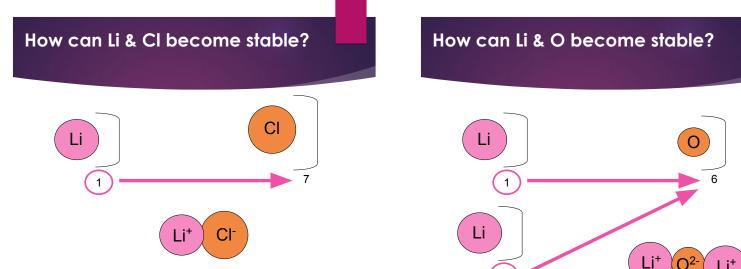
*All elements except transition metals are called

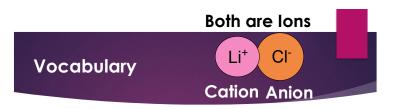
1A 1 H ₂	ר גי גי	tat	es	of	Mo	atte	er (at I	Ro	om	n Te	em	pe	ra	turo	e	8A 2 He
GAS	2A											3A	4A	5A	6A	7A	GAS
3 Li	4 Be				Bolid	Liquid	Ga	S				5 B RHOM	6 C HEX	7 N 645	8 0	9 F 645	10 Ne GAS
BCC 11	HEX 12											RHOM 13	HEX 14	GAS 15	64S 16	64S	GAS 18
Na	Mg											AI	Si	Р	S	CI	Ar
BCC	HEX	3B	4B	5B	6B	7B	-	— 8B —		1B	2B	FCC	FOC	CUBIC	ORTHO	GAS	GAS
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	SC	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
BCC	FCC	HEX	HEX	BCC	BCC	HEX	HEX	FCC	FCC	FCC.	HEX	TETRA	TETRA	RHOM	HEX	ORTHO	6AS
55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75	76 OS	77	78 Pt	79	80	81 TI	82 Pb	83 Bi	84 Po	85 At	86
BCC	Ba	Larthreides	HEX	1d RCC	8CC	Re	HEX	lr FOC	FCC	Au	Hg	HEX	PD	BHOM	PO	AL	Rn
87 Fr UNK	88 Ra BCC	89-103 Actinides	*** E	lements	> 104 e	kist only	for very	short h	alf-lifes	and the	data is u	inknowr	n.***				
		17	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
		6	HEX	FCC	HEX	HEX	HEX	RHOM	BCC	HEX	HEX	HEX	HEX	HEX	HEX	FCC	HEX
			89	90 Th	91 Pa	92 U	93 Nim	94 Pu	95	96 Cm	97 Bk	98 Cf	99 Es	100	101 Md	102	103
			Ac	ECC.	TETRA	ORTHO	Np	Pu	Am	CIII	DK	HEX	ES	Fm	UNK	No	Lr

Lesson 3


- Chemical Bonding
- Naming compounds
- Molar Mass
- Percent composition

Chemical Bonding


- Two elements can combine to become stable (lower potential energy).
- They do this by chemical bonding.
- There are two types of chemical bonds that can form:
 - ► lonic bonds
 - Covalent bonds


Ionic Bonds

- Usually form between a metal and a nonmetal.
- This happens because metals give up electrons and nonmetals take those electrons.
- This causes the two atoms to become charged instead of being neutral, because their electrons and protons are now unequal.
- ► They are called **ions**.

Each atom is now stable, with a lower potential energy.

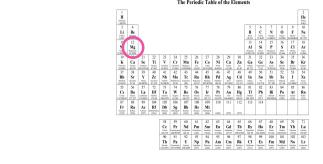
- The atom that becomes POSITIVE is called a cation.
- The atom that becomes NEGATIVE is called an anion.
- It is the OPPOSITE charges that cause the force of attraction that holds these atoms together in a bond.

How do you know *how many* electrons will be taken/given away?

- Electrons move around the atom in shells.
- The outer shell of electrons needs to be completely filled with electrons in order for the atom to be stable.
- This usually requires 8 electrons.
- This is called the Octet Rule.
- There is a pattern of valence electrons for the atoms of elements on the Periodic Table.

1					Т	he Pe	riodi	c Tab	le of	the E	leme	nts					8
1 H Hydrogen 1.00794	2											3	4	5	6	7	2 He Heliam 4.003
3	4]										5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Ncon 20.1797
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
Sodiam 2.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sullar 32.066	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassian 39.0983	Calcium 40.078	Scandium 44.955910	Titaniam 47.867	Vanadium 50.9415	Chroniam 51.9961	Manganese 54.938049	55.845	Cohalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germaniam 72.61	Arsenic 74.92160	Seleniam 78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 85.4678	Streetium 87.62	Yurian 88.90585	Zirconium 91.224	Niebiam 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladian 106.42	Silver 107.8682	Cadmism 112.411	Indiam 114.818	Tin 118.710	Antimony 121.760	TcBarium 127.60	lodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Cesikam 32.90545	Barium 137.327	Laethanuen 138.9055	Hafniam 178.49	Tantahan 180.9479	Tungsten 183.84	Rhenium 186.207	Osmian 190.23	Indium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Franciam (223)	Ra Radium (226)	Actinium (227)	Rf Ratherfordiam (261)	Dubnium (262)	Seaborgium (263)	Bh Bohrium (262)	Hassiam (265)	Mt Meitaerium (266)	(269)	(272)	(277)						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				Cerium 140.116	Prascodymium 140.90765	Neodymiam 144.24	Promethiam (145)	Samarium 150.36	Europian 151,964	Gadolinium 157.25	Terbian 158.92534	Dysprosian 162.50	Holmium 164,93032	Erbian 167.26	Thuliam 168.93421	Ynerbium 173.04	Latetiana 174,967
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				Thoriam 232.0381	Protectinism 231.03588	Uraniam 238.0289	(237)	Platoniam (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermian (257)	Mendelevium (258)	Nobeliam (259)	Lawrenciam (262)

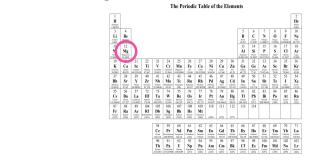
- Exception: Helium has 2 valence electrons.
- Also, the valence electrons of transition metals can vary.

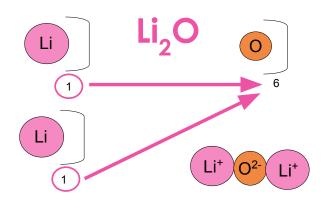

+1					Т	he Pe	riodi	c Tab	le of	the E	leme	nts					0
1 H Hydrogen 1.00794	+2										+	3	±4	-3	-2	-1	2 He Helian 4.003
3	4	1									1	5	6	7	8	9	10
Li	Be											B	C	N	0	F	N
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15,9994	Fluorine 18,9984032	Neo 20.17
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	A
Sodium 22.989770	Magnesium 24,3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30,973761	Sullar 32.066	Chlorine 35.4527	Args 39.9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
Potassian 39.0983	Calcium 40.078	Scandium 44.955910	Titankan 47.867	Vanadium 50.9415	Chromian 51,9961	Manganese 54.938049	Iren 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Galliam 69,723	Germanium 72.61	Arsenic 74.92160	Selesiam 78.96	Bromine 79,904	Kryp 83.1
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	X
Rubidium 85,4678	Streetium 87.62	Yurian 88.90585	Zirconium 91.224	Niebiam 92.90638	Molybdenum 95.94	Technetiam (98)	Ruthenium 101.07	Rhodium 102.90550	Palladiam 106.42	Silver 107.8682	Cadmium 112.411	Indian 114.818	Tin 118.710	Antimony 121.760	Tellarium 127.60	Iodine 126.90447	Xeni 131.
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	R
Cesikam 132.90545	Bariam 137.327	Lanthanum 138.9055	Hafnium 178.49	Tantaham 180,9479	Tungsten 183.84	Rhenium 186.207	Osmian 190.23	Indiana 192.217	Platinum 195.078	Gold 196,96655	Mercury 200.59	Thallium 204,3833	Lead 207.2	Bismuth 208,98038	Polonium (209)	Astatine (210)	Rad (22
87	88	89	104	105	106	107	108	109	110	111	112	113	114	200.70070	(207)	(210)	(
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Franciam (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassiam (265)	Meimerium (266)	(269)	(272)	(277)						
(440)	(110)	(()	(202)	(100)	(404)	(200)	(100)	(105)	(=-=)	(2.1.)						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	L
				Ceriam 140,116	Praseedymium 140.90765	Neodymium 144.24	Promethiam (145)	Samarium 150.36	Europian 151,964	Gadelinium 157.25	Terbian 158.92534	Dysprosian 162_50	Holmian 164.93032	Erbian 167.26	Thuliam 168.93421	Ynerbium 173.04	Luteti 174.9
				90	91	92	93	94	95	96	97	98	99	100	101	102	10
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	L
				Thoriam 232.0381	Protectinium 231.03588	Uraniam 238.0289	Nepturium (237)	Platoniam (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermiam (257)	Mendelevium (258)	Nobeliam (259)	Lawren (26)

• Ag^{+1} , Zn^{+2} must be memorized.

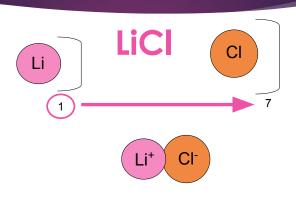
Practice Problem:

2


How many valence electrons can be found in an atom of Magnesium?

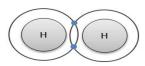

Practice Problem:

+2


What is the charge of Magnesium during chemical bonding?

What's the FORMULA for this compound?

We can use these charges to predict the FORMULA of an ionic compound.

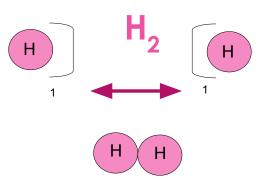

Covalent Bonds

Example

Н

Н

- Usually form between two nonmetals.
- In this type of bond, electrons are not taken/given away, but they are shared.
- The atoms do NOT become charged. They remain neutral. Covalent bond - H2


0

 \mathbf{O}

Н

н

Example

Formulas can be written for covalent bonds, too,...

- ...but this does NOT require balancing positive/negative charges.
- The attractive force that holds this bond together comes from the need for these atoms to share electrons in order to be stable, so they must remain close to each other in order to share their electrons.

Polyatomic Ions

- Sometimes several nonmetals can form covalent bonds but end up with a charge.
- There are quite a few of these that we must memorize!

Symbol	Name	Charge
HSO ₄	Hydrogen sulfate (bisulfate)	-1
NO ₃	Nitrate	-1
NO ₂	Nitrite	-1
OH .	Hydroxide	-1
CN	Cyanida	-1
SCN	Thiocyanate	-1
HCO3	Hydrogen carbonate (bicarbonate)	-1
CIO	Hypochlorite	-1
ClO ₂	Chlorite	-1
ClO ₃	Chlorate	-1
CIO4	Perchlorate	-1
BrO	Hypobromite	-1
BrO ₂	Bromite	-1
BrO ₃	Bromate	-1
BrO ₄	Perbromate	-1
IO	Hypoiodite	-1
IO ₂	Iodite	-1
IO3	lodate	-1
IO 4	Periodate	-1
H ₂ PO ₄	Dihydrogen phosphate	-1
C ₂ H ₃ O ₂	Acetate	-1
MnO ₄	Permanganate	-1
NH ₂	Amide	-1
SO4	Sulfate	-2
SO3	Sulfite	-2
S ₂ O ₃	Thiosulfate	-2
O ₂	Peroxide	-2
C2O4	Oxalate	-2
CO3	Carbonate	-2
CrO ₄	Chromate	-2
Cr207	Dichromate	-2
HPO ₄	Hydrogen phosphate	-2
PO4	Phosphate	-3
PO ₃	Phosphite	-3
BO3	Borate	-3
NH4	Ammonium	+1

Polyatomic ions can combine with other cations and anions to form compounds.

- ► Ammonium + chlorine NH_4^{+1} Cl⁻ → NH_4 Cl ► Ammonium + oxygen NH_4^{+1} O²⁻ → $(NH_4)_2$ O
- Calcium + acetate $Ca^{2+}C_2H_3O_2 \rightarrow Ca(C_2H_3O_2)_2$
- Lithium + oxalate $\operatorname{Li}^+ \operatorname{C}_2 \operatorname{O}_4^{2-} \xrightarrow{} \operatorname{Li}_2 \operatorname{C}_2 \operatorname{O}_4$ Ammonium sulfate $\operatorname{NH}_4^{+1} \operatorname{SO}_4^{2-} \xrightarrow{} (\operatorname{NH}_4)_2 \operatorname{SO}_4$

Write the formula for ammonium hydroxide.

 NH_4^{+1} OH⁻ \rightarrow NH_4 OH

Symbol	Name	Charge			
HSO:	Hydrogen sulfate (bisulfate)	-1			
NO ₃	Nitrate	-1			
NO ₂	Nitrite	-1			
OH	Hydroxide	-1			
CN	Cyanide	-1			
SCN	Thiocyanate	-1			
HCO1	Hydrogen carbonate (bicarbonate)	-1			
CIO	Hypochlorite	-1			
CIO ₂	Chlorite	-1			
CIO ₂	Chlorate	-1			
CIOr	Perchlorate	-1			
BrO	Hypobromite	-1			
BrO ₂	Bromite	-1			
BrO ₁	Bromate	-1			
BrOa	Perbromate	-1			
10	Hypoiodite	-1			
102	lodite	-1			
101	lodate	-1			
10.	Periodate	-1			
H ₂ PO ₂	Dihydrogen phosphate	-1			
C ₂ H ₃ O ₂	Acetate	-1			
MnO.	Permanganate	-1			
NH ₂	Amide	-1			
SO4	Sulfate	-2			
SO)	Sulfite	-2			
S ₂ O ₂	Thiosulfate	-2			
02	Peroxide	-2			
C2O4	Oxalate	-2			
COx	Carbonate	-2			
CrO ₄	Chromate	-2			
Cr ₂ O ₇	Dichromate	-2			
HPO ₆	Hydrogen phosphate	-2			
POL	Phosphate	-3			
PO ₃	Phosphite	-3			
801	Borate	-3			
NH.	Ammonium	+1			

Rules for Naming Compounds

- Ionic and covalent compounds can be named following a set of rules.
- Example 1: NaCl Sodium Chloride
- Example 2: CO₂ Carbon <u>Dioxide</u>
- Example 3: NH₄C₂H₃O₂
 Ammonium Acetate

Rules

- For both types of compounds, change the ending of the second part of the formula to –ide, except in the case of polyatomic ions.
- For covalent compounds ONLY, use prefixes in the name to express the number of atoms of each element. (This is necessary because there are no positive/negative charges in covalent bonding to help us figure out the number of atoms that are needed).

Possib	le Prefixes	& Examples
Prefix	Meaning	
Mono-	1	
Di-	2	Example 1: N ₂ O ₅
Tri-	3	dinitrogen pentoxide
Tetra-	4	Example 2: NO ₂
Penta-	5	nitrogen dioxide
Hexa-	4	Example 3: CO
Hepta-	0	carbon monoxide
Octa-		Example 4: SF ₆
Nona-	8	sulfur hexafluoride
Deca-	9	
	- 10	

Some ionic compounds contain transition metals.

- Since they are metals, they will lose electrons and be positively charged, but we do not know what their exact charge will be without more information. (Remember there is no pattern for charges of the transition metals).
- Their charges are often given as roman numerals. Fe⁺² will be Iron (II) and Fe⁺³ will be Iron (III).

Practice Problem:

 $Fe^{3+}O^{2-} \rightarrow Fe_2O_3$

What is the formula for Iron III oxide?

What is the name for FeO?

Fe²⁺ O²⁻ → Iron(II) oxide

4																	1.3
H															_		Be
1	4	1										2	6	- 4	-	10	11
ú.	÷.											8	ĉ		ô	× .	Ne
																Π.	
11	12											111	it store	10.0	100	17	15
Na.	Mg											AL.	s	1	8	ă.	Å
A.	20	21	22	25	1.24	1.25	1.5	22	з	N	1.20	harb 31	32	11	3186	15	36
ĸ		5	n n	v.	ĉ.				N			G.	Ge			Br	- Kr
	Ca					Ma	Fe	Co		0	Za			As	8		
31	4.53	secon	410	41	42	43	44	45	20.004	4154	0.0	11.15	154	21	71 m	33	54
	38	29 Y									å	in la	- 50	21		25	Xe
81	Sr		21	Nb	Ме	Te	Ra	Rh	Pd	Λz			Su		Te	1.1	
	110	0.000		12064				07870		10.94	1041	12488	101.50			13/06/	
55	56	57	12	13	74	75	75	77	75	79	50	\$1	\$2	53 Bi	54	85	35
<u>0</u>	Ba.	La	Hf	Ta	w	Re	05	Ir	n	<u>A</u>	Hg	<u>n</u>	2		<u>Pr</u>	At	
														28.98.0	081	578	(53)
\$7	\$3.	99	304	105	106	107	105	199	110	111	112	113	114				
Fr	Ra	M	Rſ	DP	8	Eh	Hs	Mt									
625	600	(22	OK1	90	004	00	OW	Chill	08	925	675						
				38	. 59			- 62		64	1.74	66	67	68	69	22	71
						68	61		63		65						
				Ce	Pr	Nd	Pa	Sm	Eu	Gđ	n	Dy	Ho	Er	Tm	1b	La
				90	51	92	90	94	95	96	97	95	99	300	304	204	\$00
				n	Pa	U	<u>N0</u>	Pu	An	Cn	Bk	CT	Es	Fm	- 544	No	Lr

Properties are Based on Bonds

Property	lonic	Covalent
Melts at	High	Low
	temps	temps
Dissolves in	V	
water?	Yes	No
Conducts	N	
electricity?	Yes	No
Hard/Soft?	Hard	Soft
Odor?	No	Yes

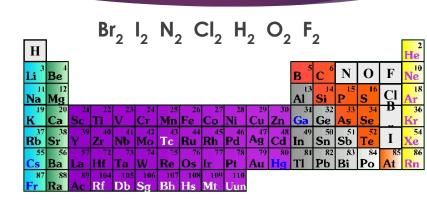
 Why is it necessary to distinguish between ionic and covalent bonding? Their properties are important.

Practice Problem:

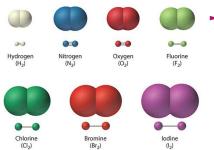
- What properties would you expect for the chemical C₆H₁₂O₆?
- Melts at low temps.
- Doesn't dissolve in water.
- Doesn't conduct electricity.
- Soft
- Odorous

1	Be .											3 B	ĉ	Ň	ő	÷.	N
	10000												100	times.	22	1000	
11	12											13	34	15	35	17	11
Na	Mg											AL	8	P	8	0	N 1
Dech	3.88												3.002		1200	245	12
19	30	21	22	23	24	13	3	27	3	3	74	31	72	33	- 74	35	- H
K	Ca	8	п	V	Cr	Ma	Fe	Co	N	9	Za	Ga	Ge	As	80	Br	K
						10000			38.804								
31	38	39	4)	41	42	43	44	45	-26	43	48	- 49	- 50	- 51	. 52	- 53	- 54
Rb	Sr	Y	71	Nb	Me	Te	Re	Rh	PM	Az	04	In .	59	55	Te	1.1	X
12.423	1142	1000	1000	CREE	12.14	1000	Addates No. 10	10.00	7646m	10 MC	11241	11423	in the	10130	1214	12/06/	
55	56	57	72	13	74	75	75	77	75	79	50	\$1	\$2	\$3	34	85	N
Cs.	Ba	La	Hf	Ta	W	Re	0.	Ir	h	Au	Hg	n	25	Bi	Pa.	At	8
CLASS.	Anima Inc.	Laters C3.ND2	12141	Links 16/1CV	20.00	18.207	14.21	14440 140-311	Anna I	PR. No.T	20.7	Patient 204.3423	302	Name 28, VALUE	CP1	Anter CDD	
\$7	\$3.	99	304	105	106	337	105	109	110		112	113	114				
Fr	Ra	.40	Rf	26	8	Eh.	Hs	Mt									
671	600	100	001	003	00	00	0.0	1245	0.0	62	675						
				- 58	. 59	68	61	62	63	- 64	9.5	86	87	68	- 69	20	11
				Ce	Pr	Nd	Pm	Sm	Eu	Gå	Th.	Dy.	Ho	Er	Tm	1b	L.
				1618		Testam.	120	14M	15.94	102	1444	10.0		Max IC2	10.10	1010	
							90									203	
				n	Pa	U	No	Pu	An	Čn.	Bk	cr	Es	Fn	м	No	ũ

Coulomb's Law


Does it make sense that ionic compounds are hard while covalent compounds are soft? Why?

lonic compounds are held together by +/charges, which are strong attractive forces.

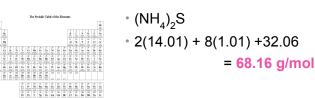


HIGHER Charge results in a shorter, STRONGER attraction!

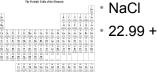
The SEVEN diatomic elements

Diatomic Elements

 Some elements do NOT exist as a single atom. Those elements exist as a PAIR of atoms. They are called diatomic.


Molar Mass of Compounds

- If you add up the atomic mass of EVERY atom in a compound, you will have the mass of 1 MOLE of that compound.
- That's the mass of 6.02 x 10²³ molecules of that compound!
- ► C₉H₈O₄
- molar mass = $(9 \times 12.01) + (8 \times 1..01) + (4 \times 16.00)$ = 180.20 g/mol
- (Give this value with 2 places past the decimal).


More Examples

- calcium hydroxide
 - Ca(OH)₂ • 40.08 + 2(16.00) + 2(1.01) = 74.1 g/mol → 74.10 g/mol
- ammonium sulfide

Then, the molar mass can be used in **More Examples** calculations along with Avogadro's number. What's the molar mass of these compounds: - The compound $C_9H_8O_4$ is aspirin. If I have an aspirin tablet that weighs 0.325g, how many water • H₂O molecules of aspirin are in the tablet? • 2(1.01) + 16.00 = 18.02 g/mol sodium chloride $\frac{1 \text{ mol}}{180.20 \text{ g}} \frac{6.02 \text{ x } 10^{23} \text{ molec.}}{1 \text{ mol}} = 1.09 \text{ x } 10^{21} \text{ molec.}$ NaCl • 22.99 + 35.45 = 58.44 g/mol
 Par
 San
 Ea
 Gd
 Th
 Par
 Ha
 Ea
 Tan
 Another Example Percentage by Mass ► You have 16.5 g of oxalic acid, H₂C₂O₄. Since the molar mass is a constant we How many moles of acid do you have? can figure out the percentage that each How many molecules are in this sample? element makes up of the molar mass of a compound.

- ► C₉H₈0₄....molar mass = 180.2 g/mol
- The carbon represents 108.09 grams of this compound (9 x 12.01). This is 59.98%
- ► (108.09/180.20) x 100 = 59.98%

= 0.183 mol 6.02×10^{23} molec. = 1.10 x 10²³ molecules

Percent Composition

 We call these percents the percent composition.

% K $\frac{39.1 \text{ g K}}{158 \text{ g}}$ × 100 = **24.7 %**

Molar Mass of KMnO₄ = 158 g

 $\begin{array}{r} 158 \ g \\ \% \ Mn \ \ \frac{54.9 \ g \ Mn}{158 \ g} \times 100 = 34.8 \ \% \\ \% \ O \ \ \frac{64.0 \ g \ O}{158 \ g} \times 100 = 40.5 \ \% \end{array}$

Practice Problem:

What is the percent composition for aspirin (C₉H₈O₄)?

%C = 9(12.01) g C[9(12.01) + 8(1.01) + 4(16.00)] × 100 = 60.00% C

 ${}^{\%}H = \frac{8(1.01) \text{ g H}}{[9(12.01) + 8(1.01) + 4(16.00)]} \times 100 = 4.48\% \text{ H}$

 $^{\text{\%O}} = \frac{4(16.00) \text{ g O}}{[9(12.01) + 8(1.01) + 4(16.00)]} \times 100 = 35.52\% \text{ O}$

Usefulness of these Percents

If I have 3.25 g of aspirin, (C₉H₈O₄), how much carbon (in grams) do I have in my sample? How much oxygen? How much hydrogen?

60.00% C 0.60 x 3.25 = 1.95 g C

4.48% H 0.0448 x 3.25 = 0.0145 g H

35.52% O 0.3552 x 3.25 = 1.15 g O

Practice Problem:

Imagine that I dig up a rock that is made of FeO (iron ore). If the rock weighs 2500 grams, how much iron can I pull out of the rock (in grams)?

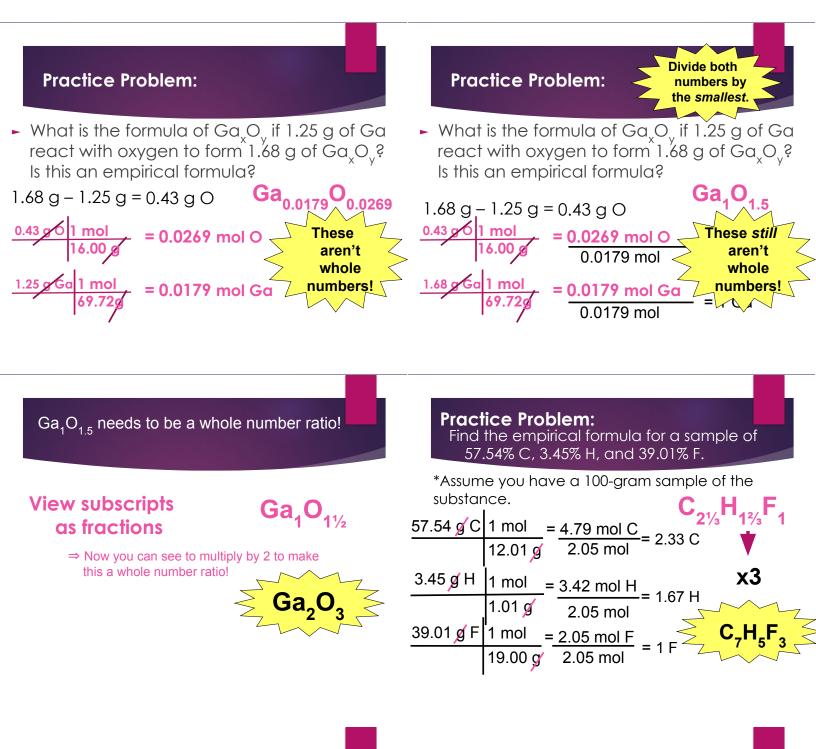
%Fe = <u>55.85 g Fe</u> [55.85 + 16.00] × 100 = 77.73% Fe

0.7773 x 2500 = 1943 🕨 1900 g Fe

Types of Formulas

- The formula H₂C₂O₄ represents the TRUE formula of the chemical. This is called the molecular formula.
- If we divide each element by 2, we can simplify or reduce the formula to HCO₂. This is called the empirical formula.

 $H_2C_2O_4 \rightarrow HCO_2$

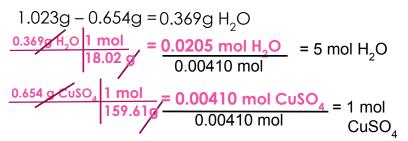

Empirical Formula

 The formula subscripts represent a MOLE RATIO of the elements.

CH₃

1 mol Carbon 3 mol Hydrogen

3 mol Hydrogen 1 mol Carbon

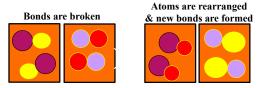


Hydrates

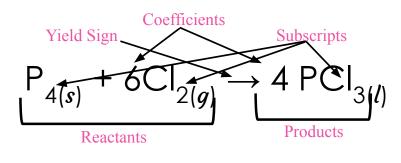
- A hydrate compound is one that has water attached to it.
- CuCl₂·H₂O is copper II chloride and it has 1 mole of water attached to it.
- What is the molar mass of this compound?
- The SUM of all the elements AND ONE water molecule (152.47 g/mol)

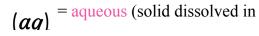
Practice Problem: CuSO₄ · 5H₂O

Copper (II) sulfate is a hydrate, but we don't know how many waters are attached to it. Suppose you measured out 1.023g of this substance (CuSO₄'xH₂O) and we heat it thoroughly so that all of the waters are removed and evaporated. It now weighs 0.654 grams. What is the formula of this hydrate?

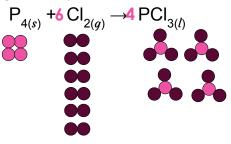


Lesson 4


- Balancing Chemical Equations
- Stoichiometry
- Limiting Reactants
- Types of Reactions

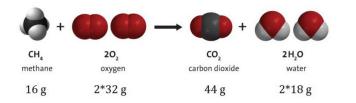

Chemical Reactions

When two or more chemical combine together and react, the **bonds break** and atoms **rearrange**. This is a chemical reaction.


Chemical Equation

Balancing Equations

In a balanced equation, the number of atoms on the left side (reactants) is equal to the number of atoms on the right side (products).


Practice Problem:

4 FeO _(s)	+ 0	$_{2(g)} \rightarrow$	2 Fe ₂ O _{3(s)}
	4,2 1	Fe	24
	643	0	36

Practice Problem:

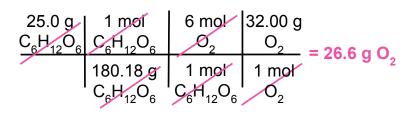
4 NH _{3(g)}	(2.5) + 5 O ₂₍	(g) → 4	NO _(g) + 6H ₂ O _(l)
	421	Ν	124
	10 2	0	2 3 5 10
	12 6 3	н	2612

Atoms cannot be created or destroyed.

Mole Ratio

- The coefficients can provide a ratio for chemicals in an equation.
- This ratio is called the mole ratio.

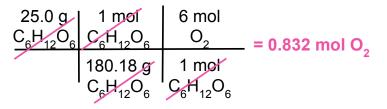
$$N_2 + 3H_2 \rightarrow 2NH_3 \qquad \frac{1 \text{ m}}{2 \text{ m}}$$


$$\begin{array}{cccc} \frac{1 \ \text{mol} \ N_2}{3 \ \text{mol} \ H_2} & or & \frac{3 \ \text{mol} \ H_2}{1 \ \text{mol} \ N_2} \\ \frac{1 \ \text{mol} \ N_2}{2 \ \text{mol} \ \text{NH}_3} & or & \frac{2 \ \text{mol} \ \text{NH}_3}{1 \ \text{mol} \ N_2} \\ \frac{3 \ \text{mol} \ H_2}{2 \ \text{mol} \ \text{NH}_3} & or & \frac{2 \ \text{mol} \ \text{NH}_3}{3 \ \text{mol} \ H_2} \end{array}$$

Practice Problem: $P_{4(s)} + 6Cl_{2(g)} \rightarrow 4PCl_{3(l)}$ • What is the mole ratio for P₄ and PCl₃? $\frac{1 \mod P_{4}}{4 \mod PCl_{3}}$ • If we know the mass or moles of one chemical, we can use the mole ratio to figure out the mass or moles of another chemical. $\frac{8 \mod PCl_{3}}{4 \mod PCl_{3}} = 2 \mod P_{4}$ • This is called Stoichiometry.

Practice Problem:

What mass of oxygen (in grams) is required for a complete reaction of 25.0 g of glucose, C₆H₁₂O₆? The balanced equation is shown below.


$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2C$$

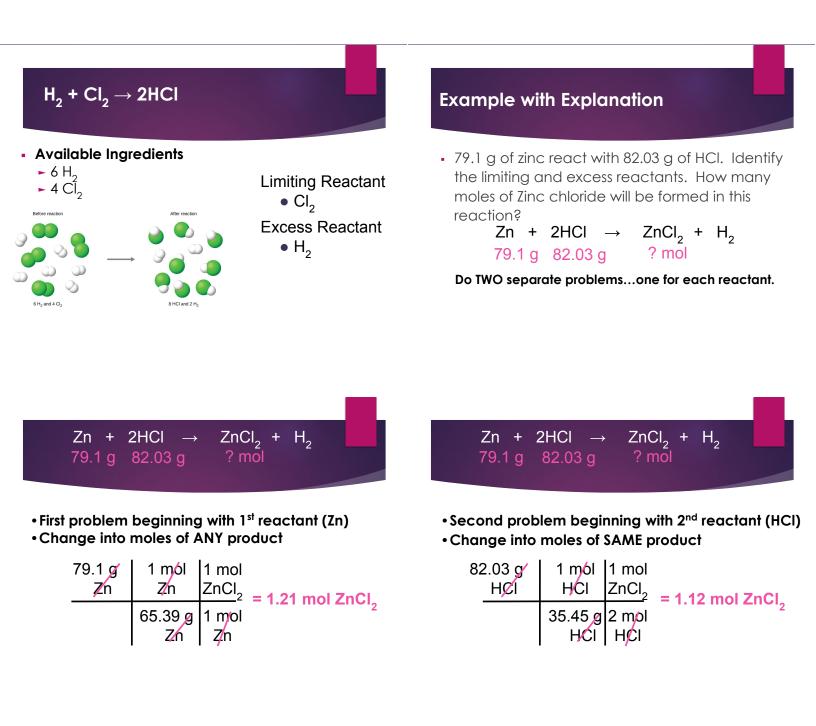
25.0 g ? g

Practice Problem:

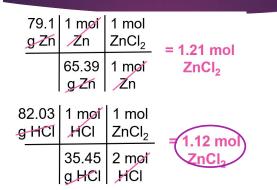
 How many moles of oxygen is required for a complete reaction of 25.0 g of glucose, C₆H₁₂O₆? The balanced equation is shown below.

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

25.0 g ? mol

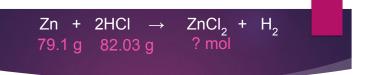


What mass of glucose, C₆H₁₂O₆, is required to form 3 moles of H₂O? The balanced equation is shown below.


$$\begin{array}{c} C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \\ ? g & 3 \text{ mol} \end{array}$$

Limiting & Excess Reactants

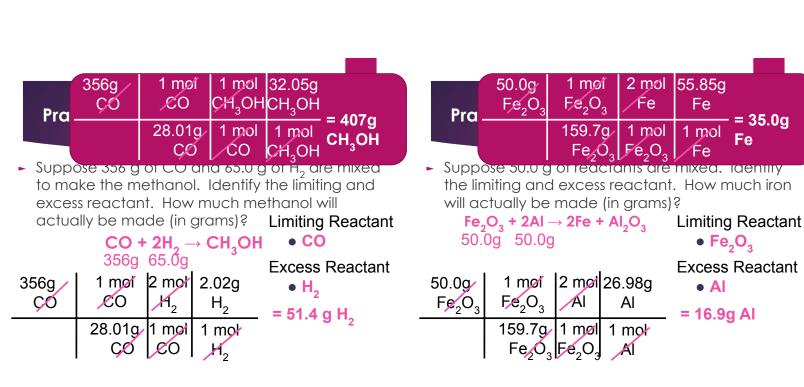
- When two chemical are mixed together in a reaction, you might have some chemical left over and another chemical used up.
- We call the leftover chemical excess reactant. The used up chemical is called the limiting reactant.
- You can use stoichiometry to figure out limiting and excess reactant.
- The one that makes LESS product will be all used up (limiting). The one that is capable of making MORE product will be leftover (excess).



Now,	compare the 2 answers.
	Find the smallest.

Since LESS product was made from the HCI, the Limiting Reactant is HCI.

- Let's see if you truly understand. Change one reactant into the other.
- Limiting Reactant HCI

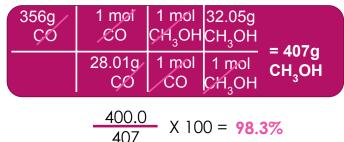

-	79.1 g Zn	1 mơi Zn	2 moł J-łCl	35.45 g HCl	Excess Reactant • Zn = 85.77 g HCI
_		65.39 g Zn	1 moi Zn	1 moł HCI	

•79.1g Zn requires 85.77g HCl to completely react. Since we only have 82.03g HCl, we will run out of HCl.

Practice Problem:

Methanol, CH₂OH, can be used as a fuel. It is made by reacting carbon monoxide and hydrogen gas. Write an equation for this reaction. Balance the equation.

 $CO + 2H_2 \rightarrow CH_3OH$



Percent Yield

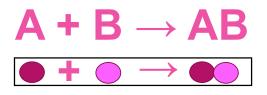
So now that we can calculate how much of a product should be made (called the **theoretical** yield), we can compare that to the amount that we actually make (called the actual yield).

Practice Problem:

If 400.0 grams of CH₃OH are actually made, what is the percent yield?

Practice Problem:

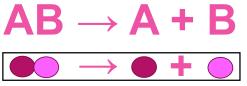
 If 30.0 grams of Fe are actually made, what is the percent yield?


FIVE Types of Reactions

- There are 5 categories in the Animal Kingdom (mammal, amphibian, reptile, fish, and bird).
- How would you classify a rat? Why? Just like we can classify **Double Displacement** a rat as a mammal and not an amphibian, we can classify chemical equations.
- There are 5 categories of chemical equations.

Synthesis Decomposition Single Displacement Combustion

Synthesis


- 2 or more substances combine to form a compound
- only one product

Example: $H_2 + O_2 \rightarrow H_2O$

Decomposition

- a compound breaks down into 2 or more simpler substances
- only one reactant

Example: $H_2O \rightarrow H_2 + O_2$

► one FREE ELEMENT displaces an element in a COMPOUND

Example: AI + $CuCl_2 \rightarrow AICl_3 + Cu$

Double Displacement

ions in two compounds "change partners"

$AB + CD \rightarrow AD + CB$

Example: $CuCl_2 + Al(OH)_3 \rightarrow Cu(OH)_2 + AlCl_3$

Combustion

• the burning of any substance in O_2

 $A + O_2 \rightarrow B$

Example: $CH_4 + O_2 \rightarrow CO_2 + H_2O$

Practice Problem:

- Identify these types of reactions:
- (a) 2Mg + O₂ → 2MgO
 Synthesis (or combustion)
- (b) CH₃CO₂H + NaOH → CH₃CO₂Na + H₂O
 Double Displacement
- ► (c) Ni + 2HNO₃ \rightarrow Ni(NO₃)₂ + H₂ Single Displacement

Predicting Products

Can you identify the type of reaction without the products?

$$Li + O_2 \rightarrow$$

- We know bonds will break and the atoms will rearrange.
- The atoms must combine.
- SYNTHESIS

Predicting Products

What will the product be?

Since they combine, they form an ionic bond (between a metal & nonmetal).

Predicting Products

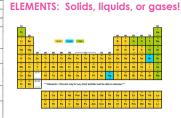
- Predicting the products of a chemical reaction is an important part of Chemistry.
- We predict the products by "balancing" the charges of the elements in the reaction.

Predicting Products

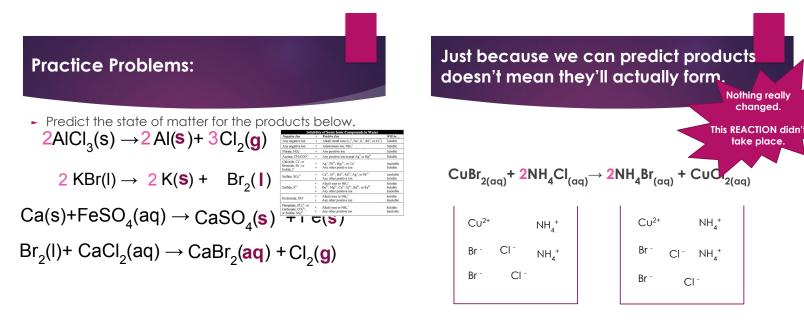
$$^{+1}_{2H_2} + ^{-2}_{0_2} \rightarrow ^{2H_2}C$$

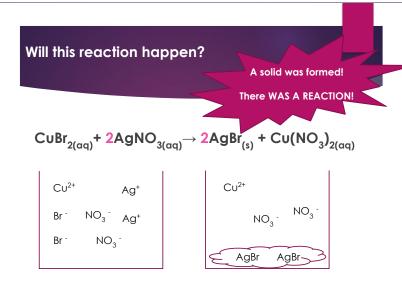
 $2H_2O \rightarrow 2H_2 + O_2$ H & O are diatomic! +3 +2 -1 2Al +3CuCl, $\rightarrow 2AICI_3 + 3Cu$

+2-1 +3-1
3CuCl₂+2Al(OH)₃
$$\rightarrow$$
2AlCl₃+3Cu(OH)₂


 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

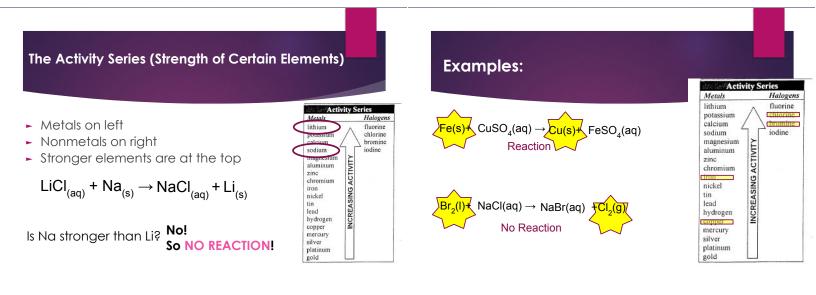
Practice Problem:


- Can you predict the products for the following reactions:
- ► (a) $Na_2SO_4 + BaCl_2 \rightarrow 2NaCl + BaSO_4$
- ► (b)2AI +3CI₂ \rightarrow 2AICI₃
- ► (c)2PbS + $O_2 \rightarrow 2PbO + 2S$


What are the states of matter of the products?

Negative Ion	+	y of Some Ionic Compounds in Water Positive Ion	Will be
Any negative ion	+	Alkali metal ions (Li*, Na*, K*, Rb*, or Cs*)	Soluble
Any negative ion	+	Ammonium ion, NH4*	Soluble
Nitrate, NO3"	+	Any positive ion	Soluble
Acetate, CH3COO-	+	Any positive ion except Ag* or Hg2*	Soluble
Chloride, CI ⁻ , or Bromide, Br ⁻ , or Iodide, I ⁻	+ +	Ag^+ , Pb^{2+} , Hg_2^{2+} , or Cu^+ Any other positive ion	Insoluble Soluble
Sulfate, SO42-	+ +	Ca2*, Sr2*, Ba2*, Ra2*, Ag*, or Pb2* Any other positive ion	Insoluble Soluble
Sulfide, S ²⁻	+ + +	Alkali ions or NH4 ⁺ Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , or Ra ²⁺ Any other positive ion	Soluble Soluble Insoluble
Hydroxide, ÖH ⁻	+ +	Alkali ions or NH4 ⁺ Any other positive ion	Soluble Insoluble
Phosphate, PO ₄ ³⁻ , or Carbonate, CO ₃ ²⁻ , or Sulfite, SO ₃ ²⁻	+ +	Alkali ions or NH4* Any other positive ion	Soluble Insoluble

Soluble = (aq) Insoluble = (s)


Let's Consider this...

What's happening here?

$$\text{LiCl}_{(\text{aq})} + \text{Na}_{(\text{s})} \rightarrow \text{NaCl}_{(\text{aq})} + \text{Li}_{(\text{s})}$$

Isn't Na "kicking out" Li?

Doesn't Na have to be "stronger" than Li to do this?

Practice Problem:

- Will the following reactions occur?
- ► $2AI + 3CUCI_2 \rightarrow 2AICI_3 + 3CU$
- Yes, b/c Al is "stronger" than Cu
- ► $3CuCl_2 + 2Al(OH)_3 \rightarrow 2AlCl_3 + 3Cu(OH)_2$
- Yes, b/c Cu(OH)₂ is an insoluble solid.
- ► $Na_2SO_4 + BaCl_2 \rightarrow 2NaCl + BaSO_4$ Yes, b/c BaSO₄ is an insoluble solid.
- ► $Cl_2 + MgBr_2 \rightarrow MgCl_2 + Br_2$ Yes, b/c Cl is "stronger" than Br.

Metals	Halogens
lithium potassium calcium magnesium aluminum zinc chromium rion nickel tin lead hydrogen mercury silver platinum gold	fluorine chlorine bromine iodine

egative Ion	+	Positive Ion	Will be
ny negative ion	+	Alkali metal ions (Li*, Na*, K*, Rb*, or Cs*)	Soluble
ny negative ion	+	Ammonium ion, NH4*	Soluble
itrate, NO ₃ -	+	Any positive ion	Soluble
cetate, CH3COO-	+	Any positive ion except Ag* or Hg2*	Soluble
hloride, CI', or romide, Br', or dide, I'	+++++++++++++++++++++++++++++++++++++++	Ag', Pb ²⁺ , Hg ₂ ²⁺ , or Cu' Any other positive ion	Insoluble Soluble
alfate, SO _a ²⁻	+++++	Ca2*, Sr2*, Ba2*, Ra2*, Ag*, or Pb2* Any other positive ion	Insoluble Soluble
alfide, S ²⁻	+ + +	Alkali ions or NH4° Be ³⁺ , Mg ²⁺ , Ca ²⁺ , Sr ³⁺ , Ba ²⁺ , or Ra ²⁺ Any other positive ion	Soluble Soluble Insoluble
ydroxide, OH-	+++++++++++++++++++++++++++++++++++++++	Alkali ions or NH4* Any other positive ion	Soluble Insoluble
osphate, PO ₄ ³⁺ , or arbonate, CO ₁ ²⁺ , Sulfite, SO ₂ ³⁺	+++	Alkali ions or NH4* Any other positive ion	Soluble