

Mr. Jeff Beardsley Pittsford Central School District 100 Mendon Center Road Pittsford, New York 14534

Re: Environmental Water Sampling - Thornell Road Elementary School

Dear Mr. Beardsley,

Envoy Environmental was contracted on October 12, 2016 to perform Environmental Water Sampling at Thornell Road Elementary School located at 431 Thornell Road in Pittsford, New York. We understand the Pittsford Central School District ("Pittsford CSD") is evaluating the data based on the NYS Department of Health ("NYSDOH") Emergency Regulation, Lead Testing in School Drinking Water (Subpart 67-4) as well as the EPA's 3T's for Reducing Lead in Drinking Water in Schools Guidance Document. All sampling conducted was done in accordance with the NYSDOH regulations as it pertains to testing schools for lead in the drinking water.

Samples taken were based on the locations identified as having lead levels above the NYSDOH action levels and have been re-tested in accordance with NYSDOH Section 67-4.4((a)(2)). All water samples collected were 250 mL and taken as a "first draw" from each testing location. First draw samples are defined as a sample of tap water, collected in accordance with the NYSDOH regulations, that has been standing in plumbing pipes at least 8 hours and not more than 18 hours and is collected without prior flushing of the tap. The NYSDOH Regulation identifies the Action Level at 15 ppb.

Water sampling analysis was contracted through Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. The sampling and analytical testing was conducted in compliance with the USEPA Requirements for Lead Sampling and Testing Protocols. The following USEPA Methodologies were used to prepare and analyze the Pittsford CSD drinking water samples for Lead:

Drinking Water Sample Preparation Lead by ICP-MS

USEPA Method 200.2 USEPA Method 200.8

Each sample was preserved, at Con-Test Analytical Laboratory, with nitric acid to reduce the pH to less than 2 as per USEPA Method 200.2.

Chain of Custody ("COC") forms are used to document the history of sample possession from the time the sample containers leave their point of origin to the time the samples are received by the laboratory.

In Table 1 of this report we have listed water samples test results above 15 ppb.

Thornell Road Elementary School								
Sample ID	Room #	Water Source	Level Detected (PPB)	Remedial Suggestions				
ES-1-CS-01	217	Classroom Sink	18					
ES-1-CS-03	214	Classroom Sink	18					
ES-1-CS-05	213	Classroom Sink	23	Take outlet out of service.				
ES-1-BS-10	273A	Bathroom Sink	26	2. Do not use for drinking water				
ES-1-CS-14	202	Classroom Sink	64	purposes – adequate signage. 3. Clean aerator, re-sample "first				
ES-1-CS-15	203	Classroom Sink	38	draw" and "flush" samples to				
ES-1-CS-16	204	Classroom Sink	20	identify if the problem is at the				
ES-1-CS-19	205	Classroom Sink	26	faucet or interior plumbing; and/or,				
ES-1-CS-26	210	Classroom Sink	20	 Replace outlet with NSF-approved devices and re-test. 				
ES-L-CS-30	104	Classroom Sink	20	40 v 1005 and 10-105t.				
ES-L-BS-34	136	Bathroom Sink	27					

Solutions to lead problems need to be made on both a short-term and a permanent basis. Short-term measures could include flushing the pipes to bring fresh water to the source, removing the outlet from service or providing bottled water until the source of contamination is resolved. Permanent remedies can be implemented in order to eliminate the contaminant source. These options, outlined in the 3Ts guidance document include:

- Install corrosion control devices for individual buildings, known as point-of-entry devices.
- Install point-of-use devices that control lead at the tap.
- Find alternate grounding for electrical wires that are grounded to water pipes.
- Replace lead service lines and other lead pipes.
- Replace outlets where there is localized contamination with new, certified components. EPA recognizes NSF Standard 61, Section 9 as a performance standard. It limits leaching of lead into the drinking water. The standard regulates devices that dispense water for human ingestion.¹

Routine control measures can also be implemented by Pittsford CSD to properly address each situation, such as cleaning aerators regularly and placard sinks with notices that water should not be consumed, until appropriate permanent actions can be implemented, such as removing/replacing a fixture.

The remedial options are based on the 3Ts guidance document as referenced in the NYSDOH Emergency Regulation:

"The Environmental Protection Agency's 3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance will be used as a technical reference for implementation of the regulation."

Please refer to the attached laboratory reports for specific analytical data and sample locations throughout the school. If you have any questions, please contact me at (585) 454-1060. We appreciate the opportunity to provide you with our professional services.

Sincerely,

Ted Knapp Project Manager Envoy Environmental Consultants, Inc.

Mr. Jeff Beardsley Pittsford Central School District 100 Mendon Center Road Pittsford, New York 14534

Re: Environmental Water Sampling - Allen Creek Elementary School

Dear Mr. Beardsley,

Envoy Environmental was contracted on October 12, 2016 to perform Environmental Water Sampling at Allen Creek Elementary School located at 3188 East Avenue in Pittsford, New York. We understand the Pittsford Central School District ("Pittsford CSD") is evaluating the data based on the NYS Department of Health ("NYSDOH") Emergency Regulation, Lead Testing in School Drinking Water (Subpart 67-4) as well as the EPA's 3T's for Reducing Lead in Drinking Water in Schools Guidance Document. All sampling conducted was done in accordance with the NYSDOH regulations as it pertains to testing schools for lead in the drinking water.

Samples taken were based on the locations identified as having lead levels above the NYSDOH action levels and have been re-tested in accordance with NYSDOH Section 67-4.4((a)(2)). All water samples collected were 250 mL and taken as a "first draw" from each testing location. First draw samples are defined as a sample of tap water, collected in accordance with the NYSDOH regulations, that has been standing in plumbing pipes at least 8 hours and not more than 18 hours and is collected without prior flushing of the tap. The NYSDOH Regulation identifies the Action Level at 15 ppb.

Water sampling analysis was contracted through Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. The sampling and analytical testing was conducted in compliance with the USEPA Requirements for Lead Sampling and Testing Protocols. The following USEPA Methodologies were used to prepare and analyze the Pittsford CSD drinking water samples for Lead:

Drinking Water Sample Preparation

USEPA Method 200.2

Lead by ICP-MS

USEPA Method 200.8

Each sample was preserved, at Con-Test Analytical Laboratory, with nitric acid to reduce the pH to less than 2 as per USEPA Method 200.2.

Chain of Custody ("COC") forms are used to document the history of sample possession from the time the sample containers leave their point of origin to the time the samples are received by the laboratory.

In Table 1 of this report we have listed water samples test results above 15 ppb.

	Allen Creek Elementary School							
Sample ID	Room #	Water Source	Level Detected (PPB)		Remedial Suggestions			
ES-1-CS-02	13A	Classroom Sink	23	1. 2.	Take outlet out of service. Do not use for drinking water			
ES-1-CS-05	16	Classroom Sink	23	3.				
ES-1-CS-12	26	Classroom Sink	32		and "flush" samples to identify if the problem is at the faucet or interior plumbing; and/or,			
ES-2-CS-20	56	Classroom Sink	280	4.	Replace outlet with NSF-approved devices and re-test.			

Solutions to lead problems need to be made on both a short-term and a permanent basis. Short-term measures could include flushing the pipes to bring fresh water to the source, removing the outlet from service or providing bottled water until the source of contamination is resolved. Permanent remedies can be implemented in order to eliminate the contaminant source. These options, outlined in the 3Ts guidance document include:

- Install corrosion control devices for individual buildings, known as point-of-entry devices.
- Install point-of-use devices that control lead at the tap.
- Find alternate grounding for electrical wires that are grounded to water pipes.
- Replace lead service lines and other lead pipes.
- Replace outlets where there is localized contamination with new, certified components. EPA recognizes NSF Standard 61, Section 9 as a performance standard. It limits leaching of lead into the drinking water. The standard regulates devices that dispense water for human ingestion.¹

Routine control measures can also be implemented by Pittsford Central School District to properly address each situation, such as cleaning aerators regularly and placard sinks with notices that water should not be consumed, until appropriate permanent actions can be implemented, such as removing/replacing a fixture.

The remedial options are based on the 3Ts guidance document as referenced in the NYSDOH Emergency Regulation:

"The Environmental Protection Agency's 3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance will be used as a technical reference for implementation of the regulation."

Please refer to the attached laboratory reports for specific analytical data and sample locations throughout the school. If you have any questions, please contact me at (585) 454-1060. We appreciate the opportunity to provide you with our professional services.

Sincerely,

Ted Knapp Project Manager

Mr. Jeff Beardsley Pittsford Central School District 100 Mendon Center Road Pittsford, New York 14534

Re: Environmental Water Sampling - Mendon Center Elementary School

Dear Mr. Beardsley,

Envoy Environmental was contracted on October 12, 2016 to perform Environmental Water Sampling at Mendon Center Elementary School located at 110 Mendon Center Road in Pittsford, New York. We understand the Pittsford Central School District ("Pittsford CSD") is evaluating the data based on the NYS Department of Health ("NYSDOH") Emergency Regulation, Lead Testing in School Drinking Water (Subpart 67-4) as well as the EPA's 3T's for Reducing Lead in Drinking Water in Schools Guidance Document. All sampling conducted was done in accordance with the NYSDOH regulations as it pertains to testing schools for lead in the drinking water.

Samples taken were based on the locations identified as having lead levels above the NYSDOH action levels and have been re-tested in accordance with NYSDOH Section 67-4.4((a)(2)). All water samples collected were 250 mL and taken as a "first draw" from each testing location. First draw samples are defined as a sample of tap water, collected in accordance with the NYSDOH regulations, that has been standing in plumbing pipes at least 8 hours and not more than 18 hours and is collected without prior flushing of the tap. The NYSDOH Regulation identifies the Action Level at 15 ppb.

Water sampling analysis was contracted through Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. The sampling and analytical testing was conducted in compliance with the USEPA Requirements for Lead Sampling and Testing Protocols. The following USEPA Methodologies were used to prepare and analyze the Pittsford CSD drinking water samples for Lead:

Drinking Water Sample Preparation

USEPA Method 200.2 USEPA Method 200.8

Lead by ICP-MS

Each sample was preserved, at Con-Test Analytical Laboratory, with nitric acid to reduce the pH to less than 2 as per USEPA Method 200.2.

Chain of Custody ("COC") forms are used to document the history of sample possession from the time the sample containers leave their point of origin to the time the samples are received by the laboratory.

In Table 1 of this report we have listed water samples test results above 15 ppb.

Mendon Center Elementary School									
Sample ID	Room #	Water Source	Level Detected (PPB)	Remedial Suggestions					
ES-1-BS-03	128C	Bathroom Sink	16						
ES-1-BS-04	130C	Bathroom Sink	250						
ES-1-CS-06	135	Classroom Sink	18	Take outlet out of service.					
ES-1-CS-07	135	Classroom Sink	48	2. Do not use for drinking water purposes – adequate signage.					
ES-1-CS-08	135	Classroom Sink	31	3. Clean aerator, re-sample "first draw" and "flush" samples to identify if the problem is at the					
ES-1-CS-09	135	Classroom Sink	29	faucet or interior plumbing; and/or, 4. Replace outlet with NSF-approved					
ES-1-BS-12	159B	Bathroom Sink	19	devices and re-test.					
ES-1-BS-14	157A	Bathroom Sink	16						
ES-1-BS-15	157A	Bathroom Sink	26						

Solutions to lead problems need to be made on both a short-term and a permanent basis. Short-term measures could include flushing the pipes to bring fresh water to the source, removing the outlet from service or providing bottled water until the source of contamination is resolved. Permanent remedies can be implemented in order to eliminate the contaminant source. These options, outlined in the 3Ts guidance document include:

- Install corrosion control devices for individual buildings, known as point-of-entry devices.
- Install point-of-use devices that control lead at the tap.
- Find alternate grounding for electrical wires that are grounded to water pipes.
- Replace lead service lines and other lead pipes.
- Replace outlets where there is localized contamination with new, certified components. EPA recognizes NSF Standard 61, Section 9 as a performance standard. It limits leaching of lead into the drinking water. The standard regulates devices that dispense water for human ingestion.¹

Routine control measures can also be implemented by Pittsford Central School District to properly address each situation, such as cleaning aerators regularly and placard sinks with notices that water should not be consumed, until appropriate permanent actions can be implemented, such as removing/replacing a fixture.

The remedial options are based on the 3Ts guidance document as referenced in the NYSDOH Emergency Regulation:

"The Environmental Protection Agency's 3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance will be used as a technical reference for implementation of the regulation."

Please refer to the attached laboratory reports for specific analytical data and sample locations throughout the school. If you have any questions, please contact me at (585) 454-1060. We appreciate the opportunity to provide you with our professional services.

Sincerely,

Ted Knapp

Project Manager

Mr. Jeff Beardsley Pittsford Central School District 100 Mendon Center Road Pittsford, New York 14534

Re: Environmental Water Sampling - Park Road Elementary School

Dear Mr. Beardsley, ---

Envoy Environmental was contracted on October 12, 2016 to perform Environmental Water Sampling at Park Road Elementary School located at 50 Park Road in Pittsford, New York. We understand the Pittsford Central School District ("Pittsford CSD") is evaluating the data based on the NYS Department of Health ("NYSDOH") Emergency Regulation, Lead Testing in School Drinking Water (Subpart 67-4) as well as the EPA's 3T's for Reducing Lead in Drinking Water in Schools Guidance Document. All sampling conducted was done in accordance with the NYSDOH regulations as it pertains to testing schools for lead in the drinking water.

Samples taken were based on the locations identified as having lead levels above the NYSDOH action levels and have been re-tested in accordance with NYSDOH Section 67-4.4((a)(2)). All water samples collected were 250 mL and taken as a "first draw" from each testing location. First draw samples are defined as a sample of tap water, collected in accordance with the NYSDOH regulations, that has been standing in plumbing pipes at least 8 hours and not more than 18 hours and is collected without prior flushing of the tap. The NYSDOH Regulation identifies the Action Level at 15 ppb.

Water sampling analysis was contracted through Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. The sampling and analytical testing was conducted in compliance with the USEPA Requirements for Lead Sampling and Testing Protocols. The following USEPA Methodologies were used to prepare and analyze the Pittsford CSD drinking water samples for Lead:

Drinking Water Sample Preparation

USEPA Method 200.2 USEPA Method 200.8

Lead by ICP-MS

Each sample was preserved, at Con-Test Analytical Laboratory, with nitric acid to reduce the pH to less than 2 as per USEPA Method 200.2.

Chain of Custody ("COC") forms are used to document the history of sample possession from the time the sample containers leave their point of origin to the time the samples are received by the laboratory.

In Table 1 of this report we have listed water samples test results over 15 ppb.

ENVOY

environmental consultants inc.

TABLE 1

	Park Road Elementary School								
Sample ID	Room #	Water Source	Level Detected (PPB)	Remedial Suggestions					
ES-1-CS-12	C4	Classroom Sink	33	 Take outlet out of service. Do not use for drinking water 					
ES-1-CS-14	C7	Classroom Sink	16	purposes – adequate signage. 3. Clean aerator, re-sample "first draw"					
ES-1-CS-15	C8	Classroom Sink	17	and "flush" samples to identify if the problem is at the faucet or interior plumbing; and/or,					
ES-1-BS-23	C150	Bathroom Sink	16	Replace outlet with NSF-approved devices and re-test.					

Solutions to lead problems need to be made on both a short-term and a permanent basis. Short-term measures could include flushing the pipes to bring fresh water to the source, removing the outlet from service or providing bottled water until the source of contamination is resolved. Permanent remedies can be implemented in order to eliminate the contaminant source. These options, outlined in the 3Ts guidance document include:

- Install corrosion control devices for individual buildings, known as point-of-entry devices.
- Install point-of-use devices that control lead at the tap.
- Find alternate grounding for electrical wires that are grounded to water pipes.
- Replace lead service lines and other lead pipes.
- Replace outlets where there is localized contamination with new, certified components. EPA recognizes NSF Standard 61, Section 9 as a performance standard. It limits leaching of lead into the drinking water. The standard regulates devices that dispense water for human ingestion.¹

Routine control measures can also be implemented by Pittsford Central School District to properly address each situation, such as cleaning aerators regularly and placard sinks with notices that water should not be consumed, until appropriate permanent actions can be implemented, such as removing/replacing a fixture.

The remedial options are based on the 3Ts guidance document as referenced in the NYSDOH Emergency Regulation:

"The Environmental Protection Agency's 3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance will be used as a technical reference for implementation of the regulation."

Please refer to the attached laboratory reports for specific analytical data and sample locations throughout the school. If you have any questions, please contact me at (585) 454-1060. We appreciate the opportunity to provide you with our professional services.

Sincerely,

Ted Knapp Project Manager

Mr. Jeff Beardsley Pittsford Central School District 100 Mendon Center Road Pittsford, New York 14534

Re: Environmental Water Sampling - Jefferson Road Elementary School

Dear Mr. Beardsley,

Envoy Environmental was contracted on October 12, 2016 to perform Environmental Water Sampling at Jefferson Road Elementary School located at 15 School Lane in Pittsford, New York. We understand the Pittsford Central School District ("Pittsford CSD") is evaluating the data based on the NYS Department of Health ("NYSDOH") Emergency Regulation, Lead Testing in School Drinking Water (Subpart 67-4) as well as the EPA's 3T's for Reducing Lead in Drinking Water in Schools Guidance Document. All sampling conducted was done in accordance with the NYSDOH regulations as it pertains to testing schools for lead in the drinking water.

Samples taken were based on the locations identified as having lead levels above the NYSDOH action levels and have been re-tested in accordance with NYSDOH Section 67-4.4((a)(2)). All water samples collected were 250 mL and taken as a "first draw" from each testing location. First draw samples are defined as a sample of tap water, collected in accordance with the NYSDOH regulations, that has been standing in plumbing pipes at least 8 hours and not more than 18 hours and is collected without prior flushing of the tap. The NYSDOH Regulation identifies the Action Level at 15 ppb.

Water sampling analysis was contracted through Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. The sampling and analytical testing was conducted in compliance with the USEPA Requirements for Lead Sampling and Testing Protocols. The following USEPA Methodologies were used to prepare and analyze the Pittsford CSD drinking water samples for Lead:

Drinking Water Sample Preparation Lead by ICP-MS

USEPA Method 200.2 USEPA Method 200.8

Each sample was preserved, at Con-Test Analytical Laboratory, with nitric acid to reduce the pH to less than 2 as per USEPA Method 200.2.

Chain of Custody ("COC") forms are used to document the history of sample possession from the time the sample containers leave their point of origin to the time the samples are received by the laboratory.

In Table 1 of this report we have listed water samples test results over 15 ppb.

ENVOY

environmental consultants inc.

TABLE 1

Jefferson Road Elementary School								
Sample ID Room #		Water Source	Level Detected (PPB)		Remedial Suggestions			
ES-1-CS-19	202	Classroom Sink	16					
ES-1-CS-20	201	Classroom Sink	110					
ES-1-CS-22	204	Classroom Sink	40	1.	Take outlet out of service.			
ES-1-CS-25	207	Classroom Sink	85	2.	Do not use for drinking water			
ES-1-BS-29	135	Bathroom Sink	20]_	purposes – adequate signage.			
ES-1-BS-30	135	Bathroom Sink	26	3.	Clean aerator, re-sample "first draw" and "flush" samples to			
ES-1-BS-31	141	Bathroom Sink	33		identify if the problem is at the			
ES-1-BS-32	157	Bathroom Sink	150		faucet or interior plumbing; and/or,			
ES-1-BS-33	160	Bathroom Sink	52	4.	Replace outlet with NSF-approved			
ES-1-BS-34	160	Bathroom Sink	64		devices and re-test.			
ES-1-CS-36	213	Classroom Sink	420					
ES-1-CS-38	214 215	Classroom Sink	16					

Solutions to lead problems need to be made on both a short-term and a permanent basis. Short-term measures could include flushing the pipes to bring fresh water to the source, removing the outlet from service or providing bottled water until the source of contamination is resolved. Permanent remedies can be implemented in order to eliminate the contaminant source. These options, outlined in the 3Ts guidance document include:

- Install corrosion control devices for individual buildings, known as point-of-entry devices.
- Install point-of-use devices that control lead at the tap.
- Find alternate grounding for electrical wires that are grounded to water pipes.
- Replace lead service lines and other lead pipes.
- Replace outlets where there is localized contamination with new, certified components. EPA recognizes NSF Standard 61, Section 9 as a performance standard. It limits leaching of lead into the drinking water. The standard regulates devices that dispense water for human ingestion.¹

Routine control measures can also be implemented by Pittsford Central School District to properly address each situation, such as cleaning aerators regularly and placard sinks with notices that water should not be consumed, until appropriate permanent actions can be implemented, such as removing/replacing a fixture.

The remedial options are based on the 3Ts guidance document as referenced in the NYSDOH Emergency Regulation:

"The Environmental Protection Agency's 3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance will be used as a technical reference for implementation of the regulation."

Please refer to the attached laboratory reports for specific analytical data and sample locations throughout the school. If you have any questions, please contact me at (585) 454-1060. We appreciate the opportunity to provide you with our professional services.

Sincerely,

Ted Knapp Project Manager Envoy Environmental Consultants, Inc.

Mr. Jeff Beardsley Pittsford Central School District 100 Mendon Center Road Pittsford, New York 14534

Re: Environmental Water Sampling - Mendon High School

Dear Mr. Beardsley,

Envoy Environmental was contracted on October 19, 2016 to perform Environmental Water Sampling at Mendon High School located at 472 Mendon Road in Pittsford, New York. We understand the Pittsford Central School District ("Pittsford CSD") is evaluating the data based on the NYS Department of Health ("NYSDOH") Emergency Regulation, Lead Testing in School Drinking Water (Subpart 67-4) as well as the EPA's 3T's for Reducing Lead in Drinking Water in Schools Guidance Document. All sampling conducted was done in accordance with the NYSDOH regulations as it pertains to testing schools for lead in the drinking water.

Samples taken were based on the locations identified as having lead levels above the NYSDOH action levels and have been re-tested in accordance with NYSDOH Section 67-4.4((a)(2)). All water samples collected were 250 mL and taken as a "first draw" from each testing location. First draw samples are defined as a sample of tap water, collected in accordance with the NYSDOH regulations, that has been standing in plumbing pipes at least 8 hours and not more than 18 hours and is collected without prior flushing of the tap. The NYSDOH Regulation identifies the Action Level at 15 ppb.

Water sampling analysis was contracted through Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. The sampling and analytical testing was conducted in compliance with the USEPA Requirements for Lead Sampling and Testing Protocols. The following USEPA Methodologies were used to prepare and analyze the Pittsford CSD drinking water samples for Lead:

Drinking Water Sample Preparation Lead by ICP-MS USEPA Method 200.2 USEPA Method 200.8

Each sample was preserved, at Con-Test Analytical Laboratory, with nitric acid to reduce the pH to less than 2 as per USEPA Method 200.2.

Chain of Custody ("COC") forms are used to document the history of sample possession from the time the sample containers leave their point of origin to the time the samples are received by the laboratory.

environmental consultants inc.

In Table 1 of this report we have listed water samples test results.

TABLE 1

Mendon High School									
Sample ID	Room #	Water Source	Level Detected (PPB)		Remedial Suggestions				
HS-1-BS-28	169	Bathroom Sink	16						
HS-1-BS-29	168	Bathroom Sink	91						
HS-2-CS-62	219	Classroom Sink	60						
HS-2-CS-63	219	Classroom Sink	200						
HS-2-CS-64	219	Classroom Sink	150						
HS-2-CS-65	222	Classroom Sink	43						
HS-2-CS-67	222	Classroom Sink	22	1.	Take outlet out of service.				
HS-2-CS-68	220	220 Classroom Sink 51 2.		8					
HS-2-CS-69	220	Classroom Sink	27	3.	adequate signage. Clean aerator, re-sample "first draw"				
HS-2-CS-70	220	Classroom Sink	940] "	and "flush" samples to identify if the				
HS-2-CS-71	215	Classroom Sink	47		problem is at the faucet or interior				
HS-2-CS-72	215	Classroom Sink	25] ,	plumbing; and/or,				
HS-2-CS-73	218	Classroom Sink	67	4.	Replace outlet with NSF-approved devices and re-test.				
HS-2-CS-75	218	Classroom Sink	16		devices and re-test.				
HS-2-CS-80	216	Classroom Sink	23						
HS-2-CS-81	216	Classroom Sink	35						
HS-2-CS-82	216	Classroom Sink	27						
HS-2-CS-83	216	Classroom Sink	17						
HS-2-CS-84	216	Classroom Sink	35						
HS-2-CS-85	214	Classroom Sink	31						

Solutions to lead problems need to be made on both a short-term and a permanent basis. Short-term measures could include flushing the pipes to bring fresh water to the source, removing the outlet from service or providing bottled water until the source of contamination is resolved. Permanent remedies can be implemented in order to eliminate the contaminant source. These options, outlined in the 3Ts guidance document include:

- Install corrosion control devices for individual buildings, known as point-of-entry devices.
- Install point-of-use devices that control lead at the tap.
- Find alternate grounding for electrical wires that are grounded to water pipes.
- Replace lead service lines and other lead pipes.
- Replace outlets where there is localized contamination with new, certified components. EPA recognizes NSF Standard 61, Section 9 as a performance standard. It limits leaching of lead into the drinking water. The standard regulates devices that dispense water for human ingestion.¹

Routine control measures can also be implemented by Pittsford Central School District to properly address each situation, such as cleaning aerators regularly and placard sinks with notices that water should not be consumed, until appropriate permanent actions can be implemented, such as removing/replacing a fixture.

ENVOY

environmental consultants inc.

The remedial options are based on the 3Ts guidance document as referenced in the NYSDOH Emergency Regulation:

"The Environmental Protection Agency's 3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance will be used as a technical reference for implementation of the regulation."

Please refer to the attached laboratory reports for specific analytical data and sample locations throughout the school. If you have any questions, please contact me at (585) 454-1060. We appreciate the opportunity to provide you with our professional services.

Sincerely,

Ted Knapp

Project Manager

Mr. Jeff Beardsley Pittsford Central School District 100 Mendon Center Road Pittsford, New York 14534

Re: Environmental Water Sampling - Calkins Road Middle School

Dear Mr. Beardsley,

Envoy Environmental was contracted on October 20, 2016 to perform Environmental Water Sampling at Calkins Road Middle School located at 1899 Calkins Road in Pittsford, New York. We understand the Pittsford Central School District ("Pittsford CSD") is evaluating the data based on the NYS Department of Health ("NYSDOH") Emergency Regulation, Lead Testing in School Drinking Water (Subpart 67-4) as well as the EPA's 3T's for Reducing Lead in Drinking Water in Schools Guidance Document. All sampling conducted was done in accordance with the NYSDOH regulations as it pertains to testing schools for lead in the drinking water.

Samples taken were based on the locations identified as having lead levels above the NYSDOH action levels and have been re-tested in accordance with NYSDOH Section 67-4.4((a)(2)). All water samples collected were 250 mL and taken as a "first draw" from each testing location. First draw samples are defined as a sample of tap water, collected in accordance with the NYSDOH regulations, that has been standing in plumbing pipes at least 8 hours and not more than 18 hours and is collected without prior flushing of the tap. The NYSDOH Regulation identifies the Action Level at 15 ppb.

Water sampling analysis was contracted through Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. The sampling and analytical testing was conducted in compliance with the USEPA Requirements for Lead Sampling and Testing Protocols. The following USEPA Methodologies were used to prepare and analyze the Pittsford CSD drinking water samples for Lead:

Drinking Water Sample Preparation Lead by ICP-MS USEPA Method 200.2 USEPA Method 200.8

Each sample was preserved, at Con-Test Analytical Laboratory, with nitric acid to reduce the pH to less than 2 as per USEPA Method 200.2.

Chain of Custody ("COC") forms are used to document the history of sample possession from the time the sample containers leave their point of origin to the time the samples are received by the laboratory.

In Table 1 of this report we have listed water samples test results.

		Visit et e	Calkins Road Mi	ddle School
Sample ID	Room #	Water Source	Level Detected (PPB)	Remedial Suggestions
MS-2-CS-71	D59	Classroom Sink	85	 Take outlet out of service. Do not use for drinking water purposes – adequate signage. Clean aerator, re-sample "first draw" and "flush" samples to identify if the problem is at the faucet or interior plumbing; and/or, Replace outlet with NSF-approved devices and re-test.

Solutions to lead problems need to be made on both a short-term and a permanent basis. Short-term measures could include flushing the pipes to bring fresh water to the source, removing the outlet from service or providing bottled water until the source of contamination is resolved. Permanent remedies can be implemented in order to eliminate the contaminant source. These options, outlined in the 3Ts guidance document include:

- Install corrosion control devices for individual buildings, known as point-of-entry devices.
- Install point-of-use devices that control lead at the tap.
- Find alternate grounding for electrical wires that are grounded to water pipes.
- Replace lead service lines and other lead pipes.
- Replace outlets where there is localized contamination with new, certified components. EPA recognizes NSF Standard 61, Section 9 as a performance standard. It limits leaching of lead into the drinking water. The standard regulates devices that dispense water for human ingestion.¹

Routine control measures can also be implemented by Pittsford Central School District to properly address each situation, such as cleaning aerators regularly and placard sinks with notices that water should not be consumed, until appropriate permanent actions can be implemented, such as removing/replacing a fixture.

The remedial options are based on the 3Ts guidance document as referenced in the NYSDOH Emergency Regulation:

"The Environmental Protection Agency's 3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance will be used as a technical reference for implementation of the regulation."

Please refer to the attached laboratory reports for specific analytical data and sample locations throughout the school. If you have any questions, please contact me at (585) 454-1060. We appreciate the opportunity to provide you with our professional services.

Sincerely,

Ted Knapp Project Manager

Mr. Jeff Beardsley Pittsford Central School District 100 Mendon Center Road Pittsford, New York 14534

Re: Environmental Water Sampling - Barker Road Middle School

Dear Mr. Beardsley,

Envoy Environmental was contracted on October 19, 2016 to perform Environmental Water Sampling at Barker Road Middle School located at 75 Barker Road in Pittsford, New York. We understand the Pittsford Central School District ("Pittsford CSD") is evaluating the data based on the NYS Department of Health ("NYSDOH") Emergency Regulation, Lead Testing in School Drinking Water (Subpart 67-4) as well as the EPA's 3T's for Reducing Lead in Drinking Water in Schools Guidance Document. All sampling conducted was done in accordance with the NYSDOH regulations as it pertains to testing schools for lead in the drinking water.

Samples taken were based on the locations identified as having lead levels above the NYSDOH action levels and have been re-tested in accordance with NYSDOH Section 67-4.4((a)(2)). All water samples collected were 250 mL and taken as a "first draw" from each testing location. First draw samples are defined as a sample of tap water, collected in accordance with the NYSDOH regulations, that has been standing in plumbing pipes at least 8 hours and not more than 18 hours and is collected without prior flushing of the tap. The NYSDOH Regulation identifies the Action Level at 15 ppb.

Water sampling analysis was contracted through Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. The sampling and analytical testing was conducted in compliance with the USEPA Requirements for Lead Sampling and Testing Protocols. The following USEPA Methodologies were used to prepare and analyze the Pittsford CSD drinking water samples for Lead:

Drinking Water Sample Preparation Lead by ICP-MS

USEPA Method 200.2 USEPA Method 200.8

Each sample was preserved, at Con-Test Analytical Laboratory, with nitric acid to reduce the pH to less than 2 as per USEPA Method 200.2.

Chain of Custody ("COC") forms are used to document the history of sample possession from the time the sample containers leave their point of origin to the time the samples are received by the laboratory.

In Table 1 of this report we have listed water samples test results.

TABLE 1

Barker Road Middle School								
Sample ID	Room #	Water Source	Level Detected (PPB)		Remedial Suggestions			
MS-1-BS-01	6B	Bathroom Sink	19					
MS-1-BS-02	144	Bathroom Sink	68					
MS-1-BS-03	147	Bathroom Sink	77					
MS-1-BS-12	136A	Bathroom Sink	19					
MS-1-BS-13	137	Bathroom Sink	55					
MS-1-CS-16	116	Classroom Sink	16					
MS-1-CS-27	M1	Classroom Sink	59					
MS-1-CS-28	M4	Classroom Sink	100					
MS-1-BS-29	160	Bathroom Sink	37					
MS-1-BS-32	160A	Bathroom Sink	19					
MS-1-CS-33	M7	Classroom Sink	180	1.	Take outlet out of service.			
MS-1-CS-44	300	Classroom Sink	55	2.	<i>U</i> 1 1			
MS-1-CS-45	300	Classroom Sink	74	3.	 adequate signage. Clean aerator, re-sample "first draw" 			
MS-1-CS-46	301	Classroom Sink	89		and "flush" samples to identify if the problem is at the faucet or interior			
MS-1-CS-47	302	Classroom Sink	270		plumbing; and/or,			
MS-1-CS-48	303	Classroom Sink	64	4.	Replace outlet with NSF-approved devices and re-test.			
MS-1-CS-49	304	Classroom Sink	600		devices and re-test.			
MS-1-CS-51	308	Classroom Sink	46					
MS-1-CS-52	307	Classroom Sink	25					
MS-1-CS-53	305	Classroom Sink	51					
MS-1-CS-54	315	Classroom Sink	45					
MS-1-BS-56	412	Bathroom Sink	150					
MS-1-CS-58	409	Classroom Sink	33					
MS-1-CS-59	404	Classroom Sink	82					
MS-1-CS-60	405	Classroom Sink	35					
MS-1-CS-61	402	Classroom Sink	250					
MS-1-CS-62	403	Classroom Sink	30					

Solutions to lead problems need to be made on both a short-term and a permanent basis. Short-term measures could include flushing the pipes to bring fresh water to the source, removing the outlet from service or providing bottled water until the source of contamination is resolved. Permanent remedies can be implemented in order to eliminate the contaminant source. These options, outlined in the 3Ts guidance document include:

- Install corrosion control devices for individual buildings, known as point-of-entry devices.
- Install point-of-use devices that control lead at the tap.
- Find alternate grounding for electrical wires that are grounded to water pipes.
- Replace lead service lines and other lead pipes.
- Replace outlets where there is localized contamination with new, certified components. EPA recognizes NSF Standard 61, Section 9 as a performance standard. It limits leaching of lead into the drinking water. The standard regulates devices that dispense water for human ingestion.¹

Routine control measures can also be implemented by Pittsford Central School District to properly address each situation, such as cleaning aerators regularly and placard sinks with notices that water should not be consumed, until appropriate permanent actions can be implemented, such as removing/replacing a fixture.

The remedial options are based on the 3Ts guidance document as referenced in the NYSDOH Emergency Regulation:

"The Environmental Protection Agency's 3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance will be used as a technical reference for implementation of the regulation."

Please refer to the attached laboratory reports for specific analytical data and sample locations throughout the school. If you have any questions, please contact me at (585) 454-1060. We appreciate the opportunity to provide you with our professional services.

Sincerely,

Ted Knapp Project Manager

Mr. Jeff Beardsley Pittsford Central School District 100 Mendon Center Road Pittsford, New York 14534

Re: Environmental Water Sampling - Sutherland High School

Dear Mr. Beardsley,

Envoy Environmental was contracted on October 19-20, 2016 to perform Environmental Water Sampling at Sutherland High School located at 55 Sutherland Street in Pittsford, New York. We understand the Pittsford Central School District ("Pittsford CSD") is evaluating the data based on the NYS Department of Health ("NYSDOH") Emergency Regulation, Lead Testing in School Drinking Water (Subpart 67-4) as well as the EPA's 3T's for Reducing Lead in Drinking Water in Schools Guidance Document. All sampling conducted was done in accordance with the NYSDOH regulations as it pertains to testing schools for lead in the drinking water.

Samples taken were based on the locations identified as having lead levels above the NYSDOH action levels and have been re-tested in accordance with NYSDOH Section 67-4.4((a)(2)). All water samples collected were 250 mL and taken as a "first draw" from each testing location. First draw samples are defined as a sample of tap water, collected in accordance with the NYSDOH regulations, that has been standing in plumbing pipes at least 8 hours and not more than 18 hours and is collected without prior flushing of the tap. The NYSDOH Regulation identifies the Action Level at 15 ppb.

Water sampling analysis was contracted through Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. The sampling and analytical testing was conducted in compliance with the USEPA Requirements for Lead Sampling and Testing Protocols. The following USEPA Methodologies were used to prepare and analyze the Pittsford CSD drinking water samples for Lead:

Drinking Water Sample Preparation Lead by ICP-MS

USEPA Method 200.2 USEPA Method 200.8

Each sample was preserved, at Con-Test Analytical Laboratory, with nitric acid to reduce the pH to less than 2 as per USEPA Method 200.2.

Chain of Custody ("COC") forms are used to document the history of sample possession from the time the sample containers leave their point of origin to the time the samples are received by the laboratory.

In Table 1 of this report we have listed water samples test results.

Sutherland High School								
Sample ID Room # Water Source Level Detected (PPB)					Remedial Suggestions			
HS-3-CS-128	F370	Classroom Sink	31	1.	Take outlet out of service.			
HS-3-CS-144	B309	Classroom Sink	120	2.	Do not use for drinking water purposes – adequate signage.			
HS-3-CS-145	B309	Classroom Sink	95	3.	Clean aerator, re-sample "first draw"			
HS-3-CS-148	C321	Classroom Sink	18		and "flush" samples to identify if the problem is at the faucet or interior			
HS-3-CS-160	C325	Classroom Sink	49	4.	plumbing; and/or, Replace outlet with NSF-approved			
HS-3-CS-178	C327	Classroom Sink	18	-	devices and re-test.			

Solutions to lead problems need to be made on both a short-term and a permanent basis. Short-term measures could include flushing the pipes to bring fresh water to the source, removing the outlet from service or providing bottled water until the source of contamination is resolved. Permanent remedies can be implemented in order to eliminate the contaminant source. These options, outlined in the 3Ts guidance document include:

- Install corrosion control devices for individual buildings, known as point-of-entry devices.
- Install point-of-use devices that control lead at the tap.
- Find alternate grounding for electrical wires that are grounded to water pipes.
- Replace lead service lines and other lead pipes.
- Replace outlets where there is localized contamination with new, certified components. EPA recognizes NSF Standard 61, Section 9 as a performance standard. It limits leaching of lead into the drinking water. The standard regulates devices that dispense water for human ingestion.¹

Routine control measures can also be implemented by Pittsford Central School District to properly address each situation, such as cleaning aerators regularly and placard sinks with notices that water should not be consumed, until appropriate permanent actions can be implemented, such as removing/replacing a fixture.

The remedial options are based on the 3Ts guidance document as referenced in the NYSDOH Emergency Regulation:

"The Environmental Protection Agency's 3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance will be used as a technical reference for implementation of the regulation."

Please refer to the attached laboratory reports for specific analytical data and sample locations throughout the school. If you have any questions, please contact me at (585) 454-1060. We appreciate the opportunity to provide you with our professional services.

Sincerely,

Ted Knapp Project Manager