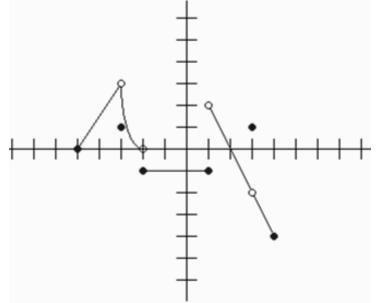
Name:	Date:
Unit 1-HW 1	AP Calculus BC

Show all work. Unless stated otherwise, no calculator permitted.

1) Explain in your own words what is meant by the equation $\lim_{x\to 2} f(x) = 4$. Is it possible for this statement to be true and f(2) = 5 also be true? Explain. What graphical manifestation would f(x) have at x = 2? Sketch a possible graph of f(x).


2) Explain what it means to say that $\lim_{x\to 1^-} f(x) = 3$ and $\lim_{x\to 1^+} f(x) = 6$. What graphical manifestation would f(x) have at x = 1? Sketch a possible graph of f(x).

3) Using your calculator (in radian mode), fill in the table for the following function, then use the numerical evidence (to 4 decimal places) to evaluate the indicated limit.

$f(x) = \frac{\sin(3x)}{x}$									
x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1		
f(x)									

Based on the numeric evidence above, $\lim_{x\to 0} f(x) =$

4) Let g be a function defined on the interval [-5, 4] whose graph is given as:

Use the graph to evaluate the limits, or explain why the limit does not exist.

a) $\lim_{x \to 3^{-}} f(x) =$ b) $\lim_{x \to 3^{+}} f(x) =$ c) $\lim_{x \to 3} f(x) =$ d) $\lim_{x \to 1^{-}} f(x) =$ e) $\lim_{x \to 1^{+}} f(x) =$ f) $\lim_{x \to -3^{+}} f(x) =$ f) $\lim_{x \to -2^{+}} f(x) =$