Nam	e	_
AP 5	latistics	

Las	I.A.	,	-	
\circ			0	
PPS	VO.	el	•	

Dale

Transformations in Regression-74 W

- The relationship between A and \sqrt{B} shows a strong negative linear correlation. Which of the following is true?
 - A. The residual plot of the variables A and B will show a random pattern, and the scatterplot of the variables A and B will show a linear pattern.
 - **B.** The residual plot of the variables A and B will show a nonrandom pattern, and the scatterplot of the variables A and B will show a linear pattern.
 - C. The residual plot of the variables A and B will show a random pattern, and the scatterplot of the variables A and B will show a nonlinear pattern.
 - **D.** The residual plot of the variables A and B will show a nonrandom pattern, and the scatterplot of the variables A and B will show a nonlinear pattern.
 - E. Residual plots cannot be used with quadratic relationships.
- A scatterplot of a company's revenues versus time indicates a possible exponential relationship. A linear regression on $Y = \log(\text{revenue in } \$1000)$ against $X = \text{years since } 2000 \text{ gives } \hat{y} = 0.67 + 0.82x \text{ with } r = .73$. Which of the following are valid conclusions?
 - I. On the average, revenue goes up 0.82 thousand dollars (or \$820) per year.
 - II. The predicted revenue in year 2005 is approximately 59 million dollars.
 - III. 53% of the variation in revenue can be explained by variation in time.
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and III
 - (E) None of the above are valid conclusions.
- Suppose that the scatterplot of $\log X$ and $\log Y$ shows a strong positive correlation close to 1. Which of the following is true?
 - I. The variables X and Y also have a correlation close to 1.
 - II. A scatterplot of the variables X and Y shows a strong nonlinear pattern.
 - III. The residual plot of the variables X and Y shows a random pattern.
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II
 - (E) I, II, and III

Fuel economy y (in miles per gallon) is tabulated for various speeds x (in miles per hour) for a certain car model. A linear regression model give Predicted fuel economy = 34.8 - 0.16 (Speed) with the following residual plots

A quadratic regression model gives $\hat{y} = -0.0032x^2 + 0.26x + 23.8$ with the following residual plot:

- (a) What does each model predict for fuel economy at 50 miles per hour?
- (b) Which model is a better fit? Explain.

7) The following data shows an exponential relationship:

×	2	4	6	8	10	12
у	2	4	7	14	28	55

- A. Use a transformation that would create a linear relationship.
- **B.** Use the least-squares line of this transformed relationship to predict the value of y when x is 16.